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Abstract: This work addresses the problem of identifying models using process data with
possibly correlated manipulated variables for model predictive control (MPC) design. The key
idea is to use principal component analysis (PCA) to reject the redundancy in the input space
and utilize scores to build the dynamic model of the system using recurrent neural networks
(RNN). The identified PCA-RNN model is then used in the MPC optimization problem,
calculating the optimal scores. The control actions are computed using the loadings of the PCA
model. The efficacy of the proposed approach is evaluated using a chemical reactor example.
The results are compared with a base-case scenario where the data is directly used to build a
dynamic neural network model and used as part of a model predictive control implementation.
The simulation results show the superiority of the proposed integrated PCA-RNN models for
model predictive control.
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1. INTRODUCTION

Automation systems play an increasingly significant role
in process operations. Given the challenges of nonlinearity,
multi-variable interactions, and process constraints, the
design of controllers to handle these challenges is a critical
task. Advanced process control strategies like model pre-
dictive control (MPC) have been receiving significant at-
tention due to their ability to deal with process constraints
and economic objectives. Addressing the problem of sys-
tem identification, to build a reliable and accurate process
model as part of an MPC implementation, is critical to
the success of MPC implementations. Given the increased
availability of process data, and the challenges associated
with developing and maintaining a first principles model,
there is significant interest in using data-driven approaches
for identifying dynamic models.

The ability of a model to predict the future behavior of
a system can be strongly influenced by types of datasets
and the conditions under which they are generated. One
approach to generate data is perturbing the process in-
puts using pseudo-random binary sequence (PRBS) signals
which are generally uncorrelated (see e.g., Shariff et al.
(2013)). Unstable open-loop systems and economic con-
cerns have motivated the use of closed-loop identification
techniques (see e.g., Forssell and Ljung (1999) and Qin and
Ljung (2003)). Several approaches address the problem
of closed-loop identification using data obtained without
excitation of the reference signals for processes with suf-
ficiently large time delay or adequately small sampling
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time (see e.g., Shardt and Huang (2011)). In terms of
fast processes, other works consider using step changes to
excite the reference signals for closed-loop identification
(see e.g., Shardt et al. (2015)). In essence, these techniques
rely on the inadequacy of the closed-loop controller to
tease out the model dynamics from closed-loop data.

Machine learning (ML) techniques have received signifi-
cant attention for modeling and control of nonlinear sys-
tems. Several approaches consider using subspace iden-
tification methods for modeling process dynamics to be
employed in model predictive control (see e.g., Corbett and
Mhaskar (2016) and Kheradmandi and Mhaskar (2018)).
Latent variable-based techniques are also considered to
develop latent variable MPC algorithms (see e.g., Flores-
Cerrillo and MacGregor (2005) and Golshan et al. (2010)).
Artificial neural networks (ANN) are recently being re-
considered to model and control nonlinear systems (see
Nikravesh et al. (2000), Kittisupakorn et al. (2009), Wu
et al. (2019a), and Wu et al. (2019b))). However, because
of the large number of parameters, a significant amount
of data is required sometimes to achieve a reliable model,
and the problem of reliably avoiding overfitting remains
a challenge, especially in the context of closed-loop im-
plementations. One approach to avoid overfitting is to
possibly pre-process the data to remove any co-linearity
present in inputs in the training data, or alternatively,
to ensure that the co-linearity is maintained in the MPC
operation to prevent the problem of the process moving
significantly away from the training data set.

Motivated by above considerations, the present manuscript
addresses the problem of handling co-linearity in the input
space by using a combination of PCA and RNN to model
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the process. The PCA-RNN model is then embedded in
MPC framework to ensure that the control moves com-
puted by the MPC remain in the same space as the training
data set. The rest of the manuscript is organized as follows:
In Section 2, a brief description of the simulation testbed
is presented. Then, existing approaches for RNN-based
model identification, principal component analysis, and
RNN-based MPC design are reviewed, and implemented
on the motivating example to illustrate the specific prob-
lem being addressed. In Section 3, the proposed approach
for model identification and MPC design is presented. In
Section 4, the efficacy of proposed approach is illustrated
by application to the motivating example. Finally, con-
cluding remarks are presented in Section 5.

2. PRELIMINARIES

In this section, a Continuous Stirred Tank Reactor
(CSTR) example is first reviewed to provide the moti-
vation for proposed research. Afterwards, a brief review
of RNN-based modeling and PCA is presented. Finally, a
representative RNN-based MPC is formulated and imple-
mented on the motivating example.

2.1 Motivating Example: CSTR

Consider the continuous-stirred tank reactor (CSTR) ex-
ample (Du and Mhaskar (2014)), in which an irreversible
elementary exothermic reaction (A → B) occurs. The
mathematical model of the CSTR example takes the fol-
lowing form:

ĊA =
F

V
(CA0 − CA)− k0e−E/RTRCA

ṪR =
F

V
(T0 − TR) +

(−∆H)

ρcp
k0e
−E/RTRCA −

UA

ρcpV
(TR − Tc)

(1)

Ṫc =
Fc

Vc
(Tcf − Tc) +

UA

ρccpcVc
(TR − Tc)

where CA, TR, and Tc are concentration of reactant A,
the temperature in the reactor, and the temperature in
the cooling jacket, respectively. F represents the feed flow
rate to the reactor with temperature T0 and concentration
CA0 and Fc is the cooling stream flow rate to the jacket
with temperature Tcf . The values of process parameters
and the steady-state values of the variables are listed in
Table 1.

Table 1. Parameter and steady-state values for
the CSTR example

V = 100 L cpc = 4.2 J/(g K)
k0 = 7.2 × 1010 min−1 CA0 = 1 mol/L

E/R = 8750 K T0 = 350 K
∆H = −3 × 103 J/mol CAs = 0.86 mol/L

ρ = 1000 g/L TRs = 304.6 K
cp = 0.239 J/(g K) Tcs = 301.3 K

UA = 5 × 104 J/(min K) Fs = 14.6 L/min
Vc = 20 L Fcs = 4.7 L/min

ρc = 1000 g/L Tcfs = 293 K

The CSTR example is used to represent one instance of a
control structure where data may be available from process

operation with more than one manipulated input being
used to control the same output. Thus, in this example,
the reactor and cooling jacket temperatures are controlled
by manipulating feed flow rate to the reactor (F ), the
cooling stream flow rate to the jacket (Fc), and the cooling
stream inlet temperature (Tcf ) by using PI controllers.
The feed flow rate (F ) is manipulated to control the
reactor temperature (TR) in the first control loop and
the cooling stream flow rate and its inlet temperature
(Fc and Tcf ) are manipulated in the second control loop
to maintain the jacket temperature (Tc). Consider PI
controller defined by equation (2), the values of the tuning
parameters (proportional and integral gains) for two PI
controllers are listed in Table 2.

U(t) = K

(
KcE(t) +

Kc

TI

∫ t

0

E(t′)dt′
)

(2)

It should be noted that the vector K = [k1 k2]T in
equation (2) is considered to apply different degrees of the
effectiveness on the manipulated variables in the second
control loop, where two manipulated inputs are considered
to control one controlled variable, otherwise for the first
loop, where one manipulated input is considered to control
one controlled variable, this value should be set to one. The
values of k1 and k2 are used as -2 and 1, respectively for
manipulated inputs (Fc) and (Tcf ) in the second loop; thus
K = [−2 1]T .

Table 2. Tuning parameters for PI controllers

Kc1 = 2.60 Kc2 = 0.86
TI1 = 0.66 TI2 = 1.41

Instances of process data are generated by simulating the
CSTR example in MATLAB. Specifically, the data for
training and validation is generated by applying set-point
changes in TR, Tc for PI controllers. The input-output
training data is shown in Fig. 1 and Fig. 2. Note that
the manipulated inputs are represented by the deviation
variables, F̄ = F−Fs, F̄c = Fc−Fcs , and T̄cf = Tcf−Tcfs ,
and the outputs are represented by the deviation variables,
T̄R = TR − TRs

and T̄c = Tc − Tcs .

2.2 Artificial neural networks for system identification

As mentioned earlier, artificial neural networks (ANN)
have recently received significant attention in the area of
dynamical modeling of the processes. A particular type
of ANN, designed to model a dynamic system, is referred
to as recurrent neural network (RNN). Unlike feedforward
neural networks, the existence of delayed feedback loops in
the RNN structures give the model memory/the ability to
model dynamic behavior. Different types of the RNN such
as nonlinear autoregressive network with exogenous inputs
(NARX), layer recurrent network (LRN), long short-term
memory (LSTM) have been developed. It this work, the
NARX networks are utilized. The NARX model can be
mathematically expressed as follows:

y(τ + Ts) = f [y(τ), y(τ − Ts), ..., y(τ − LyTs), (3)

u(τ), u(τ − Ts), ..., u(τ − LuTs)]
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Fig. 1. Model training data: manipulated variables.

Fig. 2. Model training data: measured outputs.

where y ∈ Rny and u ∈ Rnu represent the vector of
measured outputs and inputs of the system, respectively. τ ,
Ly, and Lu represent time, the number of lagged outputs,
and the number of lagged inputs required for prediction.
As can be noticed, the next values of dependent variables
are regressed on the past and current values of depen-
dent variables and independent (exogenous) variables by
NARX models. A multilayer perceptron (MLP), a class of
feedforward artificial neural network, with the embedded
memory can be employed to approximate the nonlinear
function ‘f ’ in equation (3). The resulting model is referred
to as a NARX recurrent dynamic neural network (see
e.g., Narendra and Parthasarathy (1990)). In the present
manuscript, we use the above RNN structure to illustrate
the key idea of the proposed approach.

The RNN model is thus employed to identify a model for
the chemical reactor example. To this end, the closed-loop
training data, generated considering the set-point changes
in the process, is utilized to train the RNN model. The
data samples are normalized and then fed to recurrent
neural network (NARX) in MATLAB Machine Learn-

Fig. 3. Model validation results: validation data (solid
lines), prediction obtained based on the RNN model
(dash-dotted lines), prediction obtained based on the
PCA-RNN model (dotted lines).

ing and Deep Learning toolbox. One hidden layer with
5 neurons, using hyperbolic tangent activation function
(tanh(x) = 2/(1 + e−2x)− 1), and a delay of 1 is selected.
Linear activation function is considered for the output
layers and Bayesian regularization backpropagation al-
gorithm, updating the bias and weight values based on
Levenberg-Marquardt optimization, is chosen to determine
these values in the model. The capability of the RNN
model to capture the system dynamics and predict the
process outputs is examined in the validation stage. The
output profiles (dash-dotted lines) are shown in Fig. 3. As
can be seen, the RNN model is able to predict the future
behavior of the process with reasonable accuracy.

2.3 Review of principal component analysis

In this section, we review some of the fundamental con-
cepts behind one of the most popular latent variable meth-
ods, principal component analysis (PCA). The objective of
PCA is to transform a set of observations of possibly cor-
related variables into a new space (latent space) in which
the values of new variables (principal components) are
uncorrelated. The mathematical representation of PCA
method can be stated as follows in equation (4):

X = TPT + E (4)

where X is a matrix with columns and rows containing
the process variables and their observations, respectively.
T is a score matrix representing the new mutually uncor-
related variables (principal components) by columns and
projected values of the observations represented by rows,
and P is a loading matrix, containing orthogonal loading
vectors, determines the orientation of the latent space.
The principal components are ordered so that the largest
amount of variation in the data is described by the first
and the last one captures the least variation in the data.
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In order to apply PCA algorithm, the data matrix should
be mean-centered and scaled such that all variables have
zero mean and unit variance. Then, orthogonalization
techniques such as singular value decomposition (SVD)
or nonlinear iterative partial least squares (NIPALS) can
be utilized to compute the principal components. Cross
validation techniques (see e.g., Wold (1978) and Eastment
and Krzanowski (1982)) can be applied to determine the
number of proper principal components.

2.4 RNN based model predictive control (MPC)

A representative RNN-based MPC formulation is de-
scribed below:

minuk,...,uk+P

P∑
j=1

‖ỹk+j − ySP
k+j‖2Qyr

+ ‖uk+j − uk+j−1‖2Rdu

s.t. RNN based Predictive Model,

umin ≤ u ≤ umax

(5)

where P represents the prediction horizon, ySP
k+j is the

desired set-point values for the outputs, and ỹk+j is the
prediction of output at time (k + j)Ts and Ts = ∆τ
is the sampling time. Qyr and Rdu are penalty matrices
corresponding to the output deviations from the set-points
and the rate of change in the inputs. It should be noted
that the RNN-based predictive model computes multi-step
ahead predictions. In this direction, the initial values of
inputs and outputs (lagged data) are fed to the model
and then the values of the outputs are calculated in one
step ahead. Afterwards, the predicted outputs, along with
candidate future input values are fed to the model to
predict the outputs two steps ahead. Subsequently, this
procedure can perform recursively to predict the outputs
multi steps ahead up to the prediction horizon.

Next, the above representative RNN-based MPC is im-
plemented on the motivating example, using the RNN
model, identified in the earlier section. Specifically, the
RNN-based identified model of the process, along with
the constraints on the manipulated inputs, where F ∈
[0 − Fs 60 − Fs], Fc ∈ [0 − Fcs 10 − Fcs ], and Tcf ∈
[289−Tcfs 298−Tcfs ], are included in the RNN-based MPC
represented by equation (5). The optimization problem
for the RNN-based MPC is solved using fmincon solver
in MATLAB and the parameters are chosen as follows:
sampling time Ts = 30 s, prediction horizon P = 6, Qyr

= [1000 0; 0 1000], and Rdu = [1 0 0; 0 1 0; 0 0 1]. Fig. 4
and Fig. 5 show the output and input profiles obtained by
implementing the RNN-based MPC, respectively. As can
be seen, this approach fails to track the set-point value for
jacket temperature, where two correlated inputs (Fc) and
(Tcf ) are manipulated to achieve the desired set-point.

3. PROPOSED APPROACH FOR MODEL
IDENTIFICATION AND CONTROL

3.1 PCA-RNN-based model identification

In the proposed PCA-RNN-based approach, PCA is uti-
lized to eliminate the correlations existing in the input

Fig. 4. The trajectories for the reactor and jacket tem-
peratures obtained from the RNN-based MPC (solid
lines) and set-points (dotted lines).

Fig. 5. Manipulated inputs computed using the RNN-
based MPC.

space. Then, scores (which are by definition uncorrelated)
are used to develop the model for the system using any
appropriate machine learning-based techniques. The mo-
tivation for using PCA in this procedure is to remove the
co-linearity in the input space. Recall that co-linearity in
the input space means that it is impossible to identify
the unique impact of each input variable. As a result, any
data-driven model that uses the raw inputs as manipulated
variables without considering the co-linearity would end
up assigning arbitrary effects to the inputs. By contrast,
the scores calculated in a PCA model are inherently in-
dependent and therefore represent directions of variation
for which sufficient information is available to identify the
unique impact of this reduced dimensional input space on
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output variables. Recognizing this, the NARX model in
equation (3) can be considered as follows:

y(τ + Ts) = f [y(τ), y(τ − Ts), ..., y(τ − LyTs), (6)

t(τ), t(τ − Ts), ..., t(τ − LtTs)]

where y ∈ Rny and and t ∈ Rnt represent the vector of
measured outputs and scores, respectively, and the current
time is indicated by τ . The number of lagged outputs and
scores required for prediction are represented by Ly and
Lt, respectively.

The recurrent neural network (NARX), in Machine Learn-
ing and Deep Learning toolbox, is employed to identify
the function ‘f ’ in the equation (6) to describe the CSTR
example dynamic introduced in Section 2. To this end,
the data samples are normalized and then the PCA is
applied to the input data, shown in Fig. 1, in the first
step. Not surprisingly, the R-squared, value suggests using
two principal components for model identification. In the
second step, the obtained scores, along with the outputs
are utilized to train the RNN model. One hidden layer with
4 neurons and a delay of 1 is considered. The hyperbolic
tangent activation function and linear transfer function
are employed in hidden and output layers, respectively.
The Bayesian regularization backpropagation algorithm
is chosen in training stage. Fig. 3 (dotted lines) shows
the prediction results obtained by implementing this ap-
proach. It can be observed the PCA-RNN model has nearly
the same capability as the RNN model to capture the
process dynamics. This is due to the fact that for the
collected data (both for training and validation) the same
correlation between the two inputs (Fc and Tcf ) exists.
It should be noted that the objective of this work is not
to show the performance improvement of the PCA-RNN
model over the RNN model for the same training and
validation data, to readily enable the use of the resultant
model in MPC to ultimately compare the capability of the
RNN-based MPC with PCA-RNN-based MPC to handle
the problem of set-point tracking.

3.2 PCA-RNN-based model predictive control (MPC)

In this section, the objective is to use the PCA-RNN-based
model to design model predictive control for motivating
example introduced in Section 2. Considering the equation
(6), the PCA-RNN-based technique is proposed to deter-
mine function ‘f ’ to capture the process dynamics in the
previous section. The PCA-RNN model is used in MPC
formulation given by equation (7):

mintk,...,tk+P

P∑
j=1

‖ỹk+j − ySP
k+j‖2Qyp

+ ‖tk+j − tk+j−1‖2Rdt

s.t. PCA−RNN based Predictive Model,

tmin ≤ t ≤ tmax

(7)

where Qyp and Rdt are penalty matrices corresponding to
the output deviations from the set-points and the rate of
change in the scores, and the rest of the parameters are as
defined earlier.

Contrary to the RNN-based MPC, the optimal values of
scores are calculated in the PCA-RNN-based MPC ap-
proach. Applying PCA can be thought as a transformation
that enables us to design the controller in the uncorrelated
space of scores. Subsequently, the values of inputs can be
calculated by transforming scores into input space using
loading vectors.

4. SIMULATION RESULTS: APPLICATION TO THE
MOTIVATING EXAMPLE

The PCA-RNN-based MPC is designed for the chemical
reactor example in this section. To this end, the PCA-RNN
model, identified in Section 3, is employed in the equation
(7) to compute the optimal scores. To this purpose, the
following parameters are considered: sampling time Ts =
30 s, prediction horizon P = 6, Qyp = [1000 0; 0 1000],
and Rdt = [1 0; 0 1]. Fig. 6 and Fig. 7 respectively show
the trajectories for the outputs and the control actions
obtained by transforming the values of scores.

Contrary to the RNN-based approach, the PCA-RNN-
based MPC can handle the problem of set-point tracking
for jacket temperature, where two correlated inputs (Fc)
and (Tcf ) are manipulated to achieve the desired set-
point. The reason why the RNN-based MPC approach
fails can be explained by analyzing the optimal values of
inputs computed using two methods. As shown in Fig.
5 and Fig. 7, the values of the correlated inputs (Fc)
and (Tcf ) obtained from the RNN-based MPC algorithm
are different from those that are calculated using the
PCA-RNN-based MPC method. It can be concluded the
identified RNN model in the RNN-based MPC fails to
predict the values of the future outputs because the
correlations between the control actions, computed by the
RNN-based MPC, are different from those that used for
model identification resulting in poor prediction of the
RNN model and consequently control failure.

Remark 1. Note that another remedy for the RNN-based
MPC design is to consider additional constraints which
force the inputs to maintain the same correlations as those
that exist in input data samples during model training
and identification. This can be performed by applying
the principal component analysis on the input space in
the constraint of the RNN-based MPC and enforcing the
values of squared prediction error (SPE) to not breach
some certain thresholds. This remains the subject of future
work.

5. CONCLUSION

In this study, a novel MPC design, using the combination
of principal component analysis and recurrent neural net-
work to model the process dynamics, is proposed to handle
the problem of set-point tracking for complex processes.
Principal component analysis is performed to reject the re-
dundancy in the input space and recurrent neural network
is employed to capture process dynamics. The identified
model is then used in the MPC formulation, computing
the optimal scores. The result of proposed approach for
the chemical reactor example is illustrated and compared
with the RNN-based MPC approach. The results show the
effectiveness of the proposed approach to track the set-
point trajectories, while the RNN-based approach fails to
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Fig. 6. The trajectories for the reactor and jacket tempera-
tures obtained from the PCA-RNN-based MPC (solid
lines) and set-point (dotted lines).

Fig. 7. Manipulated inputs computed using the PCA-
RNN-based MPC.

reach the set-points. This is achieved because the optimal
values of inputs, calculated by the RNN-based MPC, are
obtained without considering the specific correlation ex-
isting in the input space during model identification, and
consequently results in poor prediction of the RNN model
in the RNN-based MPC.
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