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Abstract: Glycaemic control (GC) has been associated with improved outcomes in critically ill patients. 

However, inter- and intra- patient metabolic variability significantly increase the risk of hypoglycaemia 

when using insulin to control glycaemia. Model-based protocols often identify key physiological 

parameters from patient data, and demonstrated safe and effective GC. Based on recent studies showing 

gender difference in insulin secretion, this study uses retrospective data to identify whether there exists a 

difference in sexes in metabolic stress response, and thus in how personalised GC is given. 

Retrospective data from 145 ICU patients under GC who started GC in the first 12 hours of ICU stay are 

used. Insulin sensitivity (SI) is identified hourly, as well as the hour-to-hour percentage change in SI 

(%ΔSI). Differences between males and females SI and %ΔSI over 6-h blocks are compared using 

hypothesis and equivalence testing. A difference in SI levels would suggest a difference in metabolic 

stress response to insult, while a difference in %ΔSI levels would suggest a resulting difference in the 

difficulty to control. 

Results show females are significantly more insulin resistant than males and not equivalent, suggesting 

stronger stress response to insult induced stress. Metabolic variability is equivalent in both groups, 

advocating GC safety and efficacy should be similar between males and females, despite potential higher 

insulin rates required for females. 

This study is the first to suggest potential gender differences in the metabolic stress response. 
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1. INTRODUCTION 

Increased insulin resistance and excessive glucose production 

are common responses to severe injury in intensive care unit 

(ICU) patients (McCowen et al., 2001), causing abnormal 

elevated blood glucose (BG) concentrations associated with 

increased morbidity and mortality (Krinsley, 2003). 

Glycaemic control (GC), using insulin therapy to reduce BG 

levels to safer ranges, is thus essential for these patients. 

While everyone agrees GC should be used to control 

glycaemia below the renal glycosuria threshold (10.0 mmol/L 

or 180 mg/dL), the optimal target band remains a debate 

(Chase et al., 2017; Gunst et al., 2016; Krinsley, 2018; 

Preiser et al., 2016).  

Many studies showed improved outcomes associated with 

lower, normoglycaemic, ranges (Chase et al., 2008b; 

Krinsley, 2004; Reed et al., 2007; Van den Berghe et al., 

2001). However, many others failed to replicate the results 

(Brunkhorst et al., 2008; Finfer et al., 2009; Finfer et al., 

2012; Preiser et al., 2009). Chase (Chase et al., 2010) 

provided an analysis indicating GC had to be achieved for 

virtually all patients to show potential benefit, which many 

studies failed to do. A later study showed inter- and intra- 

patient variability and its evolution made this goal hard to 

achieve safely and effectively (Chase et al., 2011b; Pretty et 

al., 2012). In particular, the associated increased risk of 

hypoglycaemia due to patient variability in the response to 

insulin when targeting lower ranges being potentially more 

harmful than beneficial. Thus, guidelines now recommend 

targeting higher, broader ranges and thus permissive 

hyperglycaemia (Krinsley, 2018; Singer et al., 2019). 

More recently, independent studies have introduced new 

considerations. Patient-specific, model-based GC protocols 

have shown that safe and effective control for all patients is 

possible, despite targeting lower ranges (Mesotten et al., 

2017; Stewart et al., 2016). Those ranges are associated with 

improved outcomes (Krinsley et al., 2015; Penning et al., 

2014; Penning et al., 2015; Signal et al., 2012). Typically, 

these methods use key identified, patient-specific 

physiological parameters to dose insulin (Chase et al., 
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2011a). They can thus better account for inter- and intra- 

patient metabolic variability (Chase et al., 2019; Chase et al., 

2018), the main factor making GC hard to achieve safely.  

More specifically, it has been shown GC is not a function of 

severity of patient condition, patient metabolic condition or 

diabetes status, or outcome, suggesting all patients should 

benefit given equal quality of control (Uyttendaele et al., 

2017). Protocol design is thus the determining factor in GC, 

where poorly designed protocols with demonstrated low 

compliance have wrongly blamed lower glycaemic targets for 

increased hypoglycaemia (Uyttendaele et al., 2019b). Safe, 

effective control must thus be achieved for all patients before 

making conclusions on the clinical impact of GC. 

Given survivors and non-survivors have been shown to be 

equally controllable due to having equivalent metabolic 

variability (Uyttendaele, et al., 2017), it is possible other 

parameters could influence control if differences in patient-

specific metabolic stress response existed. In particular, 

studies have reported differences in insulin resistance, insulin 

secretion, glucose effectiveness, and endogenous glucose 

production, between genders (Basu et al., 2006; Geer et al., 

2009; Soeters et al., 2007). In neonatal ICU infants, girls 

were found to be more insulin resistant than boys given their 

higher endogenous insulin secretion (Dickson et al., 2015a; 

Dickson et al., 2015b).  

This study examines whether differences in insulin resistance 

and its variability also exist in adult ICU patients, and if it 

has an impact on control difficulty.  

2. METHODS 

2.1 Patient Cohort 

Retrospective clinical data from 371 patients on Specialised 

Relative Insulin Nutrition Tables (SPRINT) GC (Chase, et 

al., 2008b) are used. Only 145 patients (91 males, 54 

females) who started GC within 12h of ICU admission and 

received insulin for >24h are used. Demographics are in 

Table 1.  

Differences in age, mortality, severity of injury, ICU length 

of stay, diabetes, and GC outcomes between males and 

females are not significant. Only median BG levels achieved 

are significantly different, but this difference is small and 

does not have any clinical impact (Uyttendaele, et al., 2017).  

2.2 Model-based Insulin Sensitivity (SI) 

Insulin sensitivity (SI) is a physiological parameter, reflecting 

patient metabolic response to insulin and glucose, and, thus, 

patient metabolic stress response. In this study, patient-

specific model-based SI is identified hourly, using a clinically 

validated physiological model (Lin et al., 2011), 

schematically represented in Fig. 1. This model has been used 

in the Stochastic Targeted (STAR) GC framework, providing 

high quality of control for all patients (Evans et al., 2012; 

Stewart, et al., 2016). The model describes all the metabolic 

glucose-insulin pharmacodynamics. SI is identified from 

Table 1. Demographic data of male and female sub-

cohorts from 145 SPRINT patients. 

 Males Females P-val 

# patients 91 54  

Age 67 [57, 77] 67 [58, 74] 0.63a 

Mortality 18% 19% 1.0b 

APACHE II score 20 [16, 27] 19.5 [17, 26] 0.98a 

First day SOFA score 6 [4, 8] 5.5 [4, 8] 0.46a 

ICU length of stay (h) 108 [67, 188] 127.2 [64, 213] 0.91a 

SPRINT duration (h) 83 [46, 157] 87 [39, 167] 0.81a 

Type 2 Diabetes (%) 13 (14%) 11 (20%) 0.4b 

Cohort BG (mmol/L) 5.6 [4.9, 6.6] 5.9 [5.0, 6.9] <0.01a 

Median BG (mmol/L) 5.7 [5.2, 6.1] 6.0 [5.3, 6.4] 0.06a 

%BG 4.4-8.0 mmol/L 83 [72, 90] 82 [67, 89] 0.3a 

%BG < 4.0mmol/L 1.4 [0, 5.5] 1.4 [0, 6.9] 0.42a 

%BG < 2.2mmol/L 0 [0, 0] 0 [0, 0] / 

BG measures/day 15.8 [14.4, 17.5] 15.7 [14.5, 18.2] 0.47a 

Median insulin (U/h) 3 [2, 3] 3 [2, 3] 0.26a 

Median feed (g/h) 3.5 [2.1, 5.5] 2.8 [1.8, 3.9] <0.01a 

Median feed (%GF) 51 [30, 80] 51 [30, 75] 0.61a 

Goal Feed (g/h) 6.5 [6.5, 7.4] 5.2 [5.2, 5.7] <0.01a 

Data is given as per-patient median [IQR] where appropriate. P-values are 

computed using Wilcoxon Ranksum test (a) or Fisher exact test (b). 

clinical BG, insulin, and nutrition data using integral based 

methods (Docherty et al., 2012). 

Difficulty in control is assessed using the hour-to-hour 

change in SI levels (%ΔSI), reflecting metabolic variability 

and thus hyper- and hypo- glycaemic risk. In STAR, 

metabolic variability is used to assess risk for any given 

treatment, and to determine the optimal treatment (Evans, et 

al., 2012; Lin et al., 2008; Uyttendaele et al., 2018; 

Uyttendaele et al., 2019a). 

It is important to note a difference in SI level between males 

and females would suggest potential difference in metabolic 

stress response to injury. However, a difference in %ΔSI 

would suggest an outcome or resulting difference in the 

difficulty to control these patient cohorts. 

2.3 Protocol Comparison and Analyses 

This study analyses patient-specific SI and %ΔSI using 6-h 

blocks over the first 72h of control. Hypothesis testing is 

used to determine whether the null hypothesis of males and 

females sub-cohorts being drawn from distributions of equal 

medians against the alternative they are not can be rejected 

(p<0.05). Due to large data sample size effect, bootstrapping 

is used (Motulsky, 2014). Resampled cohorts of the same 

size of the original cohort are created, where sample are 

randomly chosen with replacement 1000 times, and the 

differences in median bootstrapped SI or %ΔSI between 

males and females are computed. If the 95% CI of these 

differences does not include zero (difference of equal 

medians = 0), the null hypothesis can be rejected (p<0.05). 

Because it is not clear whether data is independent, the 

Bonferroni correction for multiple comparison is also 

considered, where the 12 comparisons made suggest a 

significance level of p=0.004. Therefore, in this case, the 

99.6% CI of differences is considered. 
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Although a difference can be statistically significant, it may 

not have a significant clinical impact (Motulsky, 2014, 2015). 

Equivalence testing is thus used to assess if a difference 

between genders, statistically significant or not, has the 

potential to change clinical decision-making. The equivalence 

range used is based on the change in SI required to exceed 

one standard deviation of BG measurement error (±9.4%) or 

cause a change in model-based insulin recommendations. 

This equivalence range thus corresponds to a change in SI of 

approximately ±15%, based on the median SI value. Further 

details are published in (Uyttendaele, et al., 2017). If the 95% 

CI (or 99.6% CI using the Bonferroni correction) of the % 

difference in medians of bootstrapped cohorts falls within the 

equivalence range, the difference in distributions can be 

considered equivalent (Motulsky, 2014). A statistically 

significant difference can thus well be within equivalence 

range, suggesting the difference is not sufficient to cause 

major clinical impact. 

Table 2. SI levels comparison between male and female 

cohorts using 6-h blocks. 

Hours 
Male Cohort SI 

(×e-4) 

Female 

Cohort SI (×e-

4) 

[95%CI] difference in 

bootstrapped median 

SI (×e-5) 

Day 1  

0-5 1.5 [0.5, 2.7] 1.3 [0.5, 2.3] [0.0, 4.8] 

6-11 2.2 [1.3, 3.7] 1.8 [0.7, 3.3] [0.8, 6.6] 

12-17 3.1 [1.7, 4.8] 2.2 [1.1, 4.2] [5.3, 13.1]a 

18-23 3.3 [1.8, 5.9] 2.4 [1.5, 3.9] [4.8, 12.1]a 

Day 2  

24-29 3.3 [1.8, 5.7] 2.8 [1.6, 4.0] [1.2, 11.0] 

30-35 3.7 [2.1, 6.5] 2.7 [1.8, 4.6] [4.8, 14.1]a 

36-41 3.6 [2.0, 6.0] 2.8 [1.7, 4.3] [2.4, 14.3]a 

42-47 3.6 [2.0, 6.0] 2.9 [1.8, 4.2] [2.3, 11.1]a 

Day 3  

48-53 4.0 [2.2, 6.8] 2.9 [1.9, 4.4] [6.4, 15.9]a 

54-59 4.4 [2.4, 6.7] 3.2 [1.9, 4.8] [4.3, 15.5]a 

60-65 3.8 [2.3, 6.0] 3.2 [2.1, 4.6] [1.3, 9.7] 

66-71 3.8 [2.5, 5.7] 3.0 [2.4, 4.7] [4.1, 11.8]a 

Difference in bootstrapped median SI levels is significant (bold) if the 95% 

CI does not include the null hypothesis value of 0 (p<0.05). aDifference 

remains significant after Bonferroni correction (p<0.004). SI units: 
L/mU/min. 

Table 3. %ΔSI levels comparison between male and 

female cohorts using 6-h blocks. 

Hours 
Male Cohort 

%ΔSI (%) 

Female Cohort 

%ΔSI (%) 

 [95%CI] difference 

in bootstrapped 

median %ΔSI (%) 

Day 1  

0-5 4.5 [-23.1, 61.3] 1.6 [-34.5, 51.1] [-9.7, 9.8] 

6-11 7.2 [-12.7, 38.7] 9.9 [-15.4, 42.0] [-9.7, 4.0] 

12-17 5.4 [-10.6, 27.4] 4.5 [-16.3, 37.6] [-8.3, 7.5] 

18-23 2.9 [-15.5, 24.2] 2.4 [-14.6, 25.0] [-4.7, 7.1] 

Day 2  

24-29 2.5 [-12.5, 22.1] 4.7 [-13.0, 24.9] [-6.9, 1.4] 

30-35 0.2 [-15.6, 23.7] 5.6 [-12.0, 24.5] [-11.0, -0.7] 

36-41 1.2 [-11.4, 16.2] 0.3 [-17.0, 16.4] [-3.4, 6.5] 

42-47 2.0 [-12.3, 19.8] 0.6 [-11.9, 18.2] [-3.7, 5.1] 

Day 3  

48-53 2.7 [-8.6, 16.3] 0.7 [-10.8, 18.7] [-2.8, 5.4] 

54-59 -0.8 [-15.0, 13.1] 1.3 [-10.2, 18.1] [-5.8, 1.9] 

60-65 1.3 [-11.0, 17.5] 4.5 [-10.0, 19.6] [-8.0, 0.3] 

66-71 1.9 [-9.6, 13.6] 1.6 [-9.0, 14.3] [-5.3, 3.4] 

Difference in bootstrapped median %ΔSI levels is significant (bold) if the 

95% CI does not include the null hypothesis value of 0 (p<0.05). 

3. RESULTS 

SI level comparison for every 6-h block and resulting 95% CI 

difference in median bootstrapped SI values are presented in 

Table 2. Equivalence testing results are shown in Fig. 1. 

Female SI is lower, and the difference with male is 

statistically significant (p<0.05) for every 6-h block (95% CI 

does not include the null hypothesis value 0). These 

differences generally remain significant using the Bonferroni 

correction (p<0.004). The difference in SI is also never 

within equivalence range. Women thus have significantly 

lower SI, and the difference are not within equivalent range, 

suggesting it has a clinical impact on decision making. 

 

Fig. 1. Equivalence testing results on SI between males and 

females for each 6-h block. Blue solid lines give equivalence 

range. Equivalence accepted if 95% CI of percentage 

difference in bootstrapped median SI values is within 

equivalence range, and rejected otherwise. 

 

Fig. 2. Equivalence testing results on %ΔSI between males 

and females for each 6-h block. Blue solid lines give 

equivalence range. Equivalence accepted if 95% CI of 

percentage difference in median bootstrapped %ΔSI values is 

within equivalence range, and rejected otherwise. 
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Considering metabolic variability, %ΔSI comparison for 

every 6-h block and resulting 95% CI difference in median 

bootstrapped %ΔSI values are in Table 3. Equivalence testing 

results are shown in Fig. 2. 

Differences in metabolic variability (%ΔSI) are never 

significant (95% CI includes the null hypothesis value 0, 

p>0.05), except one 6-h block. These differences are never 

significant when using Bonferroni correction (p>0.004). 

Additionally, these differences are always within the 

equivalence range (Fig. 2). Males and females thus have 

equivalent metabolic variability and should be equally easy 

or hard to control. 

4. DISCUSSION 

The results presented suggest two main outcomes. One based 

on SI significant difference between genders, and the second 

on equivalent variability. Specifically, females are more 

insulin resistant and have a stronger metabolic response to 

stress, and males and females are equally hard to control. 

In this retrospective cohort, male and female sub-groups 

demographics and GC outcomes are similar (Table 1). The 

only significant differences are in the overall median cohort 

BG distribution and nutrition rates achieved. However, the 

difference in BG levels is well within clinical equivalence 

(Uyttendaele, et al., 2017), and the significant difference in 

nutrition rates achieved (g/h) is explained by the difference in 

the original goal feed (GF). When comparing nutrition rates 

in terms of %GF achieved, which is based on body size, the 

difference, as expected, disappears and %GF rates are 

similar. Thus, both groups are demographically similar. 

Weight information is not available for SPRINT patients. 

However, GF is calculated starting from the 2000kcal/day 

recommended by ACCP guidelines, and then adapted for 

each patient based on sex, age, and body frame size. GF thus 

ranges from ~1025 – 2450 kcal/day. Frame size approximates 

body mass into three groups, while age captures change in 

energy demands as age increases. Thus, these metrics account 

for body mass and demand to personalise nutrition goals.  

GF (g/h) is higher for males (Table 1), as they typically have 

higher body mass, so this difference is expected. However, 

%GF is the same between the sexes, and thus overall caloric 

goals per body mass and estimated demand by age are similar 

across both cohorts. Hence, given insulin administration and 

%GF delivered are the same, it can be concluded females 

were given similar g/hr of nutrition per body weight and 

demand, but were given greater insulin per body mass or 

frame size. Specifically, %GF is normalised to mass in part; 

but insulin delivery is not. Therefore, females require more 

insulin per unit of estimated body mass to remove similar 

amounts of glucose given per unit of estimated body mass. 

Therefore, the first main outcome of this study, all else equal, 

is the significantly lower identified SI observed in females 

(Table 2), suggesting a stronger metabolic stress response 

compared to males. Additionally, the similar insulin and 

grams of dextrose per unit estimated body mass administered 

during GC, suggest higher insulin dosing per body mass was 

needed for females, further validating the lower SI levels 

identified in women. These results match neonatal ICU 

results (Dickson, et al., 2015a; Dickson, et al., 2015b), where 

preterm girls had higher insulin secretion at similar glycemia, 

and thus greater insulin resistance, than boys. 

The second main outcome is the equivalent metabolic 

variability (%ΔSI) between males and females (Fig. 2). The 

difficulty to safely and effectively control patients is inter- 

and intra-patient variability (Chase, et al., 2011b). Being 

equivalent here, suggest males and females are equally 

controllable, and thus should all benefit from safe and 

effective GC. In this SPRINT cohort, GC outcomes achieved 

were safe, effective, and achieved in a similar manner (Table 

1), supporting this result. 

Overall, the different SI levels and equivalent SI variability 

suggest GC protocol design lacking patient-specificity would 

fail to provide personalised control. Specifically, these results 

females may require higher insulin dosing for equal GC 

efficacy, at equal safety. Model-based GC approaches are 

thus needed to capture both inter- and intra- patient 

variability, and account for demographic differences between 

patients. 

In this study, patient-specific, model-based SI is identified 

from a validated physiological model (Docherty, et al., 2012; 

Lin, et al., 2011). This model has been widely shown to 

correlate well with gold standards measures (Lotz et al., 

2006; McAuley et al., 2011), but is limited by estimates of 

some parameters. The differences seen in resulting SI, all else 

equal, could be explained by two parameters: higher 

endogenous glucose production for females and/or lower 

insulin secretion. 

At equal severity (Table 1), higher than estimated 

endogenous glucose production, due to metabolic stress and 

inflammatory response to injury, would suggest higher stress 

response to injury for females. If insulin secretion is lower for 

females than estimated here, it would suggest a greater 

suppression of insulin secretion by stress hormones than for 

males. A combination of both is most likely, given the impact 

of stress response on these two parameters (Dungan et al., 

2009; McCowen, et al., 2001; Preiser et al., 2014).  

The quality of the clinical data from this study is high (Chase 

et al., 2008a; Chase, et al., 2008b). Identified SI is thus 

believed highly reflective of metabolic condition, although 

the identification of this parameter using a model can suffer 

from inaccuracies. However, the model used has been widely 

validated in clinical use (Dickson et al., 2013; Penning et al., 

2012; Stewart, et al., 2016), and shown high performance in 

the clinical ranges observed here, minimizing such potential 

inaccuracies. 

The authors did not find any analyses comparing endogenous 

glucose production and insulin secretion between sexes in 

critically ill adults. However, due to their acute condition, 

these parameters could differ in many ways. Such analyses 

would allow comparison of this study results, first to suggest 

women could be more resistant to insulin than men, 

potentially due to a greater response to insult induced stress.  
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The clinical impact of these results could be limited due to 

the retrospective data used here. However, this cohort is 

representative of a large generalised ICU cohort of patients 

from many years of GC practice.  

5.  CONCLUSIONS 

This study shows a significant difference in SI levels between 

males and females exists for ICU adults under insulin 

therapy. Females are more insulin resistant, and this could be 

due to a higher metabolic response to stress. 

Metabolic variability, %ΔSI, is equivalent between males and 

females. Both groups are thus equally controllable and should 

benefit from similar GC outcomes. In turn, insulin 

requirements for females are likely higher, but equal safety 

and efficacy should be achieved for both groups in GC. These 

results also potentially add a new dimension for future 

personalized medicine, and support the use of dynamic, 

model-based, personalised GC protocol designs. 
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