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Abstract: Canonical correlation analysis (CCA) is widely used as a supervised learning method
to extract correlations between process and quality datasets. When used to extract relations
between current data and historical data, CCA can also be regarded as an auto-regressive
modeling method to capture dynamics. Various dynamic CCA algorithms were developed
in the literature. However, these algorithms do not consider strong dependence existing in
adjacent samples, which may lead to unnecessarily large time lags and inaccurate estimation
of current values from historical data. In this paper, a dynamic weighted CCA (DWCCA)
algorithm is proposed to address this issue with a series of polynomial basis functions. DWCCA
extracts dynamic relations by maximizing correlations between current data and a weighted
representation of past data, and the weights rely only on a limited number of polynomial
functions, which removes the negative effect caused by strongly collinear neighboring samples.
After all the dynamics are exploited, static principal component analysis is then employed
to further explore the cross-correlations in the dataset. The Tennessee Eastman process is
utilized to demonstrate the effectiveness of the proposed DWCCA method in terms of prediction
efficiency and collinearity handling.

Keywords: dynamic weighted canonical correlation analysis, auto-regressive modeling,
principal component analysis

1. INTRODUCTION

Due to complicated mechanisms and large number of con-
trol loops involved in modern industrial processes, the
collected data are usually highly auto-correlated and cross-
correlated, where auto-correlations indicate the dynamic
relations between samples and their historical data points,
while cross-correlations reflect the interaction between dif-
ferent variables. Static multivariate statistical methods are
widely used to exploit cross-correlations from process and
quality variables. Among them, principal component anal-
ysis (PCA) is preferred to extract static relations between
process or quality data, while supervised learning methods,
such as partial least squares (PLS) and canonical corre-
lation analysis (CCA), build latent models with the su-
pervision of quality data (Jackson (2005); MacGregor and
Kourti (1995); Qin (2012); Yin et al. (2014)). Improved
versions of these algorithms were also widely studied, such
as nonlinear ones (Liu et al. (2017); Zhu et al. (2017b))
and robust ones (Ge et al. (2008)).

However, these algorithms cannot capture dynamic char-
acteristics of industrial processes, where sampled data
points have dependence on past data. Thus, their dynamic
counterparts also receive high attentions in both academia
and industry. A straightforward method was designed by
Ku et al. (1995) by aggregating historical data in a single
matrix and performing static PCA on this matrix. In

their work, the extracted latent variables are a mixture
of static and dynamic variations, making it difficult to
develop subsequent monitoring and diagnosis frameworks.
Furthermore, it may require more latent variables than
original process variables. Recently, Li et al. (2014) and
Dong and Qin (2018a) proposed advanced dynamic model-
ing algorithms, where dynamic structures are constructed
by maximizing the relations between current data and a
weighted combination of historical data. Compared with Li
et al. (2014)’s method, dynamic-inner models developed
by Dong and Qin (2018a) obtain explicit dynamic inner
and outer modeling objectives, which have demonstrated
their superiority in both numerical simulations and indus-
trial processes. It is noted that these proposed dynamic
techniques can be applied to other multivariate statistical
methods as well.

In industrial processes, due to high sampling frequencies or
relatively slow continuous process changes, collected data
usually contain strong dependence in successive samples.
This requires extra lagged variables to represent historical
effects, and the extracted correlations might be artificially
large with redundant information. Thus, addressing the
collinear issue in auto-regressive models is important for
effective dynamic modeling. However, the existing dy-
namic algorithms pay no attention to dealing with this
issue, leading to sub-optimal performance.
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In this article, a dynamic weighted CCA (DWCCA)
method is proposed to capture latent dynamic relations
by maximizing correlations between present and past data
with a weighted representation. To overcome the collinear-
ity issue in sampled variables, a series of basis functions,
polynomial functions, are designed. In DWCCA, each
weight of historical sample is represented by a linear com-
bination of these basis functions, which effectively reduces
the required number of lagged variables. After exploiting
the dynamic variations, a static PCA is performed on
the residual dataset to separate static variations from
noise. Tennessee Eastman process (TEP) is employed to
demonstrate the advantages of DWCCA over dynamic-
inner CCA (DiCCA) proposed recently by Dong and Qin
(2018a), which has shown its superiority over other al-
gorithms. It is noted that the techniques developed for
DWCCA are also applicable to other algorithms to alle-
viate the negative effects brought by collinear adjacent
samples.

The remainder of the article is organized as follows.
In Section 2, CCA algorithm is reviewed, in terms of
both static supervised learning method and dynamic time
series method. Section 3 proposes the DWCCA algorithm,
with details on selection of basis functions, formulation
of objective, derivation of solution, and comprehensive
procedure of DWCCA. The case study on TEP is studied
in Section 4 to compare the prediction performance of
DWCCA and DiCCA. Conclusions and future works are
summarized in the final section.

2. CANONICAL CORRELATION ANALYSIS

2.1 Static Supervised Learning Method

CCA was proposed by Hotelling (1936) to exploit corre-
lations between two datasets X ∈ Rn×m and Y ∈ Rn×p,
where n is number of collected sample, and m and p are
number of process variables and quality variables, respec-
tively. The mathematical formulation of CCA is

max J = w>X>Yc
s.t. ||Xw|| = 1, ||Yc|| = 1

(1)

where w ∈ Rm and c ∈ Rp are weighting vectors for X
and Y, respectively. The latent variables can be extracted
iteratively, and the detailed description of CCA can be
found in Hotelling (1936). To improve its robustness to
noise in strong collinear scenarios, Zhu et al. (2016) added
two regularization terms in both constraints in Eq. (1).

After performing CCA on X and Y, the original datasets
can be decomposed as{

X = TP> + E

Y = TQ> + F
(2)

where T ∈ Rn×l is score matrix, P ∈ Rm×l and Q ∈ Rp×l
are loading matrices, and E ∈ Rn×m and F ∈ Rn×p are
residuals for X and Y respectively. l is number of latent
variables, which can be determined with cross validation.

For a new sample x, the quality data y can be predicted
by x directly, which is represented as

ŷ = Qt = QR>x (3)

where R ∈ Rm×l = W(P>W)−1, and W ∈ Rm×l.

2.2 Dynamic Time Series Method
It is noted that in Eq. (3), CCA is used as a supervised
learning method to extract static relations between process
and quality variables with the supervision of quality data.
In addition, CCA can also be utilized as a time series
method to build dynamic relations within one dataset.

For ease of representation, we re-denote the dimension of
process data as X ∈ R(N+s+1)×m = [x1,x2, . . . ,xs+N+1]>,
where n = N + s+ 1 is total number of samples, and s is
the distributed lag to represent the dynamic order of the
system. In dynamic processes with one latent factor, we
assume that the current latent variable tk = w>xk is a
weighted sum of past scores [tk−1, tk−2, . . . , tk−s] by

tk = β1tk−1 + β2tk−2 + . . .+ βstk−s + t̃k (4)

where β ∈ Rs = [β1, β2, . . . , βs]
> is a vector of weighted

parameters, and t̃k is the modeling error containing static
variations and noise.

The following matrices are formulated in order to extract
dynamic relations within X.

Xi = [xi,xi+1, . . . ,xi+N ]>, i ∈ {1, 2, . . . , s+ 1}
Zs = [Xs,Xs−1, . . . ,X1]

(5)

Then the objective of dynamic CCA is

max J = w>X>s+1Zs (β ⊗w)

s.t. w>X>s+1Xs+1w = 1, (β ⊗w)
>

Z>s Zs (β ⊗w) = 1
(6)

where the symbols have the same meanings as in Eq. (1).
The algorithm in Eq. (6) was recently proposed by Dong
and Qin (2018a), which is referred to as dynamic-inner
CCA (DiCCA). Though other dynamic CCA algorithms
are available (Liu et al. (2018)), DiCCA has shown supe-
riority with explicit inner and outer modeling objectives.

In DiCCA, the dynamic relation between current sample
and previous s samples is extracted, and sample xk can be
decomposed as

xk = x̂k + x̃k = Ptk + x̃k (7)

where the score vector tk = R>xk. DiCCA works well to
model the dynamics in the system, which can be employed
to extract dynamic latent variables and locate root causes
of oscillations.

3. DYNAMIC WEIGHTED CANONICAL
CORRELATION ANALYSIS

In the era of big data, due to the advancement of sen-
sory technologies, data sampling frequency in modern in-
dustrial processes can be very high; it is important for
information collection, but has led to strong collinearity
in successive observations. In this case, the number of
relevant historical data s in DiCCA might be unnecessarily
large due to redundant information in adjacent samples
xk−i(i ∈ {1, 2, . . . , s}), and the modeling performance of
DiCCA will degrade.

In order to overcome the aforementioned issue, a dynamic
weighted CCA (DWCCA) is proposed in this section. In
DWCCA, we assume that each individual weight param-
eter βi is a weighted combination of a few parameters or
functions only, which can be calculated by

βi =
q+1∑
j=0

φj(i)bj , i ∈ {1, 2, . . . , s} (8)
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Fig. 1. Example of polynomial series and variations of β

where φj (j ∈ {0, 1, . . . , q + 1}, q ≤ s) are known basis

functions, and b = [b0, b1, . . . , bq+1]> is the new weight
vector. In Eq. (8), similar adjacent samples will be rep-
resented with the same weight vector b, thus eliminating
redundant information in the modeling factors.

3.1 Selection of Function φj

It is noted that the design of basis functions φj in Eq. (8)
is very important for the success of DWCCA algorithm,
and a variety of functions can be selected as φj , including
Gaussian, Fourier and polynomial basis. In this article,
due to the page limit, the following polynomial series with
q + 1 degrees (Almon (1965)) is considered as the basis in
DWCCA; comparison with other basis functions will be
conducted in a future work.

φ0(i) =
(i−i1)(i−i2)...(i−iq+1)

(i0−i1)(i0−i2)...(i0−iq+1)

φ1(i) =
(i−i0)(i−i2)...(i−iq+1)

(i1−i0)(i1−i2)...(i1−iq+1)

...

φq+1(i) =
(i−i0)(i−i1)...(i−iq)

(iq+1−i0)(iq+1−i1)...(iq+1−iq)

(9)

where i varies in the range of {1, 2, . . . , s}. The number
of parameter points q is determined by the number of
available samples to some extent, and {i0, i1, . . . , iq+1} are
parameter points where 0 ≤ ij ≤ s + 1. It is necessary
to estimate the data distribution with different q, and to
select the best one.

The assumption of polynomial functions is that the effect
of a historical data will rise for a time period, then decline.
It has no impact on samples before time 0 or after time
s + 1. To satisfy this requirement, i0 and iq+1 are set as
0 and s + 1 respectively, and then b0 and bq+1 in Eq. (8)
reduce to zero. Thus, Eq. (8) can be rewritten as

βi =
q∑
j=1

φj(i)bj = φ(i)>b, i ∈ {1, 2, . . . , s} (10)

where φ(i) = [φ1(i), . . . φq(i)]
>, and b = [b1, . . . , bq]

>.

For better understanding, the following instance is used
to illustrate the generation of β with a polynomial series.
Assume that s = 10, q = 3, and parameter points are
{0, 2, 5, 8, 11}. Then with Eq. (9), the variations of each φj
and the corresponding β when b1 = b2 = b3 are presented
in Fig. 1. It is observed that in Fig. 1, the effect of a
sample is in presence for a period, and then diminishes
after s+ 1, which satisfies the pre-set requirement for the
basis functions.

Remark 1. The performance of DWCCA depends on the
selection of q, while the locations of parameter points

{i0, i1, . . . , iq+1} make no difference (Almon (1965)). Ad-
ditionally, values of the parameter points are not necessary
to be integers.

3.2 DWCCA Objective

With Eq. (10) for each βi, β can then be calculated by

β = Φ>b (11)

where Φ ∈ Rq×s = [φ(1),φ(2), . . . ,φ(s)].

Substituting Eq. (11) into Eq. (4) results in the relation of
latent scores in DWCCA as follows

tk = [x>k−1,x
>
k−2, . . . ,x

>
k−s](β ⊗w) + t̃k

= [x>k−1,x
>
k−2, . . . ,x

>
k−s](Φ

>b⊗w)︸ ︷︷ ︸
t̂k

+t̃k (12)

where (Φ>b⊗w) is the Kronecker product between Φ>b
and w.

In DWCCA, latent variables are extracted by maximizing
the correlation between tk and predicted score t̂k in Eq.
(12), which is mathematically expressed as

max J =

s+N+1∑
k=s+1

tk t̂k√
s+N+1∑
k=s+1

t2k

√
s+N+1∑
k=s+1

t̂2k

With the aid of the denotations in Eq. (5), the above
objective function can be represented as

max J =w>X>s+1Zs(Φ
>b⊗w)

s.t. w>X>s+1Xs+1w = 1 (13)

(Φ>b⊗w)>Z>s Zs(Φ
>b⊗w) = 1

Remark 2. It is noted that only when q = s and Φ is
an s × s identity matrix, DWCCA reduces to DiCCA.
Generally, DWCCA requires fewer lagged variables to
represent dynamic relations between current data and
historical data since q ≤ s.
3.3 DWCCA Solution

To derive the solution of DWCCA, Lagrange multipliers
are employed to Eq. (13) as follows.

L = w>X>s+1Zs(Φ
>b⊗w) + λw

2 (1−w>X>s+1Xs+1w)

+λb

2

[
1− (Φ>b⊗w)>Z>s Zs(Φ

>b⊗w)
]

Differentiating L with respect to w and b leads to

∂ L
∂w

=X>s+1Zs(Φ
>b⊗w) + (Φ>b⊗ Im)>Z>s Xs+1w

− λwX>s+1Xs+1w

− λb(Φ>b⊗ Im)>Z>s Zs(Φ
>b⊗ Im)w = 0 (14)

∂ L
∂ b

=Φ(Is ⊗w)>Z>s Xs+1w

− λbΦ(Is ⊗w)>Z>s Zs(Is ⊗w)Φ>b = 0 (15)

where the relation a⊗b = (Ia⊗b)a = (a⊗Ib)b is utilized,
and Ia and Ib are identity matrices with dimension a and
b respectively.

Denote

Ts = [ts, ts−1, . . . , t1]

= [Xsw,Xs−1w, . . . ,X1w] ≡ Zs(I⊗w)
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Xb =

s∑
i=1

φ(i)>bXs−i+1 ≡ Zs(Φ
>b⊗ I)

Then Eqs. (14) and (15) can be rearranged as

X>s+1Xbw + X>b ts+1 = λwX>s+1ts+1 + λbX
>
b Xbw (16)

ΦT>s ts+1 = λbΦT>s TsΦ
>b (17)

where ts+1 = Xs+1w.

Remark 3. It can be proved that J = λw = λb by
pre-multiplying Eqs. (16) and (17) with w> and b>

respectively. Thus, maximizing J is equivalent to find the
largest λw and λb, which can be calculated iteratively.

The first set of latent variable can be obtained by iterating
through Eqs. (16) and (17), which corresponds to the
largest λw and λb. For the next set of latent variable,
the effect of t1 should be removed from X, which can be
achieved by

X := X− tp> (18)

where loading vector p is derived by minimizing the
regression error between X and tp>, leading to p =
X>t/t>t. The same procedure is repeated until enough
dynamic latent variables are extracted for DWCCA.

The detailed algorithm of DWCCA is summarized in
Algorithm 1, and there are several notes regarding to
Algorithm 1.

1. Moore-Penrose inverse is adopted to calculate b and
w, since both ΦT>s TsΦ

> and X>s+1Xs+1 + X>b Xb

may not be invertible. Alternatively, regularization
terms can be incorporated into Zs to address the ill-
conditioned issues caused by strong collinearity in X.

2. Instead of deflating each Xi (i ∈ {1, 2, . . . , s + 1})
individually with Xi := Xi − tip

>
i , where pi =

X>i ti/t
>
i ti, Eq. (18) is employed to deflate the whole

dataset X. Eq. (18) guarantees that both Xs+1 and
Zs are deflated in the same way, ensuring that the
dynamic relations between ts+1 and Ts can still cap-
tured by an auto-regressive model for the remaining
latent variables (Dong and Qin (2018b)).

3.4 Hybrid Modeling

After performing DWCCA, the dynamic relations between
current data and historical data are extracted, and the
deflated Xl+1 mainly contains static variations and noise.
Static PCA is then conducted on Xl+1 to separate useful
static information from noise. Then the collected data X
is decomposed into three parts by DWCCA and PCA.

X = X̂d + X̂r + Er (19)

where Er is purely noise, and X̂d denotes the dynamics
predicted by DWCCA, and it is represented as

X̂d = TP> (20)

where T = XR, and R = W(P>W)−1.

X̂r is the static information extracted by PCA, which is
predicted by

X̂r = TrP
>
r (21)

where Tr = [tr1, tr2, . . . , trlr ] = Xl+1Pr, Pr = [pr1,pr2,
. . . ,prlr ], and lr is number of static latent variables.

Algorithm 1 Dynamic Weighted CCA

1. Scale data X to zero mean and unit variance.
2. Select the weighted functions φj , j ∈ {1, 2, . . . , q} to

form the weighted matrix Φ in Eq. (11), and deter-
mine model parameters l and s with cross validation.

3. Initialize w with the first row of X and scale it to
unit norm. Then conduct the following relations until
convergence is achieved.

i. t = Xw, and t = t/||t||;
ii. Derive ti = [ti, ti+1, . . . , ti+N ]> (i ∈ {1, 2, . . . , s+

1}) from t, and form Ts = [ts, ts−1, . . . , t1];

iii. b =
(
ΦT>s TsΦ

>
)†

ΦT>s ts+1, and normalize b

by b = b/(t>s+1TsΦ
>b)

1
2 ;

iv. Xb =
s∑
i=1

φ(i)>bXs−i+1;

v. w =
(
X>s+1Xs+1 + X>b Xb

)†
(X>s+1Xbw +

X>b ts+1);
vi. Calculate correlation J = t>s+1Xbw.

4. Deflate X by removing the effect of extracted score t,

p = X>t/t>t

X := X− tp>

5. Repeat Step 3 and 4 until l dynamic latent variables
are extracted.

For a new sample xk sampled at time k, the dynamic
part x̂d,k is obtained through predicted score vector t̂k
as follow.

x̂d,k = Pt̂k (22)

where t̂k is comprised by l dynamic latent variables,
i.e., t̂k = [t̂k,1, t̂k,2, . . . , t̂k,l], and each element t̂k,i (i ∈
{1, 2, . . . , l}) is connected with historical scores with an
auto-regressive model by

t̂k,i = (φ(1)>biq
−1 + φ(2)>biq

−2 + . . .+ φ(s)>biq
−s)tk,i

where bi is the ith extracted weighted vector in DWCCA,
and q−1 is a backward shift operator.

After removing the dynamic information from xk, the
remaining xk,l+1 includes both static information of large
variance and noise. The static part x̂r,k is predicted by

x̂r,k = Prtr (23)

where tr = P>r xk,l+1.

4. CASE STUDY ON TE PROCESS

The Tennessee Eastman process (TEP) is a typical bench-
mark process created by Downs and Vogel (1993) to eval-
uate the effectiveness of the proposed control schemes
and data-driven algorithms for system modeling, process
monitoring and fault diagnosis. Four reactions occur in the
process, where reactants (A, C, D, E) and a catalyst (B)
are fed into the reactor to produce main products (G and
H) and a byproduct (F ).

Table 1. The First Three Weight Vectors bj

b1 b2 b3

0.3214 0.1091 0.6303
0.3935 0.6011 0.1198

Two sets of variables are available in TEP, which are
12 manipulated variables (XMV(1-12)) and 41 measured
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Fig. 2. Polynomial series and weight variations of the first
three latent variables in TEP case study

variables (XMEAS(1-41)), and they are sampled at dif-
ferent frequencies: process measurements XMEAS(1-22)
and manipulated variables XMV(1-12) are sampled every
3 minutes, component measurements XMEAS(23-36) in
Streams 6 and 9 are sampled every 6 minutes, and product
analysis XMEAS(37-41) in Stream 11 are with 15-minute
sampling frequency.

In this case study, component measurements XMEAS(29-
36) in purge gas stream (Stream 9) are selected to compare
the effectiveness of DWCCA and DiCCA. In order to com-
pensate the irregular sampling rates in various streams, the
preprocessing procedure designed in Zhu et al. (2017a) is
adopted here to de-duplicate samples.

Through cross validation, the parameters are selected: for
DWCCA, l = 7, s = 3, q = 2, and lr = 1; and for DiCCA,
l = 7, s = 12, and lr = 1. In DWCCA, the parameter
points are selected as [0, 0.5, 2.5, 4], and the variations of
the polynomial functions φ1 and φ2 are shown in Fig. 2.
In Fig. 2, the variations of βj for the first three latent
variables are also presented with weight vectors bj listed
in Table 1.

The auto-correlations and cross-correlations of the process
variables, latent variables extracted by DWCCA, and
residuals of DWCCA are shown in Figs. 3, 4 and 5,
respectively. For ease of presentation, only the correlations
of the first five variables are presented. It is evident that
both dynamic and static correlations exist in the collected
dataset, and DWCCA works well to capture the dynamics
in the system. After the exploitation of dynamic variations
in the process, only static variations are left in the residuals
as shown in Fig. 5.

The extracted auto-correlations by DWCCA and DiCCA
are presented in Fig. 6. In Fig. 6, the correlation coeffi-
cients captured by DWCCA among the first two dynamic
components are comparable with or slightly larger than
DiCCA. For the remaining factors, DiCCA has higher
auto-correlations than DWCCA; however, this is caused
by the strongly collinear successive samples, while after
removing the collinearity, the actual auto-correlations be-
tween current data and historical data is smaller, as shown
in the results of DWCCA.

The mean squared errors (MSE) for each variable of
DWCCA and DiCCA are shown in Table 2. As indicated
from the table, the prediction performance of DWCCA is
better than DiCCA in terms of MSEs with fewer lagged
data. The actual variations of each variable and their
predictions by DWCCA are shown in Fig. 7. Though

Fig. 3. Auto-correlations and cross-correlations of the first
five process variables

Fig. 4. Auto-correlations and cross-correlations captured
by the first five DWCCA dynamic latent variables

Fig. 5. Auto-correlations and cross-correlations of the first
five residuals

DiCCA can model the dynamics in the model, it requires
much more number of historical data, since DiCCA ignores
strong collinearity in adjacent samples when extracting
the dynamic latent variables. Therefore, the superiority
of DWCCA over DiCCA has be demonstrated in terms of
prediction efficiency and collinearity handling in dynamics
extraction.
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Table 2. Mean Squared Errors of Variables

Variable DWCCA DiCCA
XMEAS(29) 0.0059 0.0993
XMEAS(30) 0.0107 0.3889
XMEAS(31) 0.0149 0.1902
XMEAS(32) 0.0179 0.0511
XMEAS(33) 0.0004 0.0451
XMEAS(34) 0.0025 0.0429
XMEAS(35) 0.0004 0.2145
XMEAS(36) 0.3228 0.6327
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Fig. 7. Actual variations and DWCCA predictions for
process variables

5. CONCLUSIONS

In this article, a new dynamic CCA algorithm, referred
to as DWCCA, is proposed to capture dynamic relations
among measured variables. DWCCA extracts dynamics by
maximizing the correlations between current data point
and a weighted representation of historical data points. In
addition to dynamic modeling capability, DWCCA relies
on a set of basis functions to handle the strong collinearity
that exists among adjacent samples. Its effectiveness in
extraction of dynamic relations and collinearity handling
is demonstrated through the TE process. A future work is
to study the effect of different basis functions.
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