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Abstract: This paper proposes a novel method for the simultaneous estimation of the
coefficients and the delay term of a delayed fractional order system. Because of the practicality
aspect of the non-ideal step inputs, such inputs are used in this paper for the first time to
identify a fractional order system. To this end, the proposed identification procedure is separately
described for two types of fractional order systems, i.e., including both non-delayed and delayed
systems. For the non-delayed system, a fractional order integral approach is developed, and for
the delayed system, a filtering approach is investigated to make the delay term to be explicitly
appeared in the parameters vector. In simulation results, some illustrative examples, covering
both non-delayed and delayed systems, are given to demonstrate the validity of the proposed
method.
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1. INTRODUCTION

With the growth of high-tech computers in the last few
decades, the usage of fractional order calculus has been
increased in the different fields of science, e.g. bioengineer-
ing in Magin (2006), physics in Rudolf (2000), continuum
mechanics in Carpinteri and Mainardi (2014), and biology
in Magin (2010), and today we are seeing widespread
usage of such calculus in the various fields of engineering,
e.g. control engineering, i.e., fractional order systems and
control in Wang et al. (2015), Vyawahare and Nataraj
(2013), Jalloul et al. (2013), Monje et al. (2010), Azarmi
et al. (2018), Azarmi et al. (2015b), Luo et al. (2010),
Padula and Visioli (2011), Beschi et al. (2017), Padula and
Visioli (2016), Azarmi et al. (2020), Azarmi et al. (2016),
Gao (2015), Azarmi et al. (2015a), and Calderón et al.
(2006).
Among the applications of fractional order calculus, in
recent years, the identification of fractional order systems
has attracted the attention of many researchers in the
world, e.g. Tavakoli-Kakhki and Tavazoei (2014), Yakoub
et al. (2015), Wang et al. (2019), Kothari et al. (2018a),
Kothari et al. (2018b), and Ahmed (2020). Some pio-
neering works in the field of identification of fractional
order systems have been done in Aoun (2005), Cois (2002),
Le Lay (1998), Lin (2001), Cois et al. (2001), Chetoui et al.
(2012), Sabatier et al. (2006), Ahmed (2015), Fahim et al.
(2018), and Malti et al. (2006). Simultaneous estimation
of the coefficients and commensurate order of a fractional
order transfer function has been reported for the first time
in Malti et al. (2008). The estimation of the model pa-

rameters and non-commensurate orders was performed by
Tang et al. (2015), and Belkhatir and Laleg-Kirati (2018).
Besides, the identification of delayed fractional order sys-
tems can be seen in the research paper of Narang et al.
(2011). But so far, to the best of the authors’ knowledge,
the identification problem of the delayed fractional order
system performed by the non-ideal step inputs has been
remained unaddressed in literature. It is undeniable that
in practical applications, it is not easy to apply every
desired input for the identification of the system model.
Because it may not operationally be possible, and also it
may even cause damage to the system (Ljung, 2010; Nelles,
2002; Ljung, 1991; Narendra and Annaswamy, 1984). The
use of the non-ideal step inputs for the identification of
integer order systems has been reported in Ahmed (2010)
and Ahmed (2016). The main contribution of this paper
is to propose a novel method to identify the non-delayed
and delayed fractional order systems using the non-ideal
step inputs that may widely use in industry. Indeed, in
the proposed method, the pivotal assumption is that the
fractional orders of the system model are a piece of the
user’s information.
The rest of this paper is organized as follows. In Section
2, a brief mathematical background of fractional order
calculus is presented. Also, the non-ideal step inputs used
in the theoretical parts of the paper are introduced. In
Section 3, the proposed identification methods using the
non-ideal step inputs are separately presented in detail.
In Section 4, two illustrative examples are given to show
the effectiveness of the proposed method. Finally, the
concluding remarks are given in Section 5.
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2. MATHEMATICAL BACKGROUND

In this section, the necessary preliminaries about fractional
order calculus are presented, and the non-ideal step inputs,
which the authors used in this paper are introduced.

2.1 Fractional Order Models

As the first step, a commonly used function in fractional
order calculation is introduced, which is known as the
Gamma Euler’s function in literature (Podlubny, 1998).

Γ(z)
∆
=

∞∫
0

e−t t z−1 dt . (1)

The fractional order integral of order α is defined as
follows:

0I
α
t f(t) =

1

Γ (α)

t∫
0

(t− τ) α−1f(τ) dτ , t > 0 , α ∈ R+ ,

(2)
and one of the most popular definition used to describe
the fractional order derivative of order α is the Caputo’s
definition, defined as

C
0 D

α
t f(t) = Idαe−α

{
f (dαe)(t)

}
, α ∈ R+ − N , (3)

where d.e is ceiling function (Podlubny, 1998). For the
simplicity of the notations, which the authors used in this
paper, in the rest of this paper, the Caputo’s fractional
order derivative of order α is shown as Dα. The other
definitions of fractional order derivative are available in
Podlubny (1998). The Laplace transform of the fractional
order integral discussed in (2) is given by

L {0Iαt f(t)} = s−αF (s) , (4)

where L {f(t)} = F (s) (Podlubny, 1998). Also, the
Laplace transform of the Caputo’s derivative of the func-
tion f(t) defined in (3) is presented as

L
{
C
0 D

α
t f(t)

}
= sαF (s)−

dαe−1∑
k= 0

sα−k−1f (k)(0) , (5)

where f (k)(0) ( k = 1 , . . . , dαe − 1 ) are the initial con-
ditions of function f(t) (Podlubny, 1998). The fractional
order integral of Caputo’s derivative of order α is given by

aI
α
t
C
aD

α
t f(t) = f(t)−

dαe−1∑
k= 0

f (k)(a)

k!
(t− a)

k
, (6)

where the function f(t) has dαe − 1 continuous derivative
and α ∈ R+ − N (Podlubny, 1998).

2.2 Non-Ideal Step Inputs

For the identification of any system, it is known that
it is required to stimulate the intended system by an
appropriate input. The point is that if the input is not
properly selected, then all the system modes may not
be triggered, and the identification procedure may not
appropriately be performed. On the other hand, it is
known that it is not easy to stimulate an industrial plant
by every input. Because although the input may meet some
requirements, it may not be practical and it may damage
the intended plant (Ljung, 2010; Nelles, 2002; Ljung,
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Fig. 1. Schematic of the non-ideal step inputs ((a) Staircase
input, (b) Saturated ramp input, and (c) Filtered step
input)

1991; Narendra and Annaswamy, 1984). For example,
an industrial heat furnace cannot be stimulated with a
Pseudo-Random Binary Sequence (PRBS) input. Thus, in
the identification procedure, choosing suitable inputs plays
a pivotal role. Indeed, this paper attempts to use the most
commonly used inputs in the industry such as staircase
input, saturated ramp input and filtered step input for
the identification of fractional order systems, including
both non-delayed and delayed transfer functions. It is
worth mentioning that the non-ideal step inputs are not
limited to the three cases, which the authors considered in
this manuscript (For more details see (Ahmed, 2010)). To
better clarification, the mentioned non-ideal step inputs
are depicted in Fig. 1.

3. IDENTIFICATION USING NON-IDEAL STEP
INPUTS

In this section, two methods are developed for the iden-
tification of the general forms of non-delayed and delayed
fractional order systems by using the non-ideal step inputs.
The method for the estimation of the coefficients of a
non-delayed fractional order system is described in the
first subsection of this section. This method is based on a
fractional order integral approach and Least Square (LS)
estimation. Additionally, the method for estimation of the
coefficients and the delay term of a delayed fractional order
system is explained in the second subsection of this section.
This method is based on applying a fractional order low-
pass filter and an estimation method, which is named
Instrumental Variable (IV) in literature (Young, 1970).

3.1 Coefficients Estimation of Non-Delayed Fractional
Order Systems

Let us consider the following fractional order differential
equation as the model of a practical system

Dαny(t) + an−1D
α(n−1)y(t) + ...+ a0y(t) =

bn−1D
α(n−1)u(t) + ...+ b0u(t) + e(t) ,

(7)

where n∈N and α (0 < α ≤ 1) is the fractional order.
Besides, y(t) and u(t) are the system output and the
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system input, respectively (Diethelm, 2010). Note that
e(t) is the white noise and [ an−1 ... a0 bn−1 ... b0 ]T is
the vector of unknown parameters, which are estimated in
the proposed identification procedure.
Due to (5) and by considering zero initial conditions, the
corresponding transfer function is obtained as follows:

G(s) =
Y (s)

U(s)
=

bn−1s
(n−1)α + ...+ b0

snα + an−1s(n−1)α + ...+ a0
. (8)

The system model which is defined in (8) is a commensu-
rate transfer function (Podlubny, 1998).
In the fractional order integral equation approach pro-
posed in this paper, according to (6), it is assumed that
y(t) is the smooth signal and the system is in the rest state,
i.e., the initial conditions of the system is considered to be
equal to zero. Therefore, by fractional order integrating of
order nα from the both hand sides of (7), the following
equality is obtained

y(t) + an−1I
α
t y(t) + ...+ a0I

nα
t y(t) =

bn−1I
α
t u(t) + ...+ b0I

nα
t u(t) + ς(t) ,

(9)

where ς(t) = 0I
nα
t e(t). The equality achieved in (9) can be

compressed in the matrix form as

y(t) = [−Inαy(t) Inαu(t) ]

[
an−1

bn−1

]
+ ς(t) , (10)

where
Inαy(t) = [ Iαt y(t) ... Inαt y(t) ] , (11)

Inαu(t) = [ Iαt u(t) ... Inαt u(t) ] , (12)

an−1 = [ an−1 ... a0 ]
T
, (13)

and
bn−1 = [ bn−1 ... b0 ]

T
. (14)

From the equation presented in (10), the estimation equa-
tion can be re-formulated as follows:

ψ(t) = φ(t)θ + ς(t) , (15)

where ψ(t) = y(t) and φ(t) = [−Inαy(t) Inαu(t) ] is the
regression vector. Additionally, θ = [ an−1;bn−1 ] is the
unknown parameter vector, by putting two vectors an−1

and bn−1 with the dimension of n×1 into a vector, i.e., θ
with the dimension of 2n×1.
Cumulating (15) for different time instances, yields to the
following estimation equation,

Ψ = Φθ + Z , (16)

where
Z = [ ς(t0) ... ς(tn−1) ]

T
, (17)

and
Ψ = [ ψ(t0) ... ψ(tn−1) ]

T
. (18)

In (17) and (18), Z and Ψ are two vectors with the di-
mension of n×1. Besides, Φ = [ φ(t0) ; ... ; φ(tn−1) ] is a
matrix with the dimension of n×2n, by putting the vectors
φ(t0), φ(t1), ..., φ(tn−2), and φ(tn−1) with the dimension
of 1×2n into a matrix.
Now, to estimate the parameter vector θ, the LS method
can be used and the unknown parameter vector is esti-
mated as

θ =
(
φT (t)φ(t)

)−1
φT (t)ψ(t) . (19)

In the rest, the three non-ideal step inputs mentioned in
Subsection 2.2 are used to attain the regression vector
φ(t) in (19). To this end, the required descriptions and
the mathematical formulations are mentioned with more
details.

3.1.1 Staircase Input

A staircase input is the sum of a set of shifted step inputs
that can be defined as

u(t) =

I∑
i= 0

hi Ω(t− `i) , (20)

where hi is the step size and Ω(t− `j) ( j ∈{0 , ... , I} ) for
`j > 0 is a shifted step input defined as

Ω(t− `j) =

{
1, t ≥ `j ,
0, t ≺ `j . (21)

For simplicity, consider a triple staircase input as

u(t) = h0 Ω (t− `0) + h1 Ω (t− `1) + h2 Ω (t− `2) , (22)

where `0 = 0, whose the Laplace transform of u(t) is
obtained as follows:

U(s) =
h0

s
+
h1

s
e−`1s +

h2

s
e−`2s . (23)

According to (2) and by the fractional order integration of
the staircase input u(t) (20) results in

0I
nα
t u(t) =

1

Γ(nα+ 1)

I∑
i= 0

hi (t− `i)nα Ω(t− `i) . (24)

Equation (24) is used for computing the second element of
φ(t) in (15).

3.1.2 Saturated Ramp Input

A saturated ramp input is defined as

u(t) =

1∑
i= 0

pi [t− `i] Ω(t− `i) , (25)

where p0 = h
`1

and p1 = −p0 . As a matter of fact, `i and
h are the time of the input to reach saturation and the
saturation value, respectively. Therefore, by doing some
calculation, the second element of φ(t) in (15) is derived
as follows:

0I
nα
t u(t) =

h

`1Γ(nα+ 2)
(tnα+1 − (t− `1)nα+1 Ω(t− `1)) .

(26)
Equation (26) helps us to build the second element of φ(t)
in (15).

3.1.3 Filtered Step Input

The filtered step input considered in this paper is as
follows:

U(s) =
1

λs+ 1

h

s
, (27)

where λ is the filter coefficient. Therefore, the system
output, i.e., Y (s), of the transfer function G(s) in (8) is
derived as

Y (s) =
bn−1s

(n−1)α + ...+ b0
snα + an−1s(n−1)α + ...+ a0

1

λs+ 1

h

s
, (28)

which yields to

λY (s) +
λan−1

sα
Y (s) + ...+

λa0

snα
Y (s) +

1

s
Y (s)+

an−1

sα+1
Y (s) + ...+

a0

snα+1
Y (s) =

h bn−1

sα+2
+ ...+

h b0
snα+2

.

(29)
According to (4), equality in (29) can be re-written as
follows:
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λy(t) +

t∫
0

y(τ)dτ + an−1

(
λIαy(t) + Iα+1y(t)

)
+

...+ a0

(
λInαy(t) + Inα+1y(t)

)
= Iα+2 h bn−1 δ(t)+

...+ Inα+2 h b0 δ(t) .
(30)

In (30), δ(t) is the Dirac delta function. From (30), the
estimation equation is obtained as

ψ(t) = φ(t)θ + ς(t) , (31)

where

ψ(t) = λy(t) +

t∫
0

y(τ)dτ , (32)

θ = [ an−1;bn−1 ] , (33)

and
φ(t) = [ φ1 φ2 ] , (34)

where
φ1 = [−λ 0I

nα
t y(t)− 0I

nα+1
t y(t) ] , (35)

and

φ2 = [
h tα+1

Γ(α+ 2)
+ ... +

h tnα+1

Γ(nα+ 2)
] . (36)

For more clarity, the first element of φ(t) is derived as
follows:

λ 0I
nα
t y(t) + 0I

nα+1
t y(t) =[

λ 0I
α
t y(t) + 0I

α+1
t y(t) ... λ 0I

nα
t y(t) + 0I

nα+1
t y(t)

]
.

(37)
Note that the following calculation is helpful to build the
second element of the regression vector φ(t).

0I
nα+2
t h bn−1 δ(t) =

h bn−1

Γ(nα+ 2)

t∫
0

(t− τ)
nα+1

δ(τ)dτ =
h bn−1 t

nα+1

Γ(nα+ 2)
.

(38)

3.2 Estimation of the Coefficients and the Delay Term of
Delayed Fractional Order Systems

In this subsection, the filtering method proposed in Narang
et al. (2011) is developed to estimate the coefficients and
the delay term of the delayed fractional order transfer
functions by using the non-ideal step inputs.
Suppose a delayed fractional order differential equation as
the following form,

anD
αny(t) + an−1D

α(n−1)y(t) + ...+ y(t) =

bn−1D
α(n−1)u(t− `) + ...+ b0u(t− `) + e(t) ,

(39)

where ` is an input time delay. It is worth mentioning
that [ an ... 1 bn−1 ... b0 ` ]T is the vector of the unknown
parameters, which are estimated in the proposed identifi-
cation procedure. Due to (5) and considering zero initial
condition, the corresponding transfer function to delayed
fractional order differential equation in (39) is represented
as follows:

G(s) =
Y (s)

U(s)
=

bn−1s
(n−1)α + ...+ b0

ansnα + an−1s(n−1)α + ...+ 1
e−`s .

(40)
Now, consider a fractional order filter as

F (sα) =
1

sÂ(sα)
, (41)

where Â(.) is the denominator of transfer function G(s) in
(40). Applying this filter to the numerator and denomina-
tor of (40) (Narang et al., 2011) results in

YF (s) = −AS(n−1)α YF1(s) + BS(n−2)α e−`s UF1(s)
+b0 e

−`s UF2(s) + b0 e
−`s UF3(s) + ς(s) ,

(42)
where

A = [ an an−1 ... a1 ] , S(n−1)α =
[
s(n−1)α ... 1

]T
,

(43)

B = [ bn−1 ... b1 ] , S(n−2)α =
[
s(n−2)α ... 1

]T
, (44)

YF (s) = F (sα)Y (s) , YF1(s) = sαF (sα)Y (s) , (45)

UF1(s) = sαF (sα)U(s) , (46)

and

UF2(s) =
(

1− Â(sα)
)
F (sα)U(s) , UF3(s) =

U(s)

s
.

(47)
By taking the inverse Laplace transform from the both
hand sides of (42) yields to

yF (t) = −Ay
[(n−1)α]
F1 (t) + Bu

[(n−2)α]
F1 (t− `)

+b0uF2(t− `) + b0L
−1
{
UF3(s)e−`s

}
+ ς(t) ,

(48)
where L−1 {.} denote the Laplace inverse operator,

L−1
{
S(n−1)αYF1(s)

}
= y

[(n−1)α]
F1 (t) , (49)

L−1
{
S(n−2)αe−`sUF1(s)

}
= u

[(n−2)α]
F1 (t− `) , (50)

and
L−1

{
e−`sUF2(s)

}
= uF2(t− `) . (51)

This identification method is used in the case of applying
each of the three non-ideal step inputs, which are con-
sidered in our paper. The main problem in the following
subsections is to make the delay term to be explicitly
appeared in the unknown parameters vector.

3.2.1 Staircase Input

Suppose the staircase input described in (22) whose
Laplace transform is in the form of (23). The Laplace
inverse transform of UF3(s)e−`s in (48) can be written as

L−1{UF3(s)e−`s}
= L−1{h0

s2
e−`s +

h1

s2
e−(`+`1)s +

h2

s2
e−(`+`2)s}

= ustair1 − `ustair2 ,
(52)

where ustair1 and ustair2 are respectively defined as

ustair1 = h0 tΩ(t− `) + h1 (t− `1) Ω(t− `− `1)
+h2 (t− `2) Ω(t− `− `2) ,

(53)

and

ustair2 = h0 Ω(t−`)+h1 Ω(t−`−`1)+h2 Ω(t−`−`2) . (54)

According to (52), the time delay term explicitly appears
in the parameters vector. Now, according to (52), Equation
(48) can be re-written as follows:

yF (t) = −Ay
[(n−1)α]
F1 (t) + Bu

[(n−2)α]
F1 (t− `)

+b0 uF2(t− `) + b0 ustair1 − b0 `ustair2 + ς(t) .
(55)

According to (55), the estimation equation is obtained as

ψ(t) = φ(t)θ + ς(t) , (56)

where
ψ(t) = yF (t) , (57)
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θ = [ A; B; b0; b0` ] , (58)

and
φ(t) = [ φ1 φ2 ] , (59)

where

φ1 =
[
−y[(n−1)α]

F1 (t) u
[(n−2)α]
F1 (t− `)

]
, (60)

and
φ2 = [ uF2(t− `) + ustair1 −ustair2 ] . (61)

From (56) and (58), the delay term can be obtained as

` = θ(2n+1,1)
θ(2n,1) , i.e., by dividing the (2n + 1)th term of

the vector θ to the (2n)th term of the vector θ. It is
worth mentioning that because of the filtering procedure
for estimating the coefficients and the delay term of the
delayed fractional order system (39), the white noise e(t)
converted to colored noise. As it is known, the LS method
gives a biased-estimation in the presence of colored noise.
According to this point, the IV method is used in this
paper to obtain a non-biased estimation. The instrument
for the staircase input is expressed as follows:

φIV (t) = [ φIV 1 φIV 2 ] , (62)

where

φIV 1 =
[
−ŷ[(n−1)α]

F1 (t) u
[(n−2)α]
F1 (t− `)

]
, (63)

and

φIV 2 = [ uF2(t− `) + ustair1 −ustair2 ] . (64)

In (63), ŷ is the value of the estimated output y in each
loop. Then, the parameter vector θ in (56) and (58) is
estimated as follows:

θ =
(
(φIV (t))Tφ(t)

)−1
(φIV (t))Tψ(t) . (65)

3.2.2 Saturated Ramp Input

Consider the saturated ramp defined in (25), the Laplace
transform of (25) is given by

U(s) =
h

`1

1

s2
− h

`1

1

s2
e−`1s . (66)

Considering (66) and by taking the Laplace inverse of
UF3(s)e−`s results in

L−1
{
UF3(s)e−`s

}
= L−1

{
h

`1

1

s3
e−`s − h

`1

1

s3
e−(`+`1)s

}
= uramp1 − `uramp2 + `2uramp3 ,

(67)
where

uramp1 =
h

2`1
t2 Ω (t− `)− h

2`1
(t− `1)

2
Ω (t− `− `1) ,

(68)

uramp2 =
h

`1
tΩ (t− `)− h

`1
(t− `1) Ω (t− `− `1) , (69)

and

uramp3 =
h

2`1
Ω (t− `)− h

2`1
Ω (t− `− `1) . (70)

Now, by defining Gu1 as the following vector,

Gu1 = [ uF2(t− `) + uramp1 −uramp2 uramp3 ] , (71)

the regression vector and the parameter vector of the
estimation equation (56) are respectively equal to

φ(t) =
[
−y[(n−1)α]

F1 (t) u
[(n−2)α]
F1 (t− `) Gu1

]
, (72)

and
θ =

[
A;B; b0; b0`; b0`

2
]
. (73)

Fig. 2. Schematic for calculation of uF3(t− `) in (76)

Consequently, the delay term can be obtained as ` =
θ(2n+1,1)
θ(2n,1) , i.e., by dividing the (2n+1)th term of the vector

θ to the (2n)th term of the vector θ, or ` = θ(2n+2,1)
θ(2n+1,1) , i.e.,

by dividing the (2n + 2)th term of the vector θ to the
(2n+ 1)th term of the vector θ.
According to the discussion done in the previous subsec-
tion, the instrument for the saturated ramp is expressed
as

φIV (t) =
[
−ŷ[(n−1)α]

F1 (t) u
[(n−2)α]
F1 (t− `) Gu1

]
, (74)

and the vector θ can similarly be obtained from (65).

3.2.3 Filtered Step Input

Consider the filtered step input in (27), for the filtered step
input, the graphical information is used to make the delay
term to be explicitly appeared in the parameters vector
(Narang et al., 2011). In this case, the inverse Laplace
transform of term UF3(s)e−`s (48) is obtained as

L−1
{
UF3(s)e−`s

}
= L−1

{
1

λs+ 1

1

s2
e−`s

}
= uF3(t− `) ,

(75)
where

uF3(t− `) = uF3(t)− ut`+

t∫
t−`

[ut − u(tk)] dtk , (76)

and u(tk) equals

u(tk) =
(

1− e− 1
λ tk
)

Ω(tk) , (77)

in which uF3(t) =
t∫

0

u(t)dt in (76). Also, ut in (76) is the

value of the input signal u(t) at each time instant t. Note
that the value of the constant ut will be changed for each
time instant. For better clarification, according to (76),

consider Area 1 as ut` and Area 2 as
t∫

t−`
[ut − u(tk)] dtk .

These two areas are simultaneously depicted in Fig. 2.
Now, by defining Gu2 as the following equation,

Gu2 = uF2(t− `) + uF3(t) +

t∫
t−`

[ut − u(tk)] dtk , (78)
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and according to (78), the regression vector and the
unknown parameter vector of the estimation equation (56)
are obtained as

φ(t) =
[
−y[(n−1)α]

F1 (t) u
[(n−2)α]
F1 (t− `) Gu2 −ut

]
,

(79)
and

θ = [ A; B; b0; b0` ] , (80)
respectively. Therefore, the delay term can be obtained as

` = θ(2n+1,1)
θ(2n,1) , i.e., by dividing the (2n + 1)th term of the

vector θ to the (2n)th term of the vector θ.
The instrument for the filtered step is expressed as

φIV (t) =
[
−ŷ[(n−1)α]

F1 (t) u
[(n−2)α]
F1 (t− `) Gu2 −ut

]
,

(81)
and the vector θ can similarly be derived from (65).
According to the point discussed at the end of Subsec-
tion 3.2.1, in the proposed identification procedure, the
unknown parameters vector and the delay term are it-
eratively estimated in a loop. The procedure is iterated
until the difference between the last two estimated values
reaches the stopping condition chosen by the designer.
Since there is a delay term in the regression vectors in
(62), (74), (81), and also the filter F (sα) in (41) needs
the denominator coefficients of the transfer function G(s)
in (39), an initial guess is needed for estimation the de-
nominator coefficients and the delay term. If the integer
order model exists, appropriate initial values would be the
denominator coefficients and the delay value of the integer
order model. Generally, by paying attention to the stability
of the filter described in (41), any initial guess can be
practically applied (Narang et al., 2011).

4. SIMULATION RESULTS

To illustrate the effectiveness of the identification methods
proposed in this paper, two fractional order systems are
considered as the following form, i.e., a non-delayed frac-
tional order transfer function G1(s) in (82) and a delayed
fractional order transfer function G2(s) in (83).

G1(s) =
1

s0.5 + 1
. (82)

G2(s) =
1

10 s0.75 + 1
e−6s. (83)

At first, these systems are simulated, and in the next step,
they are identified in a noisy context. For all the discussed
cases, the sample time and the signal to noise ratio are
considered as 1(Sec) and 30, respectively. The integral in
(78) is numerically evaluated, and all the fractional order
integrals and derivatives in all the regression vectors are
evaluated by the numerical approximations proposed in
Podlubny (1998) and Diethelm et al. (2005). During the
identification procedure, the particular assumption is that
the fractional order of the system model is known.

4.1 Staircase Input

For the simulation, the triple staircase input, which is
previously defined in (23), is supposed as

U(s) =
1

s
+

1

s
e−`

′
1s +

1

s
e−`

′
2s , (84)

where `′2 = 2× `′1 = 200 for the non-delayed plant
and `′2 = 2× `′1 = 400 for the delayed system. The
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Fig. 3. The original and the estimated output of the
non-delayed and delayed fractional order systems by
applying the triple staircase input (84)

results of applying this kind of non-ideal step input are
mentioned in Table 1. Also, to show the effectiveness
of the proposed method in identifying the non-delayed
and delayed fractional order systems assumed in (82) and
(83), the original and the estimated system’s output are
simultaneously shown in Fig. 3.

Table 1. The error of estimation, transient time
response (from the beginning to 95 percentage
of the steady-state value), and the values of the
estimated parameters by applying the triple

staircase input (84)

a b ` RMSE IAE

G1(s) 0.9720 0.9746 − 0.0051 1.1263

G2(s) 9.9939 1.0019 5.8076 0.0084 2.0940

4.2 Saturated Ramp Input

In this part of the simulation, the saturated ramp input,
which is previously defined in (66), is considered as

U(s) =
5

150

1

s2
− 5

150

1

s2
e−150s, (85)

in which the saturation level is considered to be equal to 5
and the input is saturated in the time instant t = 150(Sec).
The results of applying this kind of non-ideal step input are
reported in Table 2. Also, the original and the estimated
system’s output are simultaneously illustrated in Fig. 4.

Table 2. The error of estimation, transient time
response (from the beginning to 95 percentage
of the steady-state value), and the values of
the estimated parameters by applying the sat-

urated ramp input (85)

a b ` RMSE IAE

G1(s) 1.0043 1.0034 − 0.0019 0.3790

G2(s) 9.9796 0.9995 5.9189 0.0131 3.4103

4.3 Filtered Step Input

In this subsection, for the simulation, the filtered step
input, which is previously defined in (27), is assumed as

U(s) =
1

7s+ 1

1

s
, (86)
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Fig. 4. The original and the estimated output of the
non-delayed and delayed fractional order systems by
applying the saturated ramp input (85)
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Fig. 5. The original and the estimated output of the
non-delayed and delayed fractional order systems by
applying the filtered step input (86)

in which the filter coefficient λ and the step size h are
assumed to be equal to 7 and 1, respectively. The results of
applying this kind of non-ideal step input are summarized
in Table 3. The original and the estimated system’s output
are simultaneously depicted in Fig. 5.

Table 3. The error of estimation, transient time
response (from the beginning to 95 percentage
of the steady-state value), and the values of the
estimated parameters by applying the filtered

step input (86)

a b ` RMSE IAE

G1(s) 1.0059 1.0020 − 0.0045 0.4980

G2(s) 10.2878 1.0003 6.2734 0.0047 1.0195

5. CONCLUSION

In this paper, due to the usage of the non-ideal step
inputs in practical applications, three non-ideal step in-
puts were used for the identification of non-delayed and
delayed fractional order systems in a general form. For the
identification of non-delayed systems, the fractional order

integral approach was developed, and for the identification
of delayed systems, a fractional order low-pass filter was
used to make the delay term to be explicitly appeared
in the parameters vector. Finally, some numerical sim-
ulations were provided to demonstrate the effectiveness
of the proposed method in estimating the parameters of
fractional order systems, including both non-delayed and
delayed transfer functions.
Simultaneous estimation of the coefficients and the delay
term of unstable delayed fractional order systems using the
non-ideal step inputs can be considered as an interesting
research topic for future work.
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