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Abstract: In this paper, the finite-time consensus tracking control for multi-agent systems
under Euler digraph and switching topology are discussed. The new nonlinear distributed
control protocol is proposed under which the systems can reach finite-time consensus tracking.
Furthermore, the leader needs to connect with only one follower and which agent is connected
will have no effect on finite-time consensus under Euler digraph. It is found that adding edges
or increasing feedback gains will be an effective way to reduce the settling time. Two sufficient
conditions are proposed to achieve finite-time consensus tracking for multi-agent systems under
Euler digraph and switching topology. Finally, numerical simulations are presented to verify the
effectiveness of obtained theoretical results.

Keywords: Multi-agent systems; Finite-time consensus; Euler digraph; Switching topology;
Distributed control.

1. INTRODUCTION

Distributed consensus control of multi-agent systems has
become a hot topic over the past decades. The general con-
sensus control model is usually described by the following
continuous-time ordinary differential equation:

ẋi(t) = f(xi(t)) + gi(t) i = 1, 2, . . . , N,

where xi(t) ∈ Rn denotes the state of agent i; the solution
of ẋi(t) = f(xi(t)) represents the intrinsic dynamics of
agent i; gi(t) describe the effects from neighbors of agent
i, the effects may be diffusive coupling from neighbors or
the function from one/multiple leaders, i.e.,

gi(t) = c
∑

aijΦ1(xi, xj) + diΦ2(xi, x0) i = 1, 2, . . . , N,

and the leader x0 satisfies ẋ0(t) = h(x0(t)) (Here we
only present the ordinary differential equation of a single
leader). From a mathematical point of view, the derivative
of xi(t) show the instantaneous rate of change of the
agent i’s state, it will be affected by its intrinsic dynamics
and external factors, which is described by f and gi(t)
respectively. This shows the rationality of model to some
extent. The consensus control issue can be classified into
leaderless consensus control and leader-following consen-
sus control based on whether the final consensus values
are predetermined. If f ≡ 0 and Φ2 ≡ 0, the general
consensus model becomes the leaderless consensus model,
they will reach an agreement but group decision value
is not known, which can be expressed by limt→∞ ‖xi −
xj‖ = 0, where ‖.‖ denotes some norm. If f 6= 0 and

Φ2 6= 0, it becomes the case of leader-following consensus
control, and all the followers will converge to the state of
leader, i.e., limt→∞‖xi − x0‖ = 0 for i = 1, 2, . . . , N , such
issue is also referred to as consensus tracking control in
some references such as in (Yoo. S. J (2013) - Zhang. H
(2012)). If Φ1(xi, xj) = xj−xi, and Φ2(xi, x0) = xi−x0, it
becomes the linear coupling among followers and between
follower and leader, which have already been studied in
(Y. G. Hong (2006)). If h = f , it denotes that the system
dynamics for all the agents and the leader to be identical,
if not, representing that the intrinsic dynamics of leader
is different from followers’, and both case have practical
backgrounds such as cooperative control of unmanned air
vehicles, formation control of mobile robots, etc. When
f(xi(t)) = Axi(t), it becomes the linear dynamics, which
have been studied in (Y. M. Wu (2018)).

Many sufficient criteria have been obtained for asymptot-
ic/exponential and leaderless/leader-following consensus
problems. Asymptotic consensus issue of linear/nonlinear
intrinsic dynamics and linear/nonlinear coupling have also
been studied in (W. Yu (2010); X. F. Zhang (2015); Olfati-
Saber (2004)). In (Olfati-Saber (2004)), consensus prob-
lems for networks of dynamic agents with fixed and switch-
ing topologies have been discussed, and it has established
a direct connection between the algebraic connectivity of
the network and the performance (or negotiation speed)
of a linear consensus protocol. Meanwhile, it indicates
that increasing algebraic connectivity will improve the
convergence rate. From then on, many researchers pour
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attention into the study of convergence speed, which is
greatly crucial for the performance of multi-agent systems.
There are different ways to increase the convergence rate,
such as enlarging the coupling strength, optimizing com-
munication weights, and designing optimal network topol-
ogy (E. Ghadimi (2015) - L. Xiao (2004)). Especially, when
the coupling strength and communication are limited, the
problem of how to distribute the weights and design a
appropriate network such that a certain performance index
is maximized (or minimized) is an optimization problem
that will come down to the category of network design
problems. Olfati-Saber and Murray have studied ultra-
fast consensus problem in small-world networks (Olfati-
Saber (2005)). They found that consensus problem can
be solved incredibly fast on certain small-world networks,
which gives rise to a network design algorithm issue for
ultrafast information networks, while they only illustrate
this phenomenon by extensive simulation results but the
rigorous theoretical explanation of what exactly affects the
rate of convergence is not given. For the complexity of this
problem, many researchers can only study this problem
from some special cases. In (Jianxi Li (2008)), Li gives the
orderings of trees, bicyclic graphs and connected graphs
by algebraic connectivity. Later, many scholars focus on
ordering the algebraic connectivity of some special topolo-
gies such as trees and tricycle graphs (Nair Abreu (2014)
- Xueyi Huang (2015)). More generally, in (Ali Sydney
(2013)), Ali Sydney provides an useful method to optimize
algebraic connectivity by edge rewiring, and answer the
question: “Which edge can we rewire to have the largest
increase in algebraic connectivity?” After providing the
general algorithm for increasing algebraic connectivity,
researchers will not concentrate on some special topology
such as trees, bicycle graphs and tricycle graphs. Simul-
taneously, we can design the topology which will have
relatively high algebraic connectivity under the limit of
edges and vertices by general algorithm.

Despite the fact that there exist some approaches to max-
imize the second smallest eigenvalue of interaction graph
Laplacian, and thus we can get better convergence rate of
the linear protocol proposed in (Olfati-Saber (2004)), but
the state consensus can never occur in a finite time. In
most cases, we hope that the consensus can occur in finite
time. i.e., there exists a constant T called the settling time,
which depends on the initial values, such that

lim
t→T
‖xi(t)− xj(t)‖ = 0 ∀i, j = 1, 2, . . . N ;

xi(t) = xj(t), ∀t ≥ T,
what we should do is to design algorithm to make our
system reach consensus in finite time. Furthermore, finite-
time consensus can lead to better system performances
in the disturbance rejection and robustness against un-
certainty (S.P. Bhat (1998, 2000)). Thus, investigating
the finite-time consensus tracking control under the new
protocol will be of great importance both in theory and
applications. In some practical situations, it will be ap-
pealing that the consensus can be reached in a finite
time. Therefore, finite-time consensus is more attractive
and there exist a number of results about finite-time
convergence. In (Xiaoli Wang et al. (2010)), the finite-
time χ-consensus problem for a multi-agent system with
first-order individual dynamics and switching interaction
topologies has been discussed, it includes some special

cases, such as average-consensus, max-consensus, and min-
consensus problem. In (Xiaoli Wang (2008)), the finite-
time consensus problem for a multi-agent systems with
second-order individual dynamics has been investigated,
and in (Feng Xiao (2009)), Feng et al develop a new finite-
time formation control framework for multi-agent systems
with a large population of members. Moreover, a class of
nonlinear consensus protocols have been proposed, which
ensures that the related states of all agents will reach an
agreement in a finite time under suitable conditions.

From the perspective of topological structure, the undi-
rected connected graph is the simplest and commonest
case. The asymptotic consensus issue with some special di-
agraph such as strongly connected and containing directed
spanning tree have been studied in (Olfati-Saber (2004);
W. Ren (2005)). In this paper, we introduce the Euler
digraph. As we know, a Euler graph has an even number
of edges connected to each of its vertices. This type of
graph was introduced in 1736 to solve the Konigsberger
bridge problem (J.A. Bondy (2010)). From then on, many
scholars focus on studying the property of Euler graph,
then, apply it to many practical problems such as Chi-
nese postman problem, Euler travel problem and Eulerian
graph in the application of the distribution line. Later,
researchers construct Eulerian network model, which is
widely used in the National Airspace System to solve the
air traffic flow in congested areas. All of these will come
down to optimization problems.

Due to the above superiorities and applications, we intend
to consider the finite-time consensus tracking control for
multi-agent systems with nonlinear dynamics under Euler
digraph and switching topology. To our best knowledge,
there are few papers considering this issue, which will be
the subject of this paper. A novel distributed protocol
is designed for the finite-time consensus tracking control,
and the validity is also rigorously proved by the Lyapunov
functions.

The main contributions of this paper can be summarized
as follows:

1. We proposed a novel distributed protocols for the
finite-time consensus tracking control for multi-agent
systems with nonlinear dynamics under Euler digraph
and switching topology. Under our protocols, we can
make the whole system reach to the dynamics of the
leader in finite time. To reach consensus tracking in
finite time, only one follower needs to be connected
with the leader, and it doesn’t matter which agent is
connected.

2. Different from many papers which investigate the
finite-time stability or consensus, we use an uncom-
mon method to prove finite-time consensus. Mean-
while, adding edges or increasing control gains di ≥
0(i = 1, 2, . . . , N) will be a superior way to reduce the
settling time, which is consistent with our common
belief, and the reason why this phenomenon exists is
rigorously proved.

This paper is organized as follows. In Section II, some
graph preliminaries and necessary lemmas are introduced.
In Section III, we present a new finite-time control protocol
and the main results for finite-time consensus tracking
on multi-agent systems are given. Furthermore, numerical
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simulations are given in Section IV to show the correctness
of theoretical results. Finally, the conclusion and discus-
sions about future work are presented in Section V.

Notations: Let sig(x)α = (sign(x1)|x1|α, . . . , sign(xn)|xn|α),
and α ∈ R, R is the set of real numbers, and R+ is positive
real numbers. Given a vector x = (x1, x2, . . . , xn)T ∈ Rn,
Rn denotes the real vector space of n-dimensions. 0 de-
notes a zero vector with appropriate dimension, 1n =
(1, 1, . . . , 1)T ∈ Rn, N = {1, 2, · · · , N} is an index set.
‖.‖2 represents the 2-norm on Rn.

2. PROBLEM FORMULATION

2.1 Preliminaries

A weighted digraph G = (V ,E ,A ) consists of a vertex
set V = {v1, v2, · · · , vn} and an edge set E = {(vi, vj) :
vi, vj ∈ V}, where an edge is an ordered pair of distinct
vertices of V, and the nonsymmetric weighted adjacency
matrix A = [aij ], with aij > 0 if and only if eij ∈ E and
aij = 0 if not. The in-degree and out-degree of node vi are,
respectively, defined as follows:

degin(vi) =

n∑
j=1

aji degout(vi) =

n∑
j=1

aij

The neighborhood set of node vi is denoted by Ni = {vj ∈
V : (vi, vj) ∈ E }. For a graph with 0-1 adjacency elements
degout(vi) = |Ni|. The degree matrix of the digraph is a
diagonal matrix 4 = [4ij ], where 4ij = 0 for i 6= j and
4ii = degout(vi). The graph Laplacian associated with the
digraph is defined as

L(G ) = 4(G )−A (G ),

if
degin(vi) = degout(vi) ∀i,

then, digraph G is balanced. Any undirected graph is
balanced.

A directed walk in a digraph G is an alternating sequence
of vertices and arcs W := (v0, a1, v1, . . . , vk−1,
ak, vk) such that vi−1 and vi are the tail and head of
ai, respectively, 1 ≤ i ≤ k. If x and y are the initial
and terminal vertices of W , we refer to W as a directed
(x,y)-walk. Directed trails, closed trails in digraphs are
defined analogously. A directed Euler trail is a directed
trail which traverses each arc of the digraph exactly once,
and a directed Euler closed trail is a directed closed trail
with this same property. A digraph is Euler digraph if it
admits a directed Euler closed trail. In a digraph G , two
vertices x and y are strongly connected if there is a directed
(x, y)-walk and also a directed (y, x)-walk (that is, if each
of x and y is reachable from the other).

2.2 Finite-time tracking control problem

Consider the multi-agent systems composed of one leader
and N followers. The dynamics of each follower is denoted
by

ẋi(t) = f(xi(t), t) + ui(t), i ∈ N, (1)
where xi(t) ∈ R is the state of agent i, f : R×R −→ R is
the smooth nonlinear vector field, ui(t) ∈ R is the control
input. The intrinsic dynamics of the leader is described by

ẋ0(t) = f(x0(t), t) (2)

where x0(t) ∈ R is the state of the leader.

Remark 1. We take the system dynamics for all the follow-
ers and the leader to be identical(they all meet the same
nonlinear dynamics ṡ(t) = f(s(t), t)), because this case
has practical background such as group of birds, school of
fishes etc.

In system (1), we consider the problem of designing
ui(t)(i = 1, 2, . . . , N) by using local information to render
all N agents to follow the leader. We make this precise by
the following definition.

Definition 2. The finite-time tracking problem is solved if
there exists a constant T > 0 such that

lim
t→T
|xi(t)− x0(t)| = 0 ∀i = 1, 2, . . . N. (3)

The goal is to find some appropriate controllers ui(t) for N
followers such that the solutions of the controlled system
(1) converge to the solution of (2) in finite time.

We have defined the error as

ei(t) = xi(t)− x0(t), i = 1, 2, . . . N. (4)

Subtracting (2) from (1), the dynamics of error is described
by:

ėi(t) = f(xi(t), t)− f(x0(t), t) +ui, i = 1, 2, . . . , N. (5)

From the description above, the objective converts into
finding some appropriate controllers ui(t) such that the
system (5) finite-time stable. The following assumptions
and lemmas play a key role in this paper.
Assumption 1 (A1). The topological structure G of
followers is Euler digraph, and the leader has directed
paths to at least one follower.
Assumption 2 (A2). Suppose that there exist µi,
such that |f(xi(t), t) − f(x0, t)| ≤ µi|ei|, and let µ =
max{µ1, . . . , µN}, (i = 1, 2, . . . , N).

Lemma 3. (J.A. Bondy (2010)) If G is a Euler digraph,
then G is strongly connected and for any node vi ∈ V,
degin(vi) = degout(vi), i = 1, 2, . . . , N .

Lemma 4. (Weyl’s inequality) Let E,F ∈MN be Her-
mitian where MN is the linear space consists of all the N×
N matrices, and let the respective eigenvalues of E,F and

E + F be {λi(E)}Ni=1, {λi(F )}Ni=1, and {λi(E + F )}Ni=1.
Suppose that λ1(E) ≤ λ2(E) ≤ . . . ≤ λN (E), λ1(F ) ≤
λ2(F ) ≤ . . . ≤ λN (F ), and λ1(E + F ) ≤ λ2(E + F ) ≤
. . . ≤ λN (E + F ). Then

λi(E + F ) ≤ λi+j(E) + λN−j(F ), j = 0, 1, . . . , N − i,
for each i = 1, 2, . . . , N . Also,

λi−j+1(E) + λj(F ) ≤ λi(E + F ), j = 1, . . . , i,

for each i = 1, 2, . . . , N .

Lemma 5. (S.P. Bhat (2000)) Suppose the Lyapunov func-
tion V (x) satisfies

V̇ (x) ≤ −cV α(x), 0 < α < 1, c > 0.

Then V (x) ≡ 0, if t ≥ V (0)1−α/c(1− α).

Many papers investigating the finite-time stability or con-
sensus are based on this result (see Xiaoli Wang et al.
(2010)and Shuanghe Yu (2015)). In this paper, we will use
the following result to realize finite-time stability and this
result has been proposed in (Y. J. Shen (2008)).

Lemma 6. (Y. J. Shen (2008)) Suppose the Lyapunov
function V (x) defined on a neighborhood U of the origin,
and

V̇ (x) ≤ −cV α(x) + kV (x), 0 < α < 1, c > 0, k > 0,
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then, the origin is finite-time stable. The set

Ω =
{
x|V 1−α(x) < c/k

}
∩ U

is contained in the domain of attraction of the origin. The
settling time satisfies

T (x) ≤
ln(1− k

cV (0)1−α)

k(α− 1)
, x ∈ Ω.

Lemma 7. (Hardy. G. H (1952)) Let y1, . . . , yn ≥ 0 and
0 < p ≤ 1. Then

∑n
i=1 y

p
i ≥ (

∑n
i=1 yi)

p.

Lemma 8. (Y. G. Hong (2006)) If L is the symmetric
Laplacian matrix of a connected undirected graph G,
and the matrix E = diag(e1, e2, . . . , eN ) with ei ≥ 0 for
i = 1, 2, . . . , N , and at least one element in E is positive,
then L+ E > 0.

3. MAIN RESULTS

In this section, we give the results of finite-time tracking
control for multi-agent systems with nonlinear dynamics
under Euler digraph and switching topology. The finite-
time Lyapunov stability theory is used to prove our results.

3.1 Multi-agent systems under Euler digraph

In the subsection, the multi-agent systems with Euler
digraph is considered. We use the following control law
for agent i:

ui(t) = −β
∑
j∈Ni

lijsig
(
xj(t)− xi(t)

)α
(6)

− disig
(
xi(t)− x0(t)

)α
, i = 1, 2, . . . , N,

where di is the feedback gains, di > 0 when the agent i is
a neighbor of the leader and di = 0 otherwise. Ni is the
neighbor set of node i (from i to j). L = (lij)N×N is the
coupling configuration matrix representing the topological
structure of the system, where lij are defined as follows:

lij =


−aij > 0, i 6= j and j ∈ Ni∑
j∈Ni

aij , i = j

0, otherwise

, (7)

which ensures the property that
N∑
j=1

lij = 0, i = 1, 2, . . . N.

Theorem 9. Suppose that (A1), (A2) holds. For system
(1), the local finite-time tracking problem is solved under
the protocol (6).

Proof. Consider the Lyapunov functional candidate:

V (t) =
1

2

N∑
i=1

ei(t)
2 (8)

The derivative of V (t) along the trajectories of (5) is

V̇ (t) =

N∑
i=1

eiėi

=

N∑
i=1

ei

(
f(xi(t), t)− f(x0(t), t)− β

N∑
j=1

lijsig(ej − ei)α

− disig(ei)
α
)

≤
N∑
i=1

µ|ei|2 −
N∑
i=1

N∑
j=1

βlijsig(ej − ei)αei −
N∑
i=1

di|ei|1+α

=

N∑
i=1

µ|ei|2 + β

N∑
i=1

N∑
j=1

(l
2

1+α

ij |ej − ei|
2)

1+α
2 −

N∑
i=1

di|ei|1+α

≤
N∑
i=1

µ|ei|2 + β
( N∑
i=1

N∑
j=1

l
2

1+α

ij (ej − ei)2
) 1+α

2

− β(

N∑
i=1

(1/β)
2

1+α d
2

1+α

i |ei|2)
1+α
2

= µV (t)− β
(

(eT L̄e)
1+α
2 + (eTDe)

1+α
2

)
≤ µV (t)− β

(
eT (L̄+D)e

) 1+α
2

= µV (t)− β(eT (
L̄+ L̄T

2
+D)e)

1+α
2

= µV (t)− β(eTMe)
1+α
2 ,

where M = L̄+L̄T

2 +D, L̄ = [l
2

1+α

ij ]N×N is the Laplacian of

Euler digraph Ḡ , which has the same topological structure

as G , D = diag
{

(d1β )
2

1+α , (d2β )
2

1+α , . . . , (dNβ )
2

1+α

}
, di ≥

0, i = 1, 2, . . . , N . e = (e1, e2, . . . , eN )T .

According to Lemma 3, Ḡ is strongly connected and
balanced, from Olfati-Saber (2004), we know that ma-

trix L̄+L̄T

2 is a valid Laplacian matrix for an undirected

graph G, and by Lemma 8, we can easily get eTMe ≥
k1e

T e, k1 > 0. Thus

V̇ (t) ≤ γV (t)− β(k1e
T e)

1+α
2

= γV (t)− βk
1+α
2

1 (eT e)
1+α
2

= γV (t)− 4βk
1+α
2

1 V (t)
1+α
2

Let k = γ, c = 4βk
1+α
2

1 , then, we get

V̇ (t) ≤ −cV
1+α
2 + kV, 0 < α < 1.

For 0 < α < 1, then, 0 < 1+α
2 < 1, according to Lemma 6,

V (t) will be zero in finite time T =
2ln(1− kc V (0)

1−α
2 )

k(α−1) , which

means ei(t)(i = 1, 2, . . . , N) will be zero in finite time.
Thus, this system solves a finite-time consensus tracking
problem.

Remark 10. To solves a finite-time tracking problem, it
is not necessary that the leader has directed paths to all
followers, and one follower is enough, and it doesn’t matter
which follower is connected by leader. This condition is
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superior to many papers about leader-following consensus
of multi-agent systems such as in (Weijun Cao (2015);
Chang Chun Hua (2016)).

In the following, we consider how to reduce the settling
time. Increasing feedback gains and communication con-
nections will be a superior way to reduce the settling time,
which is consistent with our common belief. As we know,
increasing communication connections means adding edges
of the topological structure. So, the settling time of the
system with dense graphs will be relatively short. For
system with sparse graphs, its settling time will be longer.
Nextly, rigorous proof will be given in the following section.

Definition 11. (Average degree) Suppose an undirected
graph G=(V, E), v and ε are its number of vertices and
edges, respectively. The average degree of the graph is
2v/ε.

Corollary 12. For system (1), adding edges or increasing
feedback gains will decrease the settling time to reach
finite-time consensus tracking.

Proof. We get the settling time T =
(α+1)ln(1− kc V (0)

1−α
2 )

k(α−1)

from theorem 9. If c = 4βk
1+α
2

1 increases, the settling time
T will reduce. Increasing k1 will be the only way to increase
c. Since k1 is the smallest eigenvalue of matrix M =
L̄+L̄T

2 + D, D = diag
{

(d1β )
2

1+α , (d2β )
2

1+α , . . . , (dNβ )
2

1+α

}
,

di ≥ 0, i = 1, 2, . . . , N . Our objective is to improve
the smallest eigenvalue of matrix M . Firstly, we prove
that adding edges will improve the smallest eigenvalue
of matrix M , after adding edges, the digraph is also an
Euler digraph. Without loss of generality, assume that
there is no edge between vertices 1 and 2 in graph G1 ,
and graph G2 is generated by adding a new edge between
vertices 1 and 2(from 1 to 2 and from 2 to 1) in graph

G1. Let M1 =
L̄1+L̄T1

2 + D and M2 =
L̄2+L̄T2

2 + D, where
L̄2+L̄T2

2 =
L̄1+L̄T1

2 + δL, and

δL =


1 −1 0 · · · 0
−1 1 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 .

Then,M2 = M1+β2δL. According to Lemma 8, we can get
λ1(M1) > 0, and by Weyl’s inequality, λ1(M2) = λ1(M1 +
β2δL) ≥ λ1(M1) + β2λ1(δL) = λ1(M1).

Nextly, we will prove that increasing feedback gains will
improve the smallest eigenvalue of matrix M . Without loss
of generality, we only increase d1, δD = diag(δd1, 0, . . . , 0),
δM = βδD, according to Weyl’s inequality, λ1(M +
δM) ≥ λ1(M) + λ1(δM) = λ1(M) + λ1(βδD) = λ1(M) +
βλ1(δD) = λ1(M). This completes the proof.

Remark 13. From the corollary above, we can get that
the system whose topological graph have relatively high
average degree will reach consensus within shorter time.
Average degree can be an important index to compare the
settling time among different systems.

3.2 Multi-agent systems under switching topology

In practice, it is hard to ensure that all of the existing
communication links will not fail due to the existence of
an obstacle between two agents, such as failure of physical
devices or limited sensing range. At the same time, some
new communication links may appear between any two
agents. These uncertain factors make some edges be added
or removed from the topology of the system. Thus, it is
reasonable to assume that the interaction topology is time-
varying.

Let Gc = (V ,E ,Aδ(t)) be a balanced graph set of order
N . The set Gc is a finite set because at most a graph of
order N is complete and has N(N − 1) directed edges.
Define the finite set Γ = {0, 1, . . . ,m} representing the
index set of graph Gc. We introduce a switching signal
δ(t) : [0,∞) → Γ and a switching time sequence t0 =
0, t1, . . . , ts . . . at which the interaction topology changes.
For any t ∈ [ts, ts+1), the topology Gδ(t) = Gs ∈ Gc is
fixed and the adjacency weight between agent i and j is
asij . Suppose that the agent i of systems (1) employs the
following control protocol:

usi (t) =− β
∑
j∈Ni

lsijsig
(
xj(t)− xi(t)

)α
(9)

− dsi sig
(
xi(t)− x0(t)

)α
, i = 1, 2, . . . , N,

then, the error system (5) will be described by:

ėsi (t) =f(xi(t), t)− f(x0(t), t)

− β
∑
j∈Ni

lsijsig
(
xj(t)− xi(t)

)α
(10)

− dsi sig
(
xi(t)− x0(t)

)α
, i = 1, 2, . . . , N,

we will analysis the finite-time stability of switching sys-
tem (10). Some necessary assumptions and lemmas are
given as follows.
Assumption 3 (A3). (Hölder continuity) Suppose that
there exist C, such that |f(xi(t), t) − f(x0, t)| ≤C|esi |γ ,
0 < γ ≤ 1. When γ = 1, it is the condition of (A2).
Assumption 4 (A4). For any t ∈ [ts, ts+1), the topology
Gδ(t) of followers is balanced, and the leader has directed
paths to all the followers.

Remark 14. Assumption 4 do not require that the topo-
logical structure Gδ(t) of followers is strongly connected
for any t ∈ [ts, ts+1). The topological structure of follow-
ers can even be unconnected, which means degin(vi) =
degout(vi) = 0 for some i ∈ N .

Lemma 15. (Xiaoli Wang et al. (2010)) Considers a family
of systems

ẋ = fδ(x), fδ(0) = 0, x ∈ Rn. (11)

Let Γ denotes the finite switching index set, δ(t) : [0,∞)→
Γ be a piecewise constant function of time, fk be a
continuous with respect to x for fixed k ∈ Γ, and τ be the
dwell time. If the switched system (10) is asymptotically
stable, and for any fixed k ∈ Γ, ẋ = fk(x) is finite-time
stable, then system (10) is finite-time stable.

Theorem 16. Suppose that (A3), (A4) holds. For system
(1), if the feedback gains dsi > C, i = 1, 2, . . . , N , and
the sum of time-interval is sufficient large. Then the local
finite-time tracking problem is solved under the protocol
(9).

Proof. Consider the Lyapunov functional candidate:
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Fig. 1. Topological structure.

V s(t) =
1

2

N∑
i=1

esi (t)
2 (12)

Similar to the proof of Theorem 9, we can obtain

V̇ s(t) =
N∑
i=1

esi ė
s
i

=

N∑
i=1

esi

(
ḟ(s)esi − β

N∑
j=1

lsijsig(esj − esi )α − dsi sig(esi )
α
)

≤ γV s(t)− β(eTMse)
1+α
2 ,

where M = L̄s+L̄sT

2 +D, we can easily get

V̇ (t) ≤ −csV
1+α
2 + ksV, 0 < α < 1.

Also, we can obtain

V̇ s(t) =

N∑
i=1

esi ė
s
i

=

N∑
i=1

esi

(
ḟ(s)esi − β

N∑
j=1

lsijsig(esj − esi )α − dsi sig(esi )
α
)

≤
N∑
i=1

(C−dsi )|esi |α+1 − β
( N∑
i=1

N∑
j=1

(lsij)
2

1+α (esj − esi )2
) 1+α

2

< 0.

Thus, when s is fixed, the switched system (10) is asymp-
totically stable. According to Lemma 15, system (10) are
finite-time stable. This completes the proof.

Remark 17. In the proof of theorem 16, let γ = α ∈ (0, 1)
when proving the switched system (10) is asymptotically
stable, and let γ = 1 when proving the system(10) is finite-
time stable for any fixed s ∈ Γ.

4. SIMULATION

In this section, simulation examples are given to demon-
strate the theoretical results. There are five agents in the
system. We choose agent 0 as leader, and the remainder as
followers. Their topology is shown in Fig. 1, in which the
topological structure among followers is Euler digraph and

Fig. 2. Trajectories of the five agents.

Fig. 3. Trajectories of the five agents.

Fig. 4. Trajectories of the five agents.

we select the follower 1 to be connected by the leader. The
coupling information among followers is fixed, and suppose
that the weight among nodes is 1. Take the topology 1
which is an Euler digraph in Fig. 1 for example, we have
the adjacency matrix

A =

0 0 1 0
1 0 1 0
0 1 0 1
0 1 0 0

 ,
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and choose f(x) = 0 and 1, then, we can obtain their
trajectories in Figs 2 and 3, respectively, which shows
that the trajectories of followers can track the leader’s
trajectory in finite time. In the figures, the black imaginary
line represents the trajectory of the leader, and the solid
lines of different colors represent the trajectories of the
followers. Then, let the intrinsic dynamics of the leader
x0(t) = 3.5 + 0.15sin(t), we can get their trajectories in
Fig. 4.

5. CONCLUSION

In this paper, we have discussed the finite-time consensus
tracking control for multi-agent systems with nonlinear
dynamics under Euler digraph and switching topology.
By using finite-time stability theory, this paper propose a
new nonlinear distributed control protocol under which the
systems can reach finite-time consensus tracking control.
In order to reduce the settling time, we have found two
methods(adding edges or increasing feedback gains) to
address this issue. Meanwhile, only one follower needs to
be connected with the leader, and which agent is connected
by leader will not affect the finite time consensus tracking
problem. Finally, the simulation results are presented to
demonstrate the effectiveness of the theoretical results.

There are still many challenging problems to be investi-
gated, like, finite-time and fixed-time consensus tracking
control with time delays and finite-time consensus tracking
control of multi-agent with high-order agent dynamics.
These issues will be carried out in the future work.

REFERENCES

Xiaoli Wang, Yiguang Hong. Distributed finite-time χ-
consensus algorithems for multi-agent systems with vari-
able coupling topology, J Syst Sci Complex, vol. 23, pp.
209-218, 2010.

W. Ren, R. Beard. Consensus seeking in multi-agent sys-
tems using dynamically changing interaction topologies,
IEEE Trans. Automatic Control, vol. 50(5), pp: 665-671,
2005.

F. Xiao, L. Wang. Reaching agreement in finite time
via continuous local state feedback, Proc. of Chinese
Control Conference, Zhangjiajie, pp: 711-715, 2007.

Yoo. S. J. Distributed consensus tracking for multiple
uncertain nonlinear strict-feedback systems under a
directed graph, IEEE Transactions on Neural Networks
and Learning Systems, vol. 24(4), pp: 666-672, 2013.

Zuo. Z, Wang. C. Adaptive trajectory tracking control of
output constrained multi-rotors systems, IET Control
Theory and Applications, vol. 8(13), pp: 1163-1174,
2014.

Zhang. H, Lewis, F. L. Adaptive cooperative tracking
control of higher-order nonlinear systems with unknown
dynamics, Automatica, vol. 48(7), pp: 1432-1439, 2012.

Y. G. Hong and J. P. Hu. Tracking control for multi-agent
consensus with an active leader and variable topology,
Automatica, vol. 42, pp: 1177-1182, 2006.

Y. M. Wu, Z. S. Wang. Leader-follower consensus of multi-
agent systems in directed networks with actuator faults,
Neurocomputing, vol. 275, pp: 1177-1185, 2018.

W. Yu, G. Chen, M. Cao, J. Kurths. Second-order consen-
sus for multiagent systems with directed topologies and

nonlinear dynamics, IEEE Trans. Syst. Man Cybern.
Part B, vol. 40, pp. 881-891, 2010.

X. F. Zhang, L. Liu, G. Feng. Leader-follower consensus of
time-varying nonlinear multi-agent systems, Automati-
ca, vol. 52, pp: 8-14, 2015.

R. Olfati-Saber, R. M. Murray. Consensus problems in
networks of agents with switching topology and time-
delays, IEEE Transactions on Automatic Control, vol.
49, pp. 1520-1533, 2004.

W. Ren, Randal W. Beard. Consensus seeking in multi-
agent systems under dynamically changing interaction
topologies, IEEE Transactions on Automatic Control,
vol. 50, pp. 655-661, 2005.

Shuanghe Yu, Xiaojun Long. Finite-time consensus for
second-order multi-agent systems with disturbances by
integral sliding mode, Automatica, vol. 54, pp. 158-165,
2015.

Fangcui J, Long W, Guangming X. Consensus of high-
order dynamic multi-agent systems with switching
topology and time-varying delays, Journal of Control
Theory and Applications, vol. 8(1), pp. 52-60, 2010.

K. Kaneko. Relevance of dynamic clustering to biological
networks, Phys. D Nonlin. Phenom, vol. 75, pp. 55-73,
1994.

N. F. Rulkov. Images of synchronized chaos: Experiments
with circuits, Chaos, vol. 6, pp. 262-279, 1996.

M. R. Johnson et al. Systems genetics identifies a con-
vergent gene network for cognition and neuro develop-
mental disease”, Nature Neurosci, vol. 19, pp. 223-232,
2016.

R. Olfati-Saber. Ultrafast consensus in small-world net-
works”, in: Proceedings of the 2005 American Control
Conference, pp. 2371-2378, 2005.

Jianxi Li, Ji Ming Guo. The orderings of bicyclic graphs
and connected graphs by algebraic connectivity, Linear
Algebra Appl, vol. 428, pp. 1421-1438, 2008.

Ali Sydney, Caterina Scoglio. Optimizing algebraic con-
nectivity by edge rewiring, Applied Mathematics and
Computation, vol. 219, pp. 5465-5479, 2013.

S.P. Bhat, D.S. Bernstein. Finite-time stability of continu-
ous autonomous systems, SIAM J. Control Optim. vol.
38, pp. 751-766, 2000.

S. P. Bhat, D. S. Bernstein. Continuous, finite-time stabi-
lization of the translational and rotational double inte-
grators, IEEE Transactions on Automatic Control. vol.
43, pp. 678-682.

Xiaoli Wang, Yiguang Hong. Finite-Time Consensus for
Multi-Agent Networks with Second-Order Agent Dy-
namics, Proceedings of the 17th World Congress, pp.
15185-15190, 2008.

Feng Xiao, Long Wang, Jie Chen, Yanping Gao. Finite-
time formation control for multi-agent systems, Auto-
matica. vol. 45, pp. 2605-2611, 2009.

Wenwu Yu, Guanrong Chen, Jinhu L. On pinning synchro-
nization of complex dynamical networks, Automatica.
vol. 45, pp. 429-435, 2009.

Wang. X, Chen. G. Synchronization in scale-free dynam-
ical networks: Robustness and fragility, IEEE Trans-
actions on Circuits and Systems I. vol. 49, pp. 54-62,
2002a.

Wang. X, Chen. G. Synchronization in small-world dynam-
ical networks, International Journal of Bifurcation and
Chaos. vol. 12, pp. 187-192, 2002b.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3390



Wang. X, Chen. G. Pinning control of scale-free dynamical
networks, Physica A. vol. 310, pp. 521-531, 2002c.

Nair Abreu, Claudia Marcela Justel. Ordering trees and
graphs with few cycles by algebraic connectivity, Linear
Algebra and its Applications. vol. 458, pp. 429-453, 2014.

Xing Ke Wang, Shang Wang Tan. Ordering trees by alge-
braic connectivity, Linear Algebra and its Applications.
vol. 436, pp. 3684-3691, 2012.

Jia Yu Shao, Ji Ming Guo. The ordering of trees and con-
nected graphs by algebraic connectivity, Linear Algebra
and its Applications. vol. 428, pp. 1421-1438, 2008.

Xueyi Huang, Qiongxiang Huang. On the Laplacian in-
tegral tricyclic graphs, Linear and Multilinear Algebra.
vol. 63, pp. 1356-1371, 2015.

G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, 2nd
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