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Abstract: A new bidirectional decentralized control algorithm for vehicle platoons is proposed,
which guarantees absence of collisions between the vehicles. The algorithm exploits an elegant
parallel between vehicles platoon and chains of interconnected mass-spring-damper systems and
the idea of barrier certificates. Stability and robustness properties of the algorithm are examined.
The results are illustrated by numerical examples, simulating different driving scenarios.

1. INTRODUCTION

Autonomous vehicles and automated driving are recog-
nized as key technologies for future mobility and infras-
tructures of smart cities (Medina-Tapia and Robusté,
2018). One of the classical “benchmark problems” in au-
tomated driving is the design of a cooperative adaptive
cruise control (CACC) algorithm for longitudinal motion
of a vehicle platoon, see, e.g., Xiao and Gao (2010).

Linear CACC algorithms are the most widely studied in
the literature. They range from the simplest predecessor-
follower models of vehicle strings (Herman et al., 1958;
Bender and Fenton, 1970) to more recent algorithms based
on the ideas of decentralized and multi-agent control ap-
plicable to platoons with more general communication
topologies, see, e.g., (Middleton and Braslavsky, 2010;
Ploeg et al., 2014; Zheng et al., 2016; Sabău et al., 2017;
Firooznia et al., 2017). These works focus on establishing
conditions for stability and string stability, that is, atten-
uation of disturbances propagating through the platoon.
While these algorithms ensure asymptotic convergence of
position errors (entailing collision avoidance), it is difficult
to examine the transient dynamics and, in particular, to
prove safety at any time. The same problem exists in
analysis of more advanced algorithms able to cope with
parametric uncertainties (Guo et al., 2016).

CACC algorithms, for which safety at any time can
be proved rigorously, can be divided into three large
classes. The first class is constituted by MPC-based algo-
rithms (Dunbar and Caveney, 2012; Kianfar et al., 2015;
Zheng et al., 2017) that include safety constraints directly
into the optimization problem. The price to be paid is the
necessity to implement complicated optimization solvers
and transmit large amount of data between the vehicles.
Moreover, restructuring the platoon (e.g., adding a new
vehicle), requires re-initialization of the optimization pro-
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cedure. The second approach to collision-avoiding CACC
design is based on analysis of reachability sets (Lygeros
et al., 1998; Kianfar et al., 2013; Alam et al., 2014; Nilsson
et al., 2016; Ligthart et al., 2018), aiming to estimating the
set of initial conditions for which safety can be guaranteed
at all subsequent time instants. The resulting algorithms
are simpler than optimization-based methods, however, in
practice the estimates of safe sets appear to be rather
conservative (Ligthart et al., 2018). The third class of
CACC controllers with guaranteed safety exploits the idea
of barrier functions, which are widely used in multi-robot
coordination algorithms (Tanner et al., 2007; Wang et al.,
2017; Ames et al., 2017; Chen et al., 2018; Ligthart et al.,
2018). Often the barrier function grows unbounded as the
distance between some two robots vanishes (Tanner et al.,
2007); every algorithm providing its boundedness then
automatically ensures absence of collisions.

The contribution of this paper is twofold. First, we point
out an important analogy between linear bidirectional
algorithms for control of vehicle platoons (Barooah et al.,
2009) and the Lagrangian equations for a chain of intercon-
nected heterogeneous spring-damper systems. Second, we
examine a nonlinear algorithm that is obtained by modify-
ing the Lagrangian equations by augmenting the potential
energy with a barrier function that ensures the absence
of collisions. A similar modification of the Lagrangian has
been used, in particular, for continuous approximations of
hybrid mechanical systems (Menini and Tornambe, 2000;
Menini and Tornambe, 2003; Menini et al., 2018). It should
be noticed that the algorithm uses only distances between
adjacent vehicles and a relative velocity of a vehicle with
respect to its predecessor and follower (which can be
measured, e.g., by two radars/lidars, installed in the front
and in the rear of a vehicle). Convergence and robustness
properties of the algorithm are examined; the results are
illustrated by numerical simulations corresponding to dif-
ferent driving scenarios (Mullakkal-Babu et al., 2016).
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2. PROBLEM STATEMENT

We consider a platoon of N vehicles indexed 1 through
N in the upstream direction so that N is the number
of the platoon leader and 1 is the last vehicle of the
platoon, see Fig. 1. In CACC algorithm design, a vehicle
is typically modeled as a third- or second-order linear
control system based on feedback linearization (Swaroop
et al., 1994). The third-order model takes into account
the engine internal dynamics, which causes a discrepancy
between the commanded and actual accelerations (Ploeg
et al., 2014; Zheng et al., 2016). Following Swaroop et al.
(1994); Dunbar and Caveney (2012); Barooah et al. (2009);
Ames et al. (2017), we confine ourselves to a simpler
point-mass (double integrator) dynamics that neglects the
engine dynamics:

ai = v̇i = ẍi =
1

mi
ui,

where xi, vi, ai, ui denotes the position, velocity, accelera-
tion and the control input (force) on the ith vehicle.

1
u1

2
u2 · · · N

uN

x1

x2

xN

Fig. 1. Platoon of N vehicles.

We introduce two sets of parameters: for each pair of
adjacent vehicles (i, i+ 1) let `i,i+1 > 0 stand for the safe
distance which should be kept at any time and ri,i+1 ≥
`i,i+1 denote the desired distance 1 .

The algorithm proposed below assumes that

• each vehicle i (except for the leader i = N) knows the
distance to and relative velocity of the predecessor;
• each vehicle i (except for the last one i = 1) knows

the distance to and relative velocity of the follower;
• the leader knows the desired platoon’s speed vd ≥ 0.

Notice that if vehicles are equipped with front and rear
radars or a 360-degree vision radar, the proposed algo-
rithm can be implemented without communication among
the vehicles which, however, can be useful for detecting
sensor faults and providing sensor redundancy. If a car is
equipped only by a front radar, an undirected communi-
cation follower-predecessor is necessary.

The purpose of the algorithm is to provide safety, distance
policy and the predefined speed of the platoon

xi+1(t)− xi(t) > `i,i+1, ∀i = 1, . . . , N − 1, t ≥ 0, (1)

lim
t→∞

(xi+1 − xi(t)) = ri,i+1, ∀i = 1, . . . , N − 1, (2)

lim
t→∞

vi(t) = vd, ∀i = 1, . . . , N. (3)

1 For simplicity, we consider here a constant spacing policy: the
desired distance between two adjacent vehicles is independent of their
velocities. The algorithm examined below can be modified to a more
general situation where ri,i+1 = r0i,i+1 + hivi, where r0i,i+1 is the
standstill distance and hi > 0 is the time headway constant.

The design of the algorithm (Section 4) is inspired by an
analogy between a vehicle platoon and a mechanical mass-
spring-damper system, described in Section 3.

3. A MASS-SPRING-DAMPER SYSTEM AND A
LINEAR PLATOONING ALGORITHM

Consider a system (Fig. 2) constituted by N masses
m1,m2, . . . ,mN that are pairwise connected by springs
and dampers whose stiffness and damping coefficients are
ki,i+1 > 0 and di,i+1 > 0 and the lengths at rest are
ri,i+1 > 0. Mass mN is influenced by external force u(t).

m1 m2

k1,2

d1,2

k2,3

d2,3

· · ·
kN−1,N

dN−1,N

mN
u

x1

x2

xN

Fig. 2. A mass-spring-damper system.

Introducing the total kinetic energy T , total potential
energy U and the Rayleigh dissipation function of the
system D (Goldstein et al., 2002)

T (v1, . . . , vN ) = 1
2

N∑
i=1

miv
2
i ,

U(x1, . . . , xN ) = 1
2

N−1∑
i=1

ki,i+1(xi+1 − xi − ri,i+1)2,

D = 1
2

N−1∑
i=1

di,i+1(vi+1 − vi)2,

the standard Euler-Lagrange equations of motion are

v̇1 =
k1,2
m1

(x2 − x1 − r1,2) +
d1,2
m1

(v2 − v1) , (4a)

v̇i =
ki,i+1

mi
(xi+1 − xi − ri,i+1) +

di,i+1

mi
(vi+1 − vi)

+
ki−1,i

mi
(xi−1 + ri−1,i − xi) +

di−1,i

mi
(vi−1 − vi) , (4b)

(i = 2, . . . , N − 1)

v̇N =
kN−1,N

mN
(xN−1 + rN−1,N − xN )

+
dN−1,N

mN
(vN−1 − vN ) + 1

mN
u, (4c)

The parallel with mechanics allows to deduct the natural
fact: in the absence of external force, the springs return
to their rest positions and the oscillation of masses decays
due to the dissipation of energy. In view of the system’s
linearity, the properties (6) will hold also for any decaying
force (limt→+∞ u(t) = 0). In particular, these properties
are preserved by a simple proportional controller main-
taining the desired speed of the “leading” mass

u(t) = σ(vd − vN (t)). (5)

Mathematically, these properties are formulated as follows.

Theorem 1. Let u = 0. Then, the trajectories of system (4)
are such that, for i = 1, . . . , N − 1,

lim
t→∞

vi+1(t)− vi(t) = 0, (6a)

lim
t→∞

xi+1(t)− xi(t) = ri,i+1. (6b)
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Under the speed control policy (5), conditions (6) hold
and, additionally, limt→∞ vi(t) = vd, i = 1, . . . , N .

Theorem 1 inspires the following linear CACC algorithm
for a platoon of vehicles, providing the conditions (2), (3)

u1 = k1,2 (x2 − x1 − r1,2) + d1,2 (v2 − v1) ,

ui = ki,i+1 (xi+1 − xi − di,i+1) + di,i+1 (vi+1 − vi)
+ ki−1,i (xi−1 + ri−1,i − xi) + di−1,i (vi−1 − vi) ,

uN = kN−1,N (xN−1 + rN−1,N − xN )

+ dN−1,N (vN−1 − vN ) + σ(vd − vN )

(7)

where di,i+1 > 0, ki,i+1 > 0, i = 1, . . . , N − 1, and σ > 0.

Obviously, the controller cannot guarantee safety, since the
equations do not involve safe distances `i,i+1.

4. PLATOONING ALGORITHM WITH
GUARANTEED SAFETY

A natural method allowing to guarantee the absence of
collisions is to augment the potential energy with the
barrier function that grows without bound when the
solution leaves the safety set (some distance xi+1 − xi,
or the length of the ith spring, tends to the minimal value
`i,i+1); see, e.g., Menini and Tornambe (2000).

Assume that an additional nonlinear spring is added
between the bodies having mass mi and mi+1, i =
1, . . . , N − 1, so that the total potential energy of the
mechanical system is augmented as follows:

Ue(x) = U(x) + 1
2

N−1∑
i=1

κi,i+1

(xi+1 − xi − `i,i+1)2
, (8)

where κi,i+1 are strictly positive constants.

Remark 1. Note that the function 1
2

∑N−1
i=1

κi,i+1

(xi+1−xi−`i,i+1)2

that is used in (8) to augment the potential energy of the
mechanical system can be in principle substituted by any
barrier function Ψ(x) that is such that Ψ(x) ≥ 0 for all
x ∈ Rn such that xi+1 − xi > `i,i+1 ∀i = 1, . . . , N − 1 and
Ψ(x)→ +∞ if xi+1−xi → `i,i+1 for some i. The choice of
barrier function (8) simplifies analysis of equilibria points.

Replacing U(x) with the augmented potential energy
Ue(x), the Lagrange equations become as follows

v̇1 =
k1,2
m1

(x2 − x1 − r1,2) +
d1,2
m1

(v2 − v1)

− κ1,2

m1

1
(x2−x1−`i,i+1)3

,

v̇i =
ki,i+1

mi
(xi+1 − xi − ri,i+1) +

di,i+1

mi
(vi+1 − vi)

+
ki−1,i

mi
(xi−1 + ri−1,i − xi) +

di−1,i

mi
(vi−1 − vi)

+
κi−1,i

mi

1
(xi−xi−1−`i,i−1)3

− κi,i+1

mi

1
(xi+1−xi−`i,i+1)3

,

v̇N =
kN−1,N

mN
(xN−1 + rN−1,N − xN )

+
dN−1,N

mN
(vN−1 − vN )

+
κN−1,N

mN

1
(xN−xN−1−`N,N−1)3

+ 1
mN

u.

(9)

Combining them with the speed controller (5), one arrives
at the following platooning algorithm

u1 = k1,2 (x2 − x1 − r1,2) + d1,2 (v2 − v1)

− κ1,2

(x2−x1−`i,i+1)3
,

ui = ki,i+1 (xi+1 − xi − ri,i+1) + di,i+1 (vi+1 − vi)
+ ki−1,i (xi−1 + ri−1,i − xi) + di−1,i (vi−1 − vi)
+

κi−1,i

(xi−xi−1−`i,i−1)3
− κi,i+1

(xi+1−xi−`i,i+1)3
, (1 < i < N),

uN = kN−1,N (xN−1 + rN−1,N − xN ) +

+ dN−1,N (vN−1 − vN ) +
κN−1,N

(xN−xN−1−`N,N−1)3
+

+ σ(vd − vN ),
(10)

As a consequence of the potential function’s modification,
the minima of the potential energy for each spring are
shifted and is no longer achieved at the point of rest
(ξi = xi+1−xi−ri,i+1 = 0), but corresponds to the unique
root ξ = ξ0i > `i,i+1 − ri,i+1 of the algebraic equation

ζi(ξ) := κi,i+1 + ξki,i+1 (−ri,i+1 + `i,i+1 − ξi) 3 = 0. (11)

To prove the existence and uniqueness of the root ξ0i , it
suffices to introduce the new variable θ = ξ+ri,i+1−`i,i+1

and note that (11) can be rewritten as

−ki,i+1θ
4 + ki,i+1(ri,i+1 − `i,i+1)θ3 + κi,i+1 = 0 (12)

Due to the Descartes’ rule of sign (Sturmfels, 2002), (12)
has exactly one positive root θ > 0 and exactly one
negative root θ < 0. The minimum point of the potential
function thus corresponds to the unique real root of (11)
such that ξ > `i,i+1 − ri,i+1 (or, equivalently, xi+1 − xi >
`i,i+1). Notice that for κi,i+1 = 0 this root is, obviously,
ξ = 0 (the situation of Theorem 1). Using the implicit
function theorem, it can be easily shown that the root ξ0i
continuously depends on κi,i+1 ≥ 0 and, in particular,

ξ0i −−−−−−→
κi,i+1→0

0.

Remark 2. Similar to Menini et al. (2018); Menini and
Tornambe (2003), it can be shown that the system aris-
ing as a limit κi,i+1 → 0 corresponds to the hybrid
(continuous-discrete) dynamics with elastic (energy- and
momentum-preserving) collisions between the masses. In
the absence of collisions the evolution of the system coin-
cides with (4).

We are now ready to formulate our main result.

Theorem 2. Assume that the initial distances between
the vehicles are safe xi+1(0) − xi(0) > `i,i+1. The algo-
rithm (10) guarantees safety (1), maintains the desired
speed (3) and provides a “relaxed” distance policy

xi+1(t)− xi(t)− ri,i+1 −−−→
t→∞

ξ0i ,

Here ξ0i is the root of (11) such that ξ0i > `i,i+1 − ri,i+1.

Remark 3. As the distance between two vehicles i and
i + 1 become unsafe, the barrier function grows, which
inevitably leads to large values of the corresponding force.
In practice, actuator limits have to be taken into account
|ui(t)| ≤ ui,max. Obviously, with limited actuators it is
impossible to provide safety for all initial configurations.
Nonetheless, the inequality

We(ξ(t), v(t)) ≤We(ξ(0), v(0))

can be used to provide an explicit (yet conservative)
estimate of the initial data region, starting in which no
actuator constraint is saturated.
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5. EFFECTS OF DISTURBANCES

The main objective of this section is to characterize the
effect of disturbances on the behavior of the closed-loop
system with the control law given in (10). Toward this
end, consider the following lemma.

Lemma 1. Let the force of the ith vehicle be affected by
an additive bounded disturbance δi, i.e., the actual force
pulling the ith vehicle is ūi = ui + δi, with |δi(t)| ≤ ∆i

for some ∆i > 0, i = 1, . . . , N . Then the algorithm (10)
preserves safety (1) for any “safe” initial condition.

An important question traditionally addressed in the en-
gineering literature on vehicle platooning is the effect
of string instability, which can roughly be characterized
as amplification of the disturbances as they propagate
through the platoon in upstream and downstream di-
rections. For nonlinear platoons, the string stability is
usually defined in time domain, e.g. as the input-to-state
stability in Lp norm (Dolk et al., 2017) and its analysis
requires special Lyapunov functions. At the same time, if
the disturbance bounds ∆i are sufficiently small, as well
as the parameters κi,i+1, the platoon dynamics can be
approximated by the following linear system

v̇1 = ẍ1 =
k1,2
m1

(x2 − x1 − r1,2) +
d1,2
m1

(v2 − v1) + δ̃1,

v̇i = ẍi =
ki,i+1

mi
(xi+1 − xi − ri,i+1) +

di,i+1

mi
(vi+1 − vi) +

+
ki−1,i
mi

(xi−1 − xi + ri−1,i) +
di−1,i
mi

(vi−1 − vi) + δ̃i,

v̇N = ẍN =
kN−1,N
mN

(xN−1 − xN + rN−1,N ) +

+
dN−1,N
mN

(vN−1 − vN ) + δ̃N .

(13)

Here the new “disturbance” δ̃i absorbs the actual distur-
bance δi and the nonlinear terms, caused by the poten-
tial function. For the linear system (13), string stability
can be examined in the frequency domain. The mini-
mal frequency-domain string stability means the uniform
boundedness (in H∞-norms) of the transfer function from

δ̃i to the position errors of all vehicles ξj , j = 1, . . . , N − 1
(notice that disturbances propagate in both upstream and
downstream directions). Based on extensive simulations,
we have a conjecture that the string stability can be proved
for homogeneous platoons where m1 = . . . = mN = m and
ki,i+1 = k, di,i+1 = d. Notice that often the control input
of the vehicle is acceleration rather than force (Hao and
Barooah, 2013) and then one can assume that mi = 1, so
that the homogeneity can always be provided.

Conjecture. For a homogeneous platoon, the transfer
functions from δ̃i to the position errors ξj = xj+1 −
xj − rj,j+1 and the velocity error ξ̇j are uniformly (in
N and j = 1, . . . , N − 1) bounded in the H∞-norm.
In other words, the maximal amplification gain for each
disturbance does not grow with the size of the platoon N .

To illustrate the conjecture, we show the Bode diagram
of transfer functions from δ̃N to ξ1, computed for the
parameters k = d = m and N = 2, . . . , 40 (Fig. 3).

0.001 0.01 0.1 1

-50

-40

-30

-20

-10

Fig. 3. Transfer functions from δ̃N to ξ1 (frequency re-
sponse) for N = 2, . . . , 40.

Our conjecture is consonant with the result from Hao
and Barooah (2013) stating that in a homogeneous pla-

toon (13) the transfer function from δ̃N to the sum of
position errors

N−1∑
i=1

ξi = xN − x1 − (r1,2 + r2,3 + . . .+ rN−1,N )

has asymptotics O(N) as N →∞.

6. NUMERICAL SIMULATIONS

In this section, we simulate the behavior of a homogeneous
platoon (namely, the dynamics of position errors, velocities
and accelerations of the vehicles) of N = 6 vehicles under
the control algorithm (10) with the following parameters:
1) the desired distances are ri,i+1 = 10 m; 2) the safe
distances are `i,i+1 = 3 m; 3) the initial configuration
of the platoon is such that xi+1(0) − xi(0) = 20 m (the
positions are safe but the distance has to be increased)
and vi(0) = 20 m/s for all vehicles; 4) the controller’s
parameters are chosen so that

ki,i+1/m = 1, di,i+1/m = 1, κi,i+1/m = 10−3, σ = 2.9

where m is the mass of each vehicle.

Numerical simulations have been carried for three stan-
dard driving scenarios: normal highway driving, stop-and-
go driving, and emergency braking (Mullakkal-Babu et al.,
2016). The three scenarios differ by the profiles of the
desired speed vd(t) (the controller, as usual, is designed
to keep a constant predefined speed, however, can be used
for the speed that is slowly changing, the variations in the
speed are interpreted as the disturbances).

In all experiments, we display the position errors (the
red dashed line corresponds to the minimal safe distance
ξ = li,i+1 − ri,i+1 = −7 m), the vehicle speed profiles
and the desired speed and the vehicle accelerations. In all
three scenarios, the controller exhibits string stability in
its engineering meaning: the position errors are ordered

|ξ1(t)| ≤ |ξ2(t)| ≤ . . . ≤ |ξN (t)|.

Normal driving (Fig. 4). The first scenario corresponds
to a gentle increase and decrease of the desired speed,
corresponding to normal highway driving. The speed is
varying slowly between 30 m/s and 15 m/s. In this experi-
ment, the nonlinear terms are very small, since all pairwise
distances are not less than 7 m. After a short transient
period, accelerations of all vehicles are within ±0.5 m/s2.
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Fig. 4. The normal highway driving scenario.

Stop-and-go (Fig. 5). This scenario corresponds to a
dense traffic, where the platoon has to decrease its ve-
locity to a full stop and then accelerate again. During
braking, the distance between the leader and its prede-
cessor (vehicle 5) comes to the critical value 3m. The
accelerations, after a short starting period, stay between
−2 and 2.5 m/s2. Notice that our controller does not use
the information about the predecessor’s acceleration, so in
the case changing of velocities one observes overshoots in
the velocity and position tracking.

0 20 40 60 80 100 120

-5

0

5

0 20 40 60 80 100 120

0

20

40

0 20 40 60 80 100 120

-10

0

10

Fig. 5. The stop-and-go scenario.

Emergency braking (Fig. 6). In this scenario the
platoon brakes heavily from the initial speed to full stop.
In this experiment, two distances (between the leader and
vehicle 5, between vehicle 5 and vehicle 4) come to the
critical value. Due to the influence of barrier function, all
distances are kept safe, however, the accelerations needed
for this are quite large in absolute value (e.g. vehicle
5 deceleration reaches (−4.5) m/s2, although the leader
accelerates in order to keep the distance safe).

CONCLUSION

In this paper, we examine a nonlinear algorithm for vehicle
platooning, which is inspired by an analogy between a pla-

0 20 40 60 80 100 120

-6

-4

-2

0

2

4

0 20 40 60 80 100 120
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10

20

0 20 40 60 80 100 120

-8

-6

-4

-2

0

2

4

Fig. 6. The emergency braking scenario.

toon and a mass-spring-damping system and is obtained
from the usual Lagrangian equations via augmenting the
potential energy with a barrier function. By allowing for
bidirectional communication, such an algorithm guaran-
tees convergence to a desired formation of the agents while
avoiding collisions during the transient behavior. Robust-
ness properties of such an algorithm have been studied by
means of an electrical equivalent system.

One of the key advantage of the proposed control technique
over state-of-the-art CACC algorithms is its simplicity.
In fact, in order to implement the control law (10) the
ith vehicle just need to measure the relative distance
and velocity of its predecessor and of its follower. Then,
the applied control input is a simple rational function
of these quantities. However, one of the disadvantages
of the proposed technique is that it does not account
for the saturation naturally occurring when dealing with
real vehicles. Overcoming such a limitation will be one of
objectives of our future work.
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Sabău, Ş., Oară, C., Warnick, S., and Jadbabaie, A.
(2017). Optimal distributed control for platooning via
sparse coprime factorizations. IEEE Transactions on
Automatic Control, 62(1), 305–320.

Sturmfels, B. (2002). Solving systems of polynomial equa-
tions. American Mathematical Society.

Swaroop, D., Hedrick, J., Chien, C., and Ioannou, P.
(1994). A comparision of spacing and headway con-
trol laws for automatically controlled vehicles. Vehicle
System Dynamics, 23(1), 597–625.

Tanner, H.G., Jadbabaie, A., and Pappas, G.J. (2007).
Flocking in fixed and switching networks. IEEE Trans-
actions on Automatic Control, 52(5), 863–868.

Wang, L., Ames, A.D., and Egerstedt, M. (2017). Safety
barrier certificates for collisions-free multirobot systems.
IEEE Transactions on Robotics, 33(3), 661–674.

Xiao, L. and Gao, F. (2010). A comprehensive review
of the development of adaptive cruise control systems.
Vehicle System Dynamics, 48(10), 1167–1192.

Zheng, Y., Li, S.E., Li, K., Borrelli, F., and Hedrick, J.K.
(2017). Distributed model predictive control for het-
erogeneous vehicle platoons under unidirectional topolo-
gies. IEEE Transactions on Control Systems Technol-
ogy, 25(3), 899–910.

Zheng, Y., Li, S.E., Wang, J., Cao, D., and Li, K. (2016).
Stability and scalability of homogeneous vehicular pla-
toon: Study on the influence of information flow topolo-
gies. IEEE Transactions on Intelligent Transportation
Systems, 17(1), 14–26.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15449


