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Abstract: Stability properties of singularly perturbed hybrid systems are investigated via Lyapunov
functions with assistance from the invariance principle. Both continuously differentiable Lyapunov func-
tions and non-smooth Lyapunov functions are considered. In each case, under appropriate assumptions,
uniform asymptotic stability and uniform global asymptotic stability are established. An estimate of the
basin of attraction is given for the former property. Two examples are given to illustrate the proposed
theoretical results based on continuously differentiable Lyapunov functions. In addition, one example
for switched learning inclusions with unstable modes is given to show the effectiveness of the results
obtained based on non-smooth Lyapunov functions.
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1. INTRODUCTION

The analysis and design of singularly perturbed systems have
a rich history in the control literature; see Kokotovic et al.
(1976) and Saksena et al. (1984) for early surveys. Singularly
perturbed systems can be analyzed with various tools; one very
efficient and constructive approach is through Lyapunov func-
tions, as employed early on by Chow and Kokotovic (1981),
Grujić (1981) and Saberi and Khalil (1984) for example.

With the development of hybrid systems in the control litera-
ture over the last several decades, similar singular perturbation
results are desirable in the hybrid systems setting as well. This
paper provides another step in that direction. We develop re-
sults in the hybrid systems framework of Goebel et al. (2012).
Some singular perturbation results for these hybrid systems
already can be found in Sanfelice et al. (2006), Sanfelice and
Teel (2011) and Wang et al. (2012), for example. These works
establish semi-global, practical asymptotic stability for singu-
larly perturbed systems, exploiting robustness of stability in
hybrid systems that satisfy certain basic conditions. To the best
of our knowledge, there are no results in the hybrid systems
literature that characterize when actual asymptotic stability (as
opposed to practical asymptotic stability) is achieved. To pro-
duce such results, we combine the singular perturbation for
hybrid systems ideas found in Sanfelice and Teel (2011) with
the Lyapunov function ideas of Saberi and Khalil (1984), where
quadratic-like Lyapunov functions are employed. Like in Saberi
and Khalil (1984), we are able to give an estimate of the basin
of attraction in terms of the singular perturbation parameter
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and bounds on the Lyapunov function. We consider both con-
tinuously differentiable and non-smooth Lyapunov functions.
Using these Lyapunov functions, uniform asymptotic stability
(UAS) and uniform global asymptotic stability (UGAS) results
are guaranteed under some mild assumptions. Moreover, the
proposed methods can be applied to some practical problems
such as robot source seeking Cochran and Krstić (2009), Nash
seeking with adversarial agents Frihauf et al. (2012), and dis-
tributed optimization with attacks Wang et al. (2020). In ad-
dition, compared with Sanfelice and Teel (2011) and Wang
et al. (2012), the assumptions we make are stronger and the
conclusions we draw are also stronger.

The rest of the paper is organized as follows. In Section 2,
some preliminaries are given. In Sections 3, a class of singularly
perturbed hybrid systems is considered and the main results are
presented. In Section 4, three examples are given to illustrate
the main results. Section 5 contains the conclusions.

2. PRELIMINARIES

Rn denotes n-dimensional Euclidean space. R and Z denote
the sets of real and integer numbers, respectively; moreover,
R>0:=(0,∞) and R≥0 := [0,∞). | · | denotes the Euclidean norm
on Rn. 0 stands for zero matrix/vector with appropriate dimen-
sion. 1n := (1, . . . ,1)T ∈ Rn. In ∈ Rn×n stands for the identity
matrix. Given x,y ∈Rn, 〈x,y〉 := xT y and (x,y) := (xT ,yT )T . ⊗
is the Kronecker product. P > 0 denotes a symmetric positive
definite matrix. B is open unit ball and B is closed unit ball.
Given a compact set W ⊂ Rn and x ∈ Rn, |x|W := inf

y∈W
|x− y|;

also, given ρ ∈R>0∪{∞}, we use Bρ

W := {x ∈Rn : |x|W < ρ}.
A set-valued mapping M : Rn ⇒ Rm is outer semi-continuous
(OSC) at x ∈ Rn if, for all convergent sequences {(xi,yi)}∞

i=1
satisfying yi ∈ M(xi) for all i, the limit (x,y) = lim

i→∞
(xi,yi) sat-
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isfies y ∈M(x). A set-valued mapping M : Rn ⇒ Rm is locally
bounded (LB) at x ∈ Rn if there exists a neighborhood Ux of
x such that M(Ux) ⊂ Rm is bounded. Given a set Ω ⊂ Rn, the
mapping M is said to be OSC and LB relative to Ω if the set-
valued mapping from Rn to Rm defined by M(x) for x ∈ Ω

and /0 for x /∈ Ω is OSC and LB at each x ∈ Ω. Given a set
Ω⊂Rn, coΩ stands for the closed convex hull of Ω. A function
α :R≥0→R≥0 is of class L , i.e., α ∈L , if: (i) it is continuous,
(ii) non-increasing, and (iii) converging to zero as its argument
grows unbounded. A function α : R≥0 → R≥0 is of class K ,
i.e., α ∈K , if: (i) it is continuous, (ii) zero at zero, and (iii)
strictly increasing. A function α : R≥0 → R≥0 is of class K∞,
i.e., α ∈K∞, if α ∈K and α grows unbounded as its argument
grows unbounded. A function α : R≥0×R≥0→ R≥0 is said to
be of class K L , i.e., α ∈K L if: (i) it is of class K in its first
argument; (ii) it is of class L in its second argument. Given a
continuously differentiable function W : Rn1+n2 → R≥0, define
∇x2W (x1,x2) := ∂W (x1,x2)

∂x2
,∀x1 ∈ Rn1 ,x2 ∈ Rn2 .

In this paper, we consider the hybrid systems framework that
appears in Goebel et al. (2012). These hybrid models have state
x ∈ Rn and are written formally as

ẋ ∈ F(x), x ∈C
x+ ∈ G(x), x ∈ D, (1)

where C ⊂ Rn is flow set, D ⊂ Rn is jump set, the set-valued
mapping F : Rn ⇒ Rn is the flow map and the set-valued map-
ping G :Rn ⇒Rn is the jump map. System (1) is represented by
the notation H := {C,F,D,G}. Solutions are defined on hybrid
time domains. A subset E ⊂ R≥0×Z≥0 is a compact hybrid
time domain if E =

⋃J−1
j=0([s j,s j+1], j) for some finite sequence

of times 0 = s0 ≤ s1 ≤ s2 ≤ ...≤ sJ . It is a hybrid time domain
if for all (T,J) ∈ E, E∩ ([0,T ]×{0, ...,J}) is a compact hybrid
domain.
Definition 1. A function x : dom x 7→Rn is a hybrid arc if dom x
is a hybrid time domain and t 7→ x(t, j) is locally absolutely
continuous for each j such that the interval I j := {t : (t, j) ∈
dom x} has nonempty interior. A hybrid arc is complete if its
domain is unbounded. A hybrid arc x is a solution to system (1)
if x(0,0) ∈C∪D, and the following two conditions hold:
1) for all j ∈ Z≥0 such that I j has nonempty interior

x(t, j) ∈C for all t ∈ int(I j),

ẋ(t, j) ∈F(x(t, j)) for almost all t ∈ I j;
2) for all (t, j) ∈ dom x such that (t, j+1) ∈ dom x,

x(t, j) ∈D,

x(t, j+1) ∈G(x(t, j)).
�

Definition 2. Consider a hybrid system H on Rn. Let W ⊂Rn

be closed. The set W is said to be:

• uniformly asymptotically stable (UAS) if there exist a
function β̄ ∈ K L and a positive constant c, such that
for any solution x to H with |x(0,0)|W < c,

|x(t, j)|W ≤β̄ (|x(0,0)|W , t+j), ∀(t, j)∈dom x; (2)
• uniformly globally asymptotically stable (UGAS) if in-

equality (2) is satisfied for any initial state. �

3. MODELING AND STABILITY ANALYSIS

Consider the following hybrid system:


ẋ1 ∈ F1(x1,x2)

ẋ2 ∈
1
ε

F2(x1,x2,ε)

 (x1,x2) ∈C×X1

x+ ∈ G(x)
}

(x1,x2) ∈ D×X2,

(3)

where x := (x1,x2) ∈ Rn with x1 ∈ Rn1 and x2 ∈ Rn2 , ε >
0 is small, C × X1 is the flow set, D× X2 is the jump set,
the set-valued mappings F1,F2 comprise the flow map, and
the set-valued mapping G is the jump map. Define Fε(x) :=
(F1(x1,x2),F2(x1,x2,ε)) for all x ∈ C × X1 and Fε(x) = ∅
otherwise.
Assumption 1. C×X1 and D×X2 are closed sets, Fε is OSC
and LB with convex nonempty values on C for each ε > 0, and
G is OSC and LB and G(x) is nonempty for each x ∈ D. �

By setting τ = t
ε

, the boundary-layer system of system (3) is:
dx2

dτ
∈ F2(x1,x2,0), (x1,x2) ∈C×X1. (4)

Treating x1 as a constant, the boundary layer system (4) is
supposed to have (via a subsequent assumption) a quasi-steady-
state equilibrium manifold, like in classical singular perturba-
tion theory, which is expressed in terms of a set-valued mapping
H satisfying the following assumption.
Assumption 2. H : Rn1 ⇒Rn2 is OSC and LB. For each x1 ∈C,
H(x1) is a nonempty subset of X1. �

By constraining x2 to the set H(x1) during flows, the reduced
system for the singularly perturbed system (3) is obtained as
follows:

ẋ1 ∈Fr(x1), x1 ∈C
x+1 ∈Gr(x1), x1 ∈ D, (5)

where
Fr(x1) := co{v ∈ Rn1 : v ∈ F1(x1,x2),x2 ∈ H(x1)}
Gr(x1) := {v1 ∈ Rn1 :(v1,v2)∈G(x1,x2),x2∈X2,v2∈X1∪X2}.

The objective of this paper is to establish stability conditions for
system (3) based on Lyapunov functions for the reduced system
(5) and the boundary layer system (4). We will first assume
that the reduced system has a compact set W1 UAS with a
Lyapunov characterization. The following definition quantifies
the property that we will use.
Definition 3. The function V : Rn1 → R≥0 is said to be a
Lyapunov function for the reduced system (5) parametrized by
α1,α2 ∈K∞, the continuous, positive definite function α3, the
continuous, positive semidefinite function α4, the positive real
numbers L1,d1 and ρ ∈ R>0∪{∞} if:

(1) for all x1 ∈C∪D∪Gr(D), it holds that
α1(|x1|W1)≤V (x1)≤ α2(|x1|W1); (6)

(2) for all x1 ∈C∩Bρ

W1
and fr ∈ Fr(x1), it holds that

〈∇V (x1), fr〉 ≤ −L1α
2
3 (|x1|W1);

(3) and for all x1 ∈ D∩Bρ

W1
,g1 ∈ Gr(x1), it holds that

V (g1)−V (x1)≤−d1α4(|x1|W1). (7)
�

Next, we assume that the boundary layer, with x1 constant,
has the set x2 ∈ H(x1) UAS with a Lyapunov function. The
following definition quantifies the property that we will use.
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Definition 4. A function W : Rn1+n2 →R≥0 is said to be a Lya-
punov function for the boundary layer system (4) parameterized
by β1,β2 ∈K∞, the continuous, positive definite function α5,
the continuous, positive semidefinite function α4, the positive
real numbers L2,d2 and ρ ∈ R>0∪{∞} if:

(1) for all x ∈ (C×X1)∪ (D×X2)∪G(D×X2), it holds that
β1(|x2|H(x1))≤W (x1,x2)≤ β2(|x2|H(x1)); (8)

(2) for all x ∈ (C∩Bρ

W1
)×X1, and f̃2 ∈ F2(x1,x2,0), it holds

that
〈∇x2W (x1,x2), f̃2〉 ≤ −L2α

2
5 (|x2|H(x1));

(3) and for all x ∈ (D∩Bρ

W1
)×X2, it holds that

W (g)≤W (x1,x2)+d2α4(|x1|W1), g ∈ G(x). (9)
�

Following Saberi and Khalil (1984), for the full, singularly
perturbed system (3), we use a Lyapunov function of the form

U(x) := (1−d)V (x1)+dW (x) (10)
with d ∈ (0,1) to establish UAS of the set

W := {(x1,x2)|x1 ∈W1,x2 ∈ H(x1)} (11)
when ε > 0 is sufficiently small. The following holds for U :
Proposition 1. If V is a Lyapunov function for the reduced
system (5) and W is a Lyapunov function for the boundary layer
system (4), then there exist functions αU,1,d ,αU,2 ∈K∞ (αU,2
can be taken independent of d) such that for all x ∈ (C×X1)∪
(D×X2)∪G(D×X2), it holds that

αU,1,d(|x|W)≤U(x)≤ αU,2(|x|W). (12)

UAS of W1 for the reduced system (5) and UAS of x2 ∈
H(x1) for the boundary layer (4) are already enough for semi-
global (for the UGAS case), practical asymptotic stability of
W for (3), as established in Sanfelice and Teel (2011) and
Wang et al. (2012). However, in the present paper we are
interested in conditions that give a global, asymptotic (not just
practical) result, and we are interested in giving an estimate for
the basin of attraction in the local case. For such results, we
require coupling conditions between Lyapunov functions, like
in the continuous-time results of Saberi and Khalil (1984). The
following definition quantifies the coupling conditions.
Definition 5. A Lyapunov function V for the reduced system,
a Lyapunov function W for the boundary layer system and the
continuous, positive definite functions α3 and α5 are said to
satisfy the coupling conditions with the coupling parameters
Mi > 0(i = 1,2,3,4,5) and ρ ∈ R>0 ∪ {∞} if the following
conditions hold:

(1) for all x ∈ (C∩Bρ

W1
)×X1, and for ∀ f1 ∈ F1(x1,x2),∃ fr ∈

Fr(x1) such that
〈∇V (x1), f1− fr〉 ≤M1α3(|x1|W1)α5(|x2|H(x1));

(2) for all x ∈ (C∩Bρ

W1
)×X1, it holds that

〈∇x1W (x1,x2), f1〉 ≤M2α
2
5 (|x2|H(x1))

+M3α3(|x1|W1)α5(|x2|H(x1));

(3) for all x ∈ (C ∩Bρ

W1
)× X1 and f2 ∈ F2(x1,x2,ε),∃ f̃2 ∈

F2(x1,x2,0) such that

〈∇x2W (x1,x2), f2− f̃2〉 ≤ εM4α
2
5 (|x2|H(x1))

+εM5α3(|x1|W1)α5(|x2|H(x1)). �

We codify our main assumptions as follows.
Assumption 3. For ρ ∈ R>0 ∪ {∞}, the following conditions
hold:

• The function V is a Lyapunov function for the reduced
system (5) parameterized by α1,α2 ∈ K∞, the continu-
ous, positive definite function α3, the continuous, positive
semidefinite function α4, the positive real numbers L1,d1
and the given ρ;
• The function W is a Lyapunov function for the bound-

ary layer system (4) parameterized by β1,β2 ∈ K∞, the
continuous, positive definite function α5, the positive real
numbers L2,d2 and the given ρ;
• The functions V and W and the continuous, positive def-

inite functions α3 and α5 satisfy the coupling conditions
with the coupling parameters Mi > 0(i = 1,2,3,4,5) and
the given ρ . �

Theorem 1. Consider system (3) and the set W defined in (11).
Suppose Assumptions 1-3 hold and let

ε
∗(d) :=

L1L2

L1γ1 +[M1(1−d)+ γ2d]2/4d(1−d)
,

d ≤ d1

d1 +d2
, (13)

where γ1 := M2 +M4,γ2 := M3 +M5. If ε ∈ (0,ε∗(d)) and any
complete solution x of the discrete-time dynamics in (3) with
x(0,0) ∈ (D∩Bρ

W1
)×X2 converges to W, then W is UAS for

system (3) with basin of attraction containing B
α
−1
U,2◦α1(ρ)

W where
αU,2 ∈K∞ comes from (12) in Proposition 1.

Proof. Choose the Lyapunov candidate function U given in
(10). Then, based on conditions of Theorem 1, for all x ∈ (C∩
Bρ

W1
)×X1 and f ∈ Fε(x) we have that

〈∇U(x), f 〉

=(1−d)〈∇V (x1), f1〉+d〈∇x2W (x1,x2),
1
ε

f2〉

+d〈∇x1W (x1,x2), f1〉
=(1−d)〈∇V (x1), fr〉+(1−d)〈∇V (x1), f1− fr〉

+
d
ε
〈∇x2W (x1,x2), f̃2〉+

d
ε
〈∇x2W (x1,x2), f2− f̃2〉

+d〈∇x1W (x1,x2), f1〉.
It follows from the definitions of the Lyapunov functions that
〈∇U(x), f 〉
≤−L1(1−d)α2

3 (|x1|W1)+M1(1−d)α3(|x1|W1)α5(|x2|H(x1))

−L2
d
ε

α
2
5 (|x2|H(x1))+dM4α

2
5 (|x2|H(x1))

+dM5α3(|x1|W1)α5(|x2|H(x1))+dM2α
2
5 (|x2|H(x1))

+dM3α3(|x1|W1)α5(|x2|H(x1))

=−L1(1−d)α2
3 (|x1|W1)−d

(L2

ε
−M2−M4

)
α

2
5 (|x2|H(x1))

+((1−d)M1 +dM3 +dM5)α3(|x1|W1)α5(|x2|H(x1)).

Therefore, from (12) and (13), there exists a continuous, posi-
tive definite function α which is independent of ε such that for
x ∈ (C∩Bρ

W1
)×X1 and for all f ∈ Fε(x), we have

〈∇U(x), f 〉 ≤ −α(U(x)). (14)

In addition, for all x ∈ (D∩Bρ

W1
)×X2 and all g ∈ G(x), from

(7), (9) and (13) we obtain
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U(g)−U(x1,x2)

=(1−d)V (g1)+dW (g)− (1−d)V (x1)−dW (x1,x2)

≤− ((1−d)d1−dd2)α4(|x1|W1)

≤0. (15)
Also, using (6), (12), (14), (15) and
α1(|x1(t, j)|W1)≤V (x1(t, j))≤U(x(t, j))

≤U(x(0,0))≤ αU,2(|x(0,0)|W)

for any initial value satisfying

|x(0,0)|W < α
−1
U,2 ◦α1(ρ),

we have |x1(t, j)|W1 < ρ for all (t, j) ∈ dom x. Then W is
uniformly stable. Since system (3) satisfies Assumption 1 and
W is compact, combining the conditions of Theorem 1 and
the invariance principle for hybrid systems in Sanfelice et al.
(2007), we conclude that W is UAS for (3) with basin of

attraction containing B
α
−1
U,2◦α1(ρ)

W . �

Theorem 2. Suppose all the conditions in Theorem 1 hold
globally, i.e., ρ = ∞. Then W is UGAS.

In Theorems 1 and 2, we consider only continuously differen-
tiable functions V . In practical applications, however, a non-
smooth function V is sometimes needed. Thus, it is useful to
establish the following results.
Definition 6. A function f : Rn→ R is said to be regular if for
all v, the usual one-sided directional derivative f

′
(z;v) exists

and f
′
(z;v) = f ◦(z;v). �

Theorem 3. Suppose all the conditions in Theorem 1 hold ex-
cept that V is replaced by a locally Lipschitz, regular function,
condition (2) in the definition of a Lyapunov function for the
reduced system is replaced by:
for all x1 ∈C∩Bρ

W1
and all fr ∈ Fr(x1), we have that

min
p∈∂x1V (x1)

〈p, fr〉 ≤ −L1α
2
3 (|x1|W1)

and coupling condition (1) in Definition 5 is replace by:
for all x∈ (C∩Bρ

W1
)×X1, and for ∀ f1 ∈F1(x1,x2), ∃ fr ∈Fr(x1)

such that
max

p∈∂x1V (x1)
〈p, f1− fr〉 ≤M1α3(|x1|W1)α5(|x2|H(x1)).

Then W is UAS for (3) with basin of attraction containing

B
α
−1
U,2◦α1(ρ)

W where αU,2∈K∞ is from (12) in Proposition 1.

Proof. From Bacciotti and Ceragioli (1999), Teel (2000) and
the proof of Theorem 1, the conclusion follows. �

Theorem 4. If all of the conditions in Theorem 3 hold globally,
i.e. ρ = ∞, then the set W defined in (11) is UGAS for (3).

4. EXAMPLES

We present three examples to illustrate the meaning of the
proposed results in Theorems 1, 2 and 4, respectively. The
first example is a linear system used to show the proposed
continuously differentiable Lyapunov analysis may not have
any conservatism for certain examples and UGAS result is
obtained. The second example is a nonlinear system used to
present a local result by considering continuously differentiable
Lyapunov functions. The third example is the switched learning
inclusions with unstable modes used to obtain UGAS result
based on non-smooth Lyapunov functions.

Example 1. Consider a linear system with states x1 := (z,τ)
and x2 := y: 

ż = z+ y
τ̇ = 1

ε ẏ =−(y+2z)

 τ ∈ [0,T ]

z+ = 2z
τ
+ = 0

y+ = ay+bz

 τ = T,

where a ∈ (−1,1), b ∈ R and eT > 2. The flow set is C×X1 :=(
Rn1 × [0,T ]

)
×Rn1 and the jump set is D× X2 :=

(
Rn1 ×

{T}
)
×Rn1 .

Setting ε = 0, we obtain the quasi-steady-state equilibrium
manifold H(x1) =−2z and the reduced system is:[

ż
τ̇

]
= Fr(x1) :=

{
−z

1
x1 ∈C,[

z+

τ
+

]
= Gr(x1) :=

{
2z
0

x1 ∈ D.

Given W1 := {0}× [0,T ] and W2 := {ϑ |ϑ = −2z,x1 ∈W1}.
Choose V (x1) := z2 exp(cτ) and W (x1,x2) := (y + 2z)2, then
by computing we have that conditions (1) of Definitions 3 and
4 hold obviously. Moreover, we obtain the conditions (2) and
(3) of Definition 3 as follows: 〈∇V (x1), fr〉 ≤ −(2− c)|x1|2W1

,
V (g1)−V (x1) ≤ (4− ecT )|x1|2W1

. Since eT > 2, there exists
c < 2 such that 4− ecT < 0.

The conditions (2) and (3) of Definition 4 are as follows:
〈∇x2W (x1,x2), f̃2〉 ≤ −2|x2|2H(x1)

,

W (g) = [a(y+2z)+(b+4−2a)z]2

= a2(y+2z)2 +(b+4−2a)2z2 +2a(y+2z)(b+4−2a)z

≤ (a2 + c1a2)W (x1,x2)+
1+ c1

c1
(b+4−2a)2|x1|2W1

,

where c1 := 1−a2

a2 .

The coupling conditions of Definition 5 are as follows:

(1) 〈∇V(x1), f1− fr〉≤2ecT|x1|W1 |x2|H(x1);
(2) 〈∇x1W(x1,x2), f1〉≤4|x2|2H(x1)

+4|x2|H(x1)|x1|W1 ;
(3) 〈∇x2W (x1,x2), f2− f̃2〉= 0.

Then using Theorem 2, we can conclude that W is UGAS for
all ε < ε∗ where ε∗ is given by ε∗ := 2d(2−c)(1−d)

4d(2−c)(1−d)+(ecT (1−d)+2d)2

with d ≤ (ecT−4)(1−a2)
(ecT−4)(1−a2)+(b+4−2a)2 . �

Example 1 shows that the proposed Lyapunov analysis may not
have any conservatism for certain examples, since the reduced
system is a sampled-data system with flow dynamics ż = −z
and jump dynamics z+ = 2z, which is asymptotically stable if
2e−T < 1, i.e., eT > 2.

Next we will give a nonlinear example to present a local result.
Example 2. Consider the system given in Example 1 with ż
equation changed to ż = z2 + z+ y and assume that eT > 4.
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By setting ε = 0, from Example 1 we have that the flow

map of the reduced system is Fr(x1) :=
{

z2− z
1

, x1 ∈ C.

Choose V (x1) := z2

2 exp(cτ) and W (x1,x2) := (y+ 2z)2, then,
conditions (1) of Definitions 3 and 4 hold obviously. Moreover,
we obtain the conditions (2) and (3) of Definition 3 as follows:
〈∇V (x1), fr〉 ≤ (z3 − z2)ecτ + z2

2 cecτ , V (g1)−V (x1) = 2z2 −
z2

2 ecT . Choose c := 1 and let ρ := 1
4 . For x1 ∈C∩Bρ

W1
, we have

〈∇V (x1), fr〉 ≤ (z3− z2

2 )e
cτ ≤ − 1

4 |x1|2W1
and V (g1)−V (x1) ≤

−d1|x1|2W1
for some d1 > 0.

The conditions (2) and (3) of Definition 4 are as follows:
〈∇x2W (x1,x2), f̃2〉 ≤ −2|x2|2H(x1)

,

W (g)≤ (a2 + c1a2)W (x1,x2)+
1+ c1

c1
(b+4−2a)2|x1|2W1

.

The coupling conditions of Definition 5 are as follows:

(1) there exists a number k2 > 0 such that for all x1 ∈C, f1 ∈
F1(x1,x2), ∃ fr ∈ Fr(x1) such that 〈∇V (x1), f1 − fr〉 ≤
k2|x1|W1 |x2|H(x1);

(2) there exist constants k3 > 0,k4 > 0 such that for all x ∈
(C∩Bρ

W1
)×X1 and f1 ∈ F1(x1,x2), we have

〈∇x1W (x1,x2), f1〉 ≤ k3|x2|2H(x1)
+ k4|x2|H(x1)|x1|W1 ;

(3) 〈∇x2W (x1,x2), f2− f̃2〉= 0.

Using Theorem 1, we can conclude that W is UAS for suffi-
ciently small ε and the basin of attraction can be computed via
Theorem 1. �

To show further the effectiveness of the proposed method, we
next consider the switched learning inclusions with unstable
modes; similar models have been studied in Poveda and Teel
(2017) and Wang et al. (2020).
Example 3. Consider the switched learning inclusions with
unstable modes as follows:

ẋ1 ∈

 f (x)
{0}

[0,δ ]


ε ẋ2 ∈

[
[0, ρ̄]

F̂0(x,ε)

]
 x ∈C1×X1

ẋ1 ∈

 f (x)
{0}

[0,δ ]


ε ẋ2 ∈

 [0, ρ̄]−1
co
⋃

p∈Q
F̂p(x,ε)




x ∈C2×X1

x+1 = (z̃,P \{σ̃},τ1−1)
x+2 = x2

}
x ∈ D×X2,

(16)

where x1 := (z̃, σ̃ ,τ1), x2 := (τ2, ỹ), z̃ := (χ,ζ , w̃,υ), ỹ :=
(ϑ1,ϑ2,ξ2), x := (x1,x2), χ := x̄− x̄∗,

f (x) :=


PΩ(χ+x̄∗−G̃(χ+x̄∗,rϑ1 +Rϑ2))−(χ+x̄∗)+w̃

−κ̄cζ + w̃
−κ̃cζ − β̄SGN(ζ )+υ + g̃

BN
d̄2

 ,

F̂0(x,ε) :=

 −ϑ1 + rT
ϕ(χ + x̄∗)

−ϑ2−ξ2−RT L0Rϑ2 +RT
ϕ(χ + x̄∗)

RT L0Rϑ2

 ,
F̂p(x,ε) :=

 −ϑ1 + rT
ϕ(χ + x̄∗)

−ϑ2−ξ2−RT LpRϑ2 +RT
ϕ(χ + x̄∗)

RT LpRϑ2

 ,
and C1 := (R3Nn×BN

d̄1
)×{0}× [0,N0], C2 := (R3Nn×BN

d̄1
)×

Q×[0,N0], C :=C1∪C2, D :=(R3Nn×BN
d̄1
)×P×[1,N0],X1 :=

[0,T0]×R(2N−1)m,X2 := [0,T0]×R(2N−1)m,P := {0}∪Q.

Note that L0 and Lp are symmetric matrices. 0 is the sim-
ple eigenvalue of L0. Lq1N = 1T

NLq = 0,q ∈P . r,R are the
corresponding eigenvectors of the eigenvalues of L0 and sat-

isfy r := 1N√
N

, rT R = 0, RT R = IN−1 and RRT = IN −
1N 1T

N
N .

∇x̄iJi(x̄i, x̄−i) = G̃i(x̄i,σ(x̄)), where x̄i ∈ Ωi, Ω := ∏
N
i=1 Ωi,

x̄ := (x̄1, . . . , x̄N), σ(x̄) := 1
N ∑

N
i=1 ϕi(x̄i), ϕi,Ji are continu-

ously differentiable functions and Ji(x̄i, x̄∗−i)− Ji(x̄∗i , x̄
∗
−i) ≥

∇x̄iJi(x̄∗i , x̄
∗
−i)(x̄i− x̄∗i ). PΩ(·) is a projection operator given by

PΩ(x) := argmin
y∈Ω
|x− y| and it has the following property:

|PΩ(x)−PΩ(y)| ≤ |x− y|, ∀x,y ∈ Rn. (17)
Assumption 4. For any x̄i, x̄∗i ∈ Rn1 ,si, s̄i ∈ Rm1 , there exist
constants `1, `2 > 0 such that |G̃i(x̄i,si)− G̃i(x̄i, s̄i)| ≤ `1|si− s̄i|
and |∇x̄iJi(x̄i)−∇x̄iJi(x̄∗i )| ≤ `2|x̄i− x̄∗i |. �

Set ε = 0, then from (16) we can obtain H(x1) ∈
[
[0,T0]
h1(x1)

]
,

where h1(x1) :=

 rT
ϕ(χ + x̄∗)
{0}

RT
ϕ(χ + x̄∗)

 and we assume that h1(x1)

is globally Lipschitz in x1. Given W1 := ({0}×BN
d̄1
)×P ×

[0,N0] and W2 := [0,T0]×{h1(x1) : χ = 0}. Choose

V (x1):=
1
2

χ
T

χ+
N

∑
i=1

[Ji(χi+x̄∗i , x̄
∗
−i)−Ji(x̄∗i , x̄

∗
−i)−∇x̄iJi(x̄∗i , x̄

∗
−i)χi]

+ cw

(1
2

ζ
T

ζ +
1
2

w̃T Qw̃− δ̄ ζ
T w̃+

N

∑
i=1

mi|ζi|−υ
T Qζ

)
,

W (x1,x2) := W̃σ̃ (ỹ−h1(x1))exp(ln(µ̃)τ1 +(c6 + c7)τ2),

where cw, δ̄ > 0, kc := diag{kc
i }, κ := diag{κi}, β := diag{β̄i},

mi := (δ̄ (kc
i +κi)+1)β̄i

kc
i κi

, κ̄c := (kc +κ)⊗ In, κ̃c := (kcκ)⊗ In, β̄ :=

β ⊗ In, Q :=Π1Π2, Π1 :=(δ̄ (kc + κ) + IN)⊗ In, Π2 := κ̃−1
c .

µ̃ > 1 and satisfies W̃p(y)≤ µ̃W̃q(y), p,q∈P , y := ỹ−h1(x1),
W̃σ̃ (y) := yT P0y, σ̃ = 0 and W̃σ̃ (y) := yT P1y, σ̃ ∈Q, P0,P1 > 0.
Remark 1. From (Wang et al., 2020, Lemmas 1 and 2) we know
the function W̃σ̃ (ỹ−h1(x1)) is exponentially increasing (rate of
growth c7 > 0) when σ̃ ∈Q, while it is exponentially decaying
(rate of decay c6 > 0) when σ̃ = 0. �

Next we will verify the conditions of Theorem 4.

∂V (x1) =




χ +FJ(χ, x̄∗)− F̃(x̄∗)

cw(ζ − δ̄ w̃+MT SGN(ζ )−QT
υ)

cw(−δ̄ ζ +QT w̃)
−cwζ

T QT


0
0

 ,
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where
FJ(χ, x̄∗) := (∇x̄1J1(χ1+x̄∗1, x̄

∗
−1), . . . ,∇x̄N JN(χN + x̄∗N , x̄

∗
−N)),

F̃(x̄∗) := (∇x̄1J1(x̄∗1, x̄
∗
−1), . . . ,∇x̄N JN(x̄∗N , x̄

∗
−N)).

i) If σ̃ = 0,

conditions (1) of Definitions 3 and 4 hold obviously. The
conditions for V are given as follows:

min
υ̃∈∂V (x1)

〈υ̃ , fr〉 ≤−
c̄
4

χ
T

χ− cw

2
ζ

T
η̄ζ − cwδ̄

8
w̃T w̃

≤−λ1|x1|2W1
, ∃λ1 > 0,

V (g1)−V (x1)≤0.
The conditions for W are given as follows: From Remark 1, it
follows that

〈∇x2W (x1,x2), f̃2〉=
(

∂W̃σ̃ (ỹ−h1(x1))

∂ ỹ

)T
˙̃ye(ln(µ̃)τ1+(c6+c7)τ2)

+(c6+c7)τ̇2W (x1,x2)

≤− (c6− ρ̄(c6 + c7))W (x1,x2)

≤−λ2|x2|2H(x1)
, ∃λ2 > 0,

here we have used c6− ρ̄(c6 + c7)> 0. Moreover, we have

W (g)≤µ̃W̃σ̃ (ỹ−h1(x1))exp(ln(µ̃)(τ1−1)+(c6 + c7)τ2)

=W (x1,x2).

The coupling conditions are given as follows:

(1) max
p∈∂V (x1)

〈p, f1− fr〉 ≤ `1(`2 + 1)|x1|W1 |x2|H(x1) can be

easily obtained by using (17) and Assumption 4;
(2)

〈∇x1W(x1,x2), f1〉≤c0|ỹ−h1(x1)|
∣∣∣d(h1(x1))

dx1

∣∣∣(|PΩ(χ)

− (χ+x̄∗)|+ |w̃|)+δ ln(µ̃)W (x1,x2)

= c0|ỹ−h1(x1)|
∣∣∣d(h1(x1))

dx1

∣∣∣(|PΩ(χ)−(χ+x̄∗)

−PΩ(χ
∗)+(χ∗+x̄∗)|+|w̃|)+δ ln(µ̃)W (x1,x2)

≤ c2|x1|W1 |x2|H(x1)+ c1|x2|2H(x1)
,

where PΩ(χ) := PΩ(χ+x̄∗−G̃(χ+x̄∗,rϑ1 +Rϑ2)),
PΩ(χ

∗) := PΩ(χ
∗+x̄∗−G̃(χ∗+x̄∗, 1N

N ∑
N
i=1 ϕi(x̄∗i ))), and

we also used that PΩ(χ
∗)− (χ∗+ x̄∗) = 0, χ∗ = 0 in the

equilibrium set. Moreover, inequality (17) has been used
here;

(3) 〈∇x2W (x1,x2), f2− f̃2〉= 0 can be easily verified;

ii) if σ̃ ∈ Q, similarly, we can verify that the conditions in
Theorem 4 hold.

Then using Theorem 4, the set W is UGAS for sufficiently
small ε . �

5. CONCLUSIONS

We have studied stability analysis of singularly perturbed sys-
tems in the hybrid systems framework based on continuously
differentiable and non-smooth Lyapunov functions. Using these
Lyapunov functions, UAS and UGAS results have been estab-
lished for such systems. In addition, an estimate for the basin
of attraction was given for the local case. Compared with the
existing stability results for such systems, our conclusions are

stronger under stronger assumptions. The obtained results were
illustrated by three examples.
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