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Abstract: Battery electric buses take an increasingly larger market share and attract much
attention from bus fleet operators to undercut urban emissions limits. But meanwhile it also
becomes a challenge to operators to determine the required battery capacity to be sufficient
for the specific transport operations. The deployment planning includes to select appropriate
bus model specifications, battery characteristics, charging parameters, timetable schedules and
further dependencies under the aspect of ownership costs. Regarding battery characteristics
however, most electrochemical battery models focus more on the internal structure, which have a
worse compatibility on a system level. This paper aims to build up a lithium-battery model based
on the third-Thevenin equivalent circuit, considering both complexity and accuracy. Firstly,
this battery model is implemented with lookup tables to represent the values of each circuit
component, which results in a mean error of 1.98 mV or 0.06%, compared with the original
measurement data. Then a general control model of electric vehicles is introduced to cooperate
with this battery model in a system, combined by the current flowing between these two models.
Finally a simulation is proceeded, employing the real data from Solarisr Urbino 12 Electric
Bus, which provides a reliable SOC estimation for the full day operation.

Keywords: Telecommunication-based automation systems, Smart energy, Electric buses,
Battery models

1. INTRODUCTION

According to the Paris Agreement approved by more than
190 countries, the global warming has to be limited with a
temperature increase less than 2 ˝C, defined in UNFCCC
(2015). One of the main effective methods is to cut down
the emission of the greenhouse gas (GHG) like CO2, in
which the transport sector plays a great role (see Grijalva
and López Martínez (2019), Aber (2016), Asaithambi et al.
(2017)). Many organizations and cities have developed
their own policies and goals on the climate control, e.g. Eu-
ropean Commission (2011) set the targets to reduce GHG
20% in 2020, 40% in 2030 and 80% in 2050. Nowadays,
the transformation from diesel buses to electric buses is
viewed as one of the key policies to achieve such climate
goals (see Göhlich et al. (2014), Krawiec et al. (2016) and
Adheesh et al. (2016)). Therefore, many countries estab-
lished different programs to encourage the development of
electric buses, such as the Electric Mobility in Germany
‹ Research in this paper is based on the project “PLATON-Planning
Process and Tool for Step-by-Step Conversion of the Conventional
or Mixed Bus Fleet to a 100% Electric Bus Fleet”, which is funded
by German Federal Ministry of Transport & Digital Infrastructure
(BMVI) under grant number 03EMEN17 and co-funded by the
European Commission under the framework of “Electric Mobility
Europe”

(see BMU (2018)), the Ten Cities and Thousand Vehicles
and Green Bus Fund respectively in China and the UK,
reported by Li (2016). Due to the energy regeneration and
the advantage of zero emission during driving, battery-
electric buses (BEBs) are widely employed.
Simultaneously, varieties of energy plans with different
types of batteries are provided by the suppliers. Du
et al. (2019) evaluated the current energy storage sys-
tems (ESSs) for BEBs in Chinese market, which is shared
mainly by lithium iron phosphate (LFP) batteries, lithium
nickel cobalt aluminum oxide (NCA) batteries, lithium
manganese oxide (LMO) batteries, nickel metal hydride
(NiMH) batteries, lithium titanate (LTO) batteries, su-
per capacitors and further emerging battery technologies.
Therefore it is difficult for bus manufacturers and fleet
operators to decide which types and capacities of batteries
to be implemented on BEBs. It is necessary for them
to forecast the energy consumption by a running BEB
on a specific bus route, in order to choose appropriate
locations for charging stations and schedules for fast and
slow charging. Therefore, a battery model is required to
simulate these behaviours on a system level. Gao et al.
(2002) presented a dynamic lithium battery model for
system simulation. Huria et al. (2012) built up a high
fidelity model of high power lithium battery cells. Tang
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Fig. 1. Third-order Thevenin circuit.

et al. (2019) put forward a new migrated li-battery model
to compensate uncertainties of temperature and ageing.
In general, system-level li-battery models are developed
based on the Thevenin equivalent circuit model. The
higher the order is, the higher the accuracy to be obtained,
but the computation will become really heavy-weighted
(see Jackey et al. (2013)). As a critical part, parameter
estimation could not only be time consuming but also
have a high demand on device and existing tool boxes
of a specific software. As a result, this paper presents a
simplified third-order lithium-battery model considering
both the complexity and accuracy. It uses a third order ex-
ponential equation to fit experimental data directly rather
than the curve-fitting tool box to calculate step by step.
The organization of this paper is as follows: The most
basic formulation for the equivalent circuit model is in-
troduced in Section 2. All parameters of circuit elements
are estimated in Section 3. Error analysis is proceeded
in Section 4. In Section 5, this battery model is further
connected with a general electric vehicle model for a real
BEB running simulation. Finally the paper is concluded
in Section 6.

2. EQUIVALENT CIRCUIT MODEL FORMULATION

Compared with electrochemical models (see Smith et al.
(2007) and Klein et al. (2013)), equivalent circuit models
have a better description on the behaviour of power supply
to the outside modules. In order to balance both the
accuracy and complexity, the Third-order Thevenin Model
is adopted in this work.
Different from the general equivalent circuits for other
types of batteries (e.g. the lead-acid battery model de-
veloped by Ceraolo (2000)), the self-discharge effect (i.e.
parasitic branch) can be neglected for lithium-batteries
(see Jackey et al. (2013)). As shown in Fig. 1, there are
three parallel branches of capacitances and resistances con-
nected in series to describe the delay effect of the output
voltage Uoutput. As known, internal resistance R0 exists
normally in almost all types of batteries.
As described by Yan et al. (2018), Uoutput can be repre-
sented by (1), where Uoc is the open-circuit voltage of the
battery, U1~U3 are the voltages for parallel branches of
C1~C3, and I is the input current Iinput.

Uoutput “ Uoc ` IR0 ` U1 ` U2 ` U3. (1)

3. PARAMETER ESTIMATION

Normally, the values of components in this equivalent
circuit are irregular, which could be better represented

Fig. 2. Instrumental set-up for voltage measurement.

Fig. 3. Discharging current pulses.

by lookup tables based on measurement data at different
states of charge (SOC).

3.1 Experimental Data Collection

Battery Selection In this experiment, one of the most
widely used and environmental friendly batteries, LFP
battery is selected with parameters shown in Table 1.

Table 1. LFP battery cell

Manufacturer A123 Systemsr
Model ANR26650M1-B

Rated Capacity 2500 mAh

Nominal Voltage 3.3 V

Experimental Environment The terminal voltage of this
LFP battery cell is measured at room temperature with
the instrument c’t-Labr, which can collect data at a high
frequency then transfer the values to the computer via a
COM port, as shown in Fig. 2.
Software LabVIEWr is used to generate current pulses to
control the charging or discharging process. To simplify the
measurement, the battery cell is discharged from a fully-
charged state to a fully-discharged state with 10% of the
charged capacity. In other words, the SOC decreases 0.1C
at each discharging pulse from 100% to 0%. Therefore,
the discharging current is set to be 0.5C, the period for
discharging is 12 min, the recovery time is 1 h, which is
long enough for the battery to cool down and reach a stable
state (see Fig. 3).
When the charging or discharging behaviour ends (i.e.
I “ 0), Uoutput needs a period of time to approach a
stable status, which is described by the time constant
τ “ RC. Therefore, (1) can be transformed into (2) at
this moment. Voltages U1p0q~U3p0q represent respectively
the initial voltage of each RC branch. In this condition,
Uoutputptq can be viewed as the zero-input state response,
e.g. period b~c in Fig. 4.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14432



Fig. 4. Key points at each SOC.

Uoutputptq “ Uoc ` U1p0qe´
t

τ1 ` U2p0qe´
t

τ2 ` U3p0qe´
t

τ3 .
(2)

3.2 Lookup Table

After the acquisition of experimental data, the next step is
to establish the lookup tables for each circuit component
in the model. It is really important to find all key points
correctly, which are represented by cyan points with one
group marked by red circles in Fig. 4 for an example.
In this research, slope is used to locate these key points,
because segments of neighbouring key points a~b and c~d
describe the instantaneous response of the battery, which
can be used to calculate R0.
Segment b~c describes the hysteresis response of the
battery. With the double exponential regression method
raised by Jacquelin (2009), an exponential function of (3)
could be found to fit the curve in this period.

y “ bepx ` ceqx. (3)
Where:

y “ Uoutputptq ´ Uoc;

b “ U1p0q; p “ ´
1

τ1
;

c “ U2p0q; q “ ´
1

τ2
.

It has been proved by Jackey et al. (2013), that simulation
error depends on the initial fitting result. As shown in
Fig. 5, the voltage difference ∆U at the initial recovery
moment may have a significant influence on the whole sim-
ulation result because of the cumulative effect. Therefore,
the third RC branch is added to compensate such an error,
as presented in (4).

∆U “ de0r “ d. (4)
Where:

d “ U3p0q; r “ ´
1

τ3
.

When the voltage begins to recover, it means SOC is
a stable value, because there is no flowing current from
the battery. Then all known parameters and experimental
values could be put into (5) to get a large amount of values
of r at each sampling instant. Then the mean value has to
be calculated by (6), where N is the total number of values.

y “ bepx ` ceqx ` derx. (5)

Fig. 5. Simulation result of 2 RC branches.

r “
1

N

N
ÿ

n“1

ln p∆y
d

q

x
. (6)

In combination with (2), the time constants τ for these
three RC branches can be obtained. As a result of the long
“cool down” time before the next discharging, the polar-
ization voltage inside can be neglected. In other words, the
output voltage of discharging pulses can be viewed as the
zero state response of RC branches, represented by (7) (8)
(9).

U1ptq “ IR1p1 ´ e´
t

τ1 q. (7)

U2ptq “ IR2p1 ´ e´
t

τ2 q. (8)

U3ptq “ IR3p1 ´ e´
t

τ3 q. (9)

At the recovery instant from point a to b, the polarization
voltage does not change basically, so the following equa-
tions could be further obtained (see Yan et al. (2018)).

U1p0q “ IR1p1 ´ e´
tk

τ1 q. (10)

U2p0q “ IR2p1 ´ e´
tk

τ2 q. (11)

U3p0q “ IR3p1 ´ e´
tk

τ3 q. (12)

With tk representing the discharging interval in (10) (11)
(12), R1~R3 can be determined. Furthermore, with the
help of τ , C1~C3 are obtained. Finally the lookup tables for
all elements from SOC “ 0.9 to SOC “ 0.1 are generated,
take the lookup table of C1 in Table 2 for an example. The
process of parameter estimation is explained in detail in
Algorithm 1.

4. MODELING AND VALIDATION

In order to validate the parameters, the Third-order
Thevenin model is developed in SIMBA# (see ifak (2018)),
with the one-dimensional lookup tables plugged into each
module (see Fig. 6).
After the simulation of discharging, a comparison between
experimental and simulation data is shown in Fig. 7. In
this figure, the red solid line represents the measurement
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Algorithm 1: Parameter Estimation

Input: Uoutput, tacc
Output: R0, Uoc, lookup tables for RC branches
while t ă tend do

find: key points;
if ta ă t ă tb then

R01 Ð ∆Uab{I;
else

if tb ă t ă tc then
Exponential Regression: b, c, d, p, q, r;
U1p0q, U2p0q, U3p0q Ð b, c, d;
C1, R1 Ð p;
C2, R2 Ð q;
C3, R3 Ð r;

else
if tc ă t ă td then

R02 Ð ∆Ucd{I;
end

end
end
R0 Ð pR01 ` R02q{2;
Uoc Ð Uc;

end

Fig. 6. Details of RC1 branch.

data of output voltage, the simulation result is displayed
by the green dashed line.
Overall, the model fits the experimental data very well,
except the discharging intervals when the SOC is not cer-
tain and all parameters are changing over time, which can
not be determined simply by lookup tables. Furthermore,
the relative residual error for each data point is calculated
and shown in Fig. 8.
As mentioned before, there is little error at stable SOC
levels, while larger error exists in discharging intervals.

Table 2. Lookup table for C1

SOC C [F]
0.1 47807.4
0.2 47530.4
0.3 44183.6
0.4 62687.7
0.5 67919.9
0.6 69244.5
0.7 32429.6
0.8 69875.2
0.9 88649.5

Fig. 7. Comparison between experimental and simulation
data.

Fig. 8. Residual error of the circuit model.

However, the error in the first discharging interval (i.e. the
transition period from SOC “ 1.0 to SOC “ 0.9) is caused
by lack of lookup table values at SOC “ 1.0, because
the initial state of the battery is fully “cooled down”,
there is no polarization voltage inside RC branches. Af-
ter calculation, the mean residual error for all points is
1.98 mV, the relative error is 0.061%. Removed of the first
period before SOC “ 0.9 and after SOC “ 0.1, the mean
residual error is updated to 1.60 mV, and the relative error
becomes 0.049%. Therefore, this equivalent circuit model
is validated to meet general demands on a system level to
cooperate with other models powered by batteries.

5. SOC ESTIMATION FOR REAL BEB RUNNING

In this paper, a model for a single lithium-battery cell
of 3.3 V is built up to estimate the SOC of an on-board
battery pack for a real electric bus running. In order to
simulate the energy consumption of a real BEB, a general
control model of an electric bus with power train, applied
by Czogalla and Jumar (2019), is adopted.
As shown in Fig. 9, the trip driving cycles, which describe
the velocity at each moment, are firstly input to the
whole control model. Then the model has to compare
the real velocity with the pre-defined value in the cycles,
to tell the driver to accelerate or decelerate, which is
simulated by a PI-controller. If the bus is accelerated, the
power supplying is calculated by the motor torque T_mot
multiplies rotation speed ω. Considering the regenerative
power to the battery system and the auxiliary power
(e.g. heating, air condition, and lightening system), the
required power from the battery model can be finally
calculated, which is described in the form of current pulses.
In addition, if the braking pedal is stepped on, a braking
force F_b will work on the traction force F_tr, together
with the aerodynamic force F_aero, rolling resistance
F_rr and grade force F_grade, the inertia force F_i will
be calculated via (13). Then F_i will accelerate the vehicle
to update the velocity for the next moment. Table 3 lists
the parameters of Solarisr electric bus for this simulation
(see Bruge et al. (2016)).
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Fig. 9. General control model of an electric vehicle.

F_tr “ F_aero ` F_rr ` F_grade ` F_i

“ Crr ¨ m ¨ g ` Cd ¨ Af ¨
ρ

2
¨ v2

` m ¨ g ¨ sinpφq ` m ¨ a.

(13)

Where:
Crr is rolling resistance coefficient, m is vehicle mass, g is
gravitational acceleration, Cd is drag coefficient, φ is road
angle in radians, ρ is air density, Af is vehicle frontal area,
v represents vehicle speed, and a is vehicle acceleration.

Table 3. Technical data of BEB for simulation
Model Solarisr Urbino 12 Electric

Battery capacity 240 kWh

Uoc 600 V

Accessory load 5 kW

Max. power 250 kW

Max. torque 973 Nm

Frontal area 8.66 m2

Final gear drive ratio 22.6
Mass/Load 13,790 kg{5, 100 kg

After combination of battery model and BEB driving
model, one realistic bus route is generated as the input to
the system. The simulation result is displayed in Fig. 10.
Considering real driving plans, 18 duty cycles are sim-
ulated for the full day round trips between Terminal 1
and Terminal 2. As shown in Fig. 10, Terminal 1 is the
starting point, when the bus is driven towards Terminal 2
over a distance of 11 km, the SOC will drop down. Then
the return trip still needs to consume the energy until
it reaches Terminal 1 again, where a charging station is
implemented for an opportunity charging (OPP), so the
SOC will recover to a certain level. For fast charging, the
selected power is 120 kW with a current of 200 A, the
charging time is 5 min. Finally, after full day operation
over 15 h, the bus has to be pulled into the depot for

a slow charging. The result shows that the lowest SOC
during service is about 72.69%. Thus at the depot, the
electric bus needs to be charged for p1 ´ 0.7269q ˆ 400Ah˜
50A « 2.2h, with a charging power of 30 kW and current
of 50 A.

6. CONCLUSION

In this research, a battery model in connection with
a general electric vehicle driving model is successfully
developed and validated, which cuts down the complexity
largely while simultaneously reaches a small error. On a
system level, it can estimate the SOC of the on-board
battery for a full day operation. For real case simulation,
parameters from an existing BEB are selected and the
round trips between two terminals are generated based on
the practical routes and schedules. Since the lowest SOC
is 72.69%, it proves that the capacity of the battery with
240 kWh is sufficient for these duty cycles with only an
opportunity charging for 5 min at Terminal 1. Even for
slow charging, it only needs 2.2 h, which is possible for
more BEBs charged at the depot overnight. This system
provides a reliable estimation on the SOC for a specific
bus route with inputs of several technical data, such as
specification of BEB and charging conditions. Therefore,
it can be adjusted to meet the requirements of operators
to convert the bus fleet to a 100% electric bus fleet step
by step.
In conclusion, this work validates the accuracy of this
battery model on a system level and good portability,
especially in cooperation with the electric bus driving
model. A future work could be to measure the recovery
voltage at SOC “ 100% and SOC “ 0% to add more
values to lookup tables, which will consequently improve
the accuracy.
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Fig. 10. SOC for 18 duty cycles.
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