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Abstract: We present a method for data-based estimation of the H2-norm of a linear time-
invariant system from input-output data in a probabilistic setting by employing the recent
advances in Gaussian process system identification using stable-spline kernels. Advantages of
this starting point include that the norm can be estimated for the continuous-time system
and over infinite horizon, even though only a finite number of measurements are available. We
approximate the H2-norm distribution as Gaussian, whose expectation can even be obtained
analytically, while we use a numerical scheme based on Gaussian process quadrature for the
variance. Not only do we utilize the posterior variance of the Gaussian process to derive an error
estimate for the H2-norm, but also to tune the estimation by optimizing the input sequence.
The performance of the developed scheme is thoroughly evaluated in simulation.

Keywords: Nonparametric methods, Bayesian methods, Data-based control, Identification for
control, Input and excitation design

1. INTRODUCTION

Given the increasing complexity of technical systems, sys-
tem modeling for control design ab initio becomes increas-
ingly difficult and requires extensive experience. Therefore,
data-based methods for system analysis and control design
grow more important and are facilitated by the increased
computing throughput of modern processors. Control de-
sign and analysis without system models can instead be
based on energy-related system properties such as H2-
norm, operator gain (equivalent to H∞-norm for linear
time-invariant (LTI) systems) and passivity. A benefit of
energy-based methods for stability analysis is that they
generalize to networks of interconnected systems and, in
the case of operator gain and passivity, to nonlinear sys-
tems.

A straightforward path to data-based estimation of these
properties is applying standard system identification to
estimate a model from input-output data and then apply-
ing a method for computing the desired system property
from the identified model. Efficient methods for computing
system properties from state-space and transfer function
models include e.g., Hara et al. (2010) and Belur and
Praagman (2011). However, this path to data-based es-
timation has the disadvantage of fitting the dynamics to a
parametric model, where the accuracy depends on how
well the dynamics are reflected by the selected model
subspace.

Therefore, there has been an increasing interest in devel-
oping non-parametric data-based estimation schemes for
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system properties. Interesting examples of non-parametric
methods include the ones developed by Wahlberg et al.
(2010), Müller and Rojas (2019), Romer et al. (2019) and
Tu et al. (2018). The disadvantages of these methods are
that while the non-parametric methods successfully avoid
having to impose naturally uncertain structure on the
system dynamics, they provide no way to make use of
prior information on the system, estimate properties over
finite horizon and Wahlberg et al. (2010); Müller and Rojas
(2019) additionally require sequential measurements. Fur-
thermore, they are mostly limited to discrete-time system
dynamics.

In this work we provide a method for H2-norm estimation
that overcomes these disadvantages while still being non-
parametric by making use of the recent advances in Gaus-
sian process (GP) system identification with stable-spline
kernels, paving the way for a future extension to H∞-
norm estimation. Additionally we make use of an inherent
property of Gaussian process regression (GPR), namely
the posterior variance, which has yet been only rarely
exploited in GP system identification. The posterior vari-
ance does not only provide a measure of (un)certainty, but
can also be used for optimal input design. By minimizing
over the generalization error, which is defined in terms of
the posterior variance, the H2-norm estimation as well as
the respective variance can be significantly improved. We
verify the developed methods in simulation on randomly
generated LTI systems.

2. PROBLEM DESCRIPTION

We consider stable causal strictly proper SISO LTI sys-
tems, where the H2-norm, which is the main focus of this
work, is defined by e.g., Toscano (2013) as

||G||22 =

∫ ∞
0

g2(t) dt =
1

2π

∫ ∞
−∞
|G(jω)|2 dω. (1)
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The H2-norm captures both the transient response of the
system, as it is the L2-norm of the impulse response, and
the response to white noise. The H2-norm equivalent to
the small gain theorem, called the mean-square small gain
theorem, is of importance in stochastic control, where a
sufficient condition for closed-loop mean-square asymp-
totic stability is based on the H2-norm of the single agents
together with knowledge on the stochastic uncertainty
variance on the channels, see e.g., Nandanoori et al. (2018).

Due to its relevance in control theory, we hence consider
the problem of estimating the H2-norm from a finite
sequence of N input-output data points given by

(tk, yk), k ∈ [0, . . . , N ],

u(t), t ∈ [0, tN ],

where the complete input history u(t) is assumed to be
known and yk is the measurement of the system output
at time tk. The measurement is assumed to be subject to
white zero-mean additive Gaussian noise with variance σ2

e .
We proceed with preliminaries on GP system identification
that form the foundation of this work.

3. PRELIMINARIES

Let the convolution operator for an input u(t) to the
output at time tk for a causal impulse response be denoted

yk = Lk[g] =

∫ tk

0

u(tk − τ)g(τ) dτ, (2)

where the input is left out of the convolution operator to
simplify notation. In the setting of system identification
via GPs, the impulse response is considered a GP. To
distinguish from the deterministic impulse response, we
denote the impulse response Gaussian process (IRGP) as
h(t). See e.g., Rasmussen and Williams (2006) for a com-
prehensive treatment of GPR for general function estima-
tion from data. The GP approach to system identification
follows in the same way as in common GPR, with the
IRGP considered a priori to be a zero-mean GP with
covariance kernel κ(s, t). The difference to common GPR is
that the impulse response is not measured directly, rather
its convolution with the input. As convolution is a linear
operator, the output is also Gaussian with covariance as
in Pillonetto et al. (2014), namely

O(ti, tj) = Li[Lj [κ(·, ·)]]
and the output covariance matrix for measurement time
points t has entries Oij = O(ti, tj), for i, j ∈ [1, . . . , N ]
with N being the number of measurements. The expected
value and variance of the posterior are then given by

E[h(t)|y] = O(t, t)Z−1y,

Var(h(t)|y) = λκ(t, t)− λO(t, t)Z−1O(t, t),
(3)

where O(t, t) is the covariance between the IRGP and

output, Z = O(t, t) +
σ2
e

λ I is the measurement covariance,

λ is a scaling factor on the covariance kernel and σ2
e is

the measurement noise variance. The problem regarding
selection of hypothesis space in traditional system iden-
tification is thus replaced by selection of the covariance
kernel, which has been a recent research topic. The results
are summarized in e.g., Pillonetto et al. (2014), and the
main result is a class of kernels for system identification

called stable-spline kernels. The first- and second-order
stable-spline kernels are given by

κ1(s, t) = e−βmax(s,t),

κ2(s, t) =
1

2
e−β(s+t+max(s,t)) − 1

6
e−3βmax(s,t),

(4)

where β is a hyperparameter. Hyperparameters can be
selected in numerous ways, the most common of which
is marginal likelihood maximization which is also summa-
rized in Pillonetto et al. (2014). In the next section we
continue by obtaining the probabilistic H2-norm in terms
of the IRGP.

4. PROBABILISTIC H2-NORM

We define the random squared H2-norm based on the
definition of the H2-norm (1) as

Υ =

∫ ∞
0

h2(t) dt, (5)

where h(t) is the IRGP. Note that this definition is for
convenience in notation, we only consider expected value
and variance of the norm, who both exist for stable-
spline kernels. Care needs to be taken to ensure square
integrability when using other kernels. As (5) is a non-
linear transform of h(t), the distribution of the random
H2-norm is not Gaussian. Finding the distributions of
nonlinearly transformed Gaussian random variables ana-
lytically is generally intractable. Therefore the distribution
is commonly approximated by moment matching a Gaus-
sian. Moment matching has the property of minimizing
the Kullback-Leibler divergence defined in e.g., Rasmussen
and Williams (2006). The K-L divergence is zero iff the
probability density functions are equal, and can loosely be
interpreted as a measure on how similar two distributions
are. Hence, approximating the distribution of a nonlinearly
transformed random variable as Gaussian by matching
the expected value and variance makes the approxima-
tion optimal in the sense of Kullback-Leibler divergence.
Starting from Equation (5) and using the linearity of the
expectation operator, the expected value of Υ is

E[Υ] = E
[∫ ∞

0

h2(t) dt

]
=

∫ ∞
0

E[h2(t)] dt (6)

and by the definition of covariance, the variance of Υ is

Var(Υ) = E [(Υ− E[Υ])(Υ− E[Υ])]

=

∫ ∞
0

∫ ∞
0

Cov(h2(s), h2(t)) ds dt.
(7)

4.1 Analytic moment evaluation

We now consider evaluating the moments from the pre-
vious section when the GP h(t) is the posterior impulse
response from Equation (3). While nonlinear transforms
of GPs are in general analytically intractable, here we
exploit the fact that in this case the nonlinear transform
is a square of the Gaussian process and the structure of
the kernel to obtain the expected value of the H2-norm
analytically from the posterior IRGP.

Proposition 1. The expected H2-norm for a system de-
scribed by an IRGP is given by

E[Υ|y] =

∫ ∞
0

O(t, t)WO(t, t) + λκ(t, t) dt (8)

where W = Z−1yyTZ−T − λZ−1.
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Proof. To arrive at an expression for (6), the relation
between variance and first and second moments as

Var(X) = E[(X − E[X])(X − E[X])] = E[X2]− E[X]2

is employed, where X is a random variable. Rearranging
and plugging into (6) and inserting the posterior impulse
response (3) yields

E[Υ|y]=

∫ ∞
0

E[h(t)|y]2 + Var(h(t)|y) dt

=

∫ ∞
0

O(t, t)(Z−1yyTZ−T−λZ−1)O(t, t)+λκ(t, t) dt.

�

Expanding and changing the orders of integration and
summation, the expression becomes a double sum over
convolutions as

E[Υ|y]=

N∑
i,j=1

WijLi

[
Lj

[∫ ∞
0

κ(t, ·)κ(t, ·) dt
]]

+λ

∫ ∞
0

κ(t, t)dt

where Li[·] is the convolution operator as defined in
Equation (2). Hence, if the integral in the above expression
can be attained analytically, the mean H2-norm of the
posterior can be computed exactly. This is the case for
stable-spline kernels as they are linear combinations of
decaying exponential functions. As covariance is not a
linear operator, to the best of our knowledge there is no
similar counterpart for evaluating the H2-norm variance,
which motivates the venture into numerical integration
presented in the next section.

4.2 Gaussian process quadrature moment evaluation

The goal of this section is to provide a numerical method
for computing the H2-norm variance (7) using Gaussian
process quadrature (GPQ). GPQ is an application of
GPR used to obtain integral approximations of functions
from pointwise evaluations, see e.g., the foundational work
by O’Hagan (1991). This scheme exploits the fact that
integration is a linear operator and linearly transformed
GPs are still Gaussian, which makes it possible to obtain
a posterior distribution of the integral value similar to (3).
In the next subsections we first obtain evaluations of the
integrand and then use them to obtain an estimate of the
H2-norm variance.

Obtaining integrand evaluations Obtaining evaluations
of Cov(h2(s), h2(t)) from the first and second order mo-
ments can be achieved as detailed by Willink (2005) as

Cov(h2(s), h2(t)) = E[h2(s)h2(t)]− E[h2(s)]E[h2(t)]

= 4Cov(h(s), h(t))E[h(s)]E[h(t)]

+ 2Cov(h(s), h(t))2.

Assume that the function Cov(h2(s), h2(t)) decays to es-
sentially zero at time tf such that a time partition π : t×t
ending at tf as 0 = t0 < t1 < . . . < tN = tf , t =
[t0, . . . , tN ] can be made without losing information for
time larger than tf . Then evaluations of the required
moment of the posterior at a grid point (tn, tm) in π
is achieved as o(n−1)N+m = Cov(h2(tn), h2(tm)) where
o(n−1)N+m are entries in the vector o of integrand eval-
uations on the grid π.

Fig. 1. Evaluations of Cov(h2(s), h2(t)) on the grid t ×
t and the regression for the two-dimensional input
domain.

H2-norm variance Having obtained evaluations o at
domain points π : t × t of Cov(h2(s), h2(t)) we proceed
to use GPQ to approximate the integral over the domain.
To this end we utilize a prior of the form

κc(s, t) = κ(s1, t1)κ(s2, t2),

Kc = K ⊗K,
where s, t ∈ R2

+, K is the kernel matrix for evaluations
along one dimension of the domain, ⊗ is the Kronecker
tensor product and Kc is the compound kernel formed
by combining two kernels, in this case identical ones for
each of the two input domain dimensions, since covariance
functions are symmetric.

Remark 1. The kernel can be freely chosen, however a
natural choice is the same stable-spline kernel that was
used in the system identification step. This is since the
covariance of the squared IRGP also eventually decays to
zero, as stable systems are considered.

Suitable prior hyperparameters can be selected in numer-
ous ways, for example by marginal likelihood maximiza-
tion in a similar fashion as in the system identification
step. Even though the evaluations are indeed evaluations
and not measurements, setting a small but significant
evaluation error variance σ2

e is beneficial as it improves the
condition of Kc. An example of an estimated covariance
function is depicted in Figure 1. Note that the depiction
is provided only as an explanatory device. In the H2-norm
variance computation, the estimated covariance function
is not calculated explicitly but is only used implicitly in
the regression.

The value of the posterior integral is computed similarly
to e.g., O’Hagan (1991) as

kc(t) =

∫ ∞
0

κ(s, t) ds⊗
∫ ∞

0

κ(s, t) ds,

Var(Υ|o,y) ≈ kTc (t)(Kc +
σ2
e

λ
I)−1o,

where kc is the covariance between the integrand eval-
uations and prior integral value. The H2-norm variance
is considered to be conditioned on both the integrand
evaluations and on the system output, as it is the posterior
H2-norm variance and the integrand evaluations introduce
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error in the variance estimate. An advantage of GPQ
is that the variance of the integral resulting from the
quadrature can be evaluated, which could be employed
as a measure of how well the quadrature estimates the
H2-norm variance or for tuning the quadrature scheme.
However, these possibilities were not implemented in this
work as the quadrature variance was generally small.

5. EMPLOYING THE INHERENT ERROR
ESTIMATE

One of the benefits of GPR is that it inherently provides
an assessment of the expected error through the posterior
variance. In this section we proceed to make use of the
posterior variance in GP system identification in general
and specifically when using the IRGP to obtain the H2-
norm as in the previous section. Due to the nonlinear
relationship between the IRGP and probabilistic H2-norm
(Υ), it is not trivial to directly make use of the H2-norm
variance to optimize or tune the estimation. Therefore, in
the following sections, we first define a proximate goal, the
generalization error, that we use to achieve the ultimate
goal of reducing the H2-norm estimate error. We define
the generalization error for an IRGP in a similar way as
for common GPR.

Experiment design in the system identification setting
concerns designing experiments such that the maximal
amount of information about the system is extracted given
limited resources such as input energy and measurements.
Here we focus specifically on optimal input design. Classi-
cal schemes are reviewed by e.g., Mehra (1974). Examples
of optimal input design for discrete-time GP system iden-
tification include Fujimoto and Sugie (2018) and Mu and
Chen (2018).

5.1 Generalization error

The generalization error is defined in e.g., Rasmussen and
Williams (2006) as the expected squared error between
a function drawn from a prior and the predicted mean
averaged over some prediction domain. In the case of an
IRGP, assuming h(t) is drawn from a zero mean GP with
covariance kernel κ(s, t), the expected squared error of the
impulse response at time t is

E[(h(t)−OT (t)Z−1y)2] = λκ(t, t)− λOT (t)Z−1O(t),

if the regression is correctly specified, meaning the prior is
the actual GP from which the impulse response is drawn.
We recognize this as the posterior variance at t. A common
definition of the generalization error is an average of the
error over some interval of t. In our case, a natural choice
seems to be integrating from 0 to ∞ as stable systems
are considered, whose impulse responses are integrable.
The generalization error for correctly specified regression
is then

ε(t) =

∫ ∞
0

λκ(t, t)− λOT (t, t)Z−1O(t, t)︸ ︷︷ ︸
Var(h(t))

dt (9)

where t is the vector of time points for the measurements.
This expression looks familiar, and is indeed part of the
mean H2-norm computation where E[h(t)]2 + Var(h(t)) is
integrated, cf. Equation (8). The machinery for computing
the generalization error for a fixed set of measurement time
points is hence already in place.

5.2 Relation to H2-norm variance

Having defined the generalization error for an IRGP, we
proceed to derive the relation between the generalization
error and the H2-norm variance (7), i.e. how uncertainty
in the IRGP impacts the uncertainty of the H2-norm
estimate. Intuitively, if the assumptions made are fulfilled,
the only way for uncertainty to enter theH2-norm estimate
is through the IRGP posterior variance, hence there should
be some link between them. The relation is stated in the
following proposition.

Proposition 2. For an IRGP with stable-spline kernel,
the H2-norm variance is related to the impulse response
generalization error defined in Equation (9) as

Var(Υ) ≤ C
∫ ∞

0

Var(h(t)) dt

where C is a positive constant.

Proof. The squaredH2-norm variance (7) can be bounded
using the Cauchy-Schwarz inequality for expectation as∫ ∞

0

∫ ∞
0

Cov(h2(s), h2(t)) ds dt ≤
(∫ ∞

0

√
Var(h2(t)) dt

)2

.

(10)

As h(t) is Gaussian at every time t, its higher order
moments are available at each t from the mean and
variance as detailed by e.g., Willink (2005). In this case,
we have

Var(h2(t)) = E[h4(t)]− E[h2(t)]2

= Var(h(t)) (4E[h(t)]2 + 2Var(h(t)))︸ ︷︷ ︸
≤ 4E[h2(t)]

.

Inserting the last expression into (10) and applying the
Cauchy-Schwarz inequality, we obtain

Var(Υ) ≤
(∫ ∞

0

√
4E[h2(t)]Var(h(t)) dt

)2

≤
∫ ∞

0

4E[h2(t)] dt

∫ ∞
0

Var(h(t)) dt ≤ C
∫ ∞

0

Var(h(t)) dt

where the last inequality is due to the fact that E[h2(t)]
is integrable for stable-spline kernels, which is a direct
consequence of integrability as shown in Pillonetto et al.
(2014) and boundedness by arguments in Carmeli et al.
(2006). �

5.3 Optimal input design algorithm

This input design scheme is largely based on the one
developed by Fujimoto and Sugie (2018), but is extended
to continuous-time system identification by using a dif-
ferent objective. Where Fujimoto and Sugie use the mu-
tual information between prior and posterior, we use the
generalization error for IRGPs as defined in (9). As the
algorithm depends on the prior of the IRGP, either prior
knowledge or a preliminary experiment is a prerequisite.

We limit the scope to considering the special case of
obtaining a sequence of piecewise constant inputs for
continuous-time GP system identification. This limitation
is motivated by the fact that in practical applications the
hardware is often limited to piecewise constant inputs and
by making the optimization problem finite dimensional.
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Additionally we assume that the measurement sequence
is complete and with the same sample rate as the input
sequence. Before stating the input design optimization
problem, we define the lower-triangular Toeplitz matrix
of the input sequence and the integrated kernel matrix as

U ∈ RN×N with U =


u1 0 . . .
u2 u1 0 . . .
u3 u2 u1 0 . . .
...

. . .
. . .

. . .

 ,
H ∈ RN×N with Hi,j =

∫ ti+1

ti

∫ tj+1

tj

κ(s, t) ds dt,

H(t) ∈ RN with H(t)i =

∫ ti+1

ti

κ(s, t) ds,

(11)

where N is the length of the input and measurement
sequences.

Proposition 3. The input sequence u∗ that solves the
optimization problem

min
u∈Γ

ε̃(u)

is the best input sequence for GP system identification in
the sense of minimizing the aggregated posterior variance
with respect to the constraint u ∈ Γ. The objective is
defined as

ε̃(u) = −
N∑

i,j=1

(UT (UHUT +
σ2
e

λ
I)−1U)ijWij (12)

with W =
∫∞

0
H(t)HT (t) dt. The optimal input sequence

also minimizes the generalization error as defined in (9).

Proof. For the special case of a piecewise constant input
sequence, the generalization error (9) can be rewritten
using the Toeplitz matrix of the input sequence and
integrated kernel matrix (11) as

ε̃(u) = −
∫ ∞

0

HT (t)UT (UHUT +
σ2
e

λ
I)−1UH(t) dt

= −
N∑

i,j=1

(UT (UHUT +
σ2
e

λ
I)−1U)ijWij ,

with W as in (12) and where the prior part of the
generalization error has been dropped as it does not
depend on the optimization variable and the notation ε̃
is used to distinguish between the generalization error and
the objective. �

The objective ε̃(u) is non-convex with multiple local
optima, but even local optima are good compared to white
noise input sequences as we show in the simulation section.
The gradient of the objective is available analytically as

∂ε̃

∂uk
=−

N∑
i,j=1

Wij(U
T
k M

−1U + UTM−1Uk

+ UTM−1(UkHU
T + UHUTk )M−1U)ij ,

with M = UHUT +
σ2
e

λ I, where Uk is the derivative of the
Toeplitz matrix U with respect to each input piece uk. The
gradient can hence be utilized in optimizing the objective
using for example fmincon in matlab or a projected
gradient method as done in Fujimoto and Sugie (2018). An
example of the method applied is depicted in Figure 2. In
particular, note that the optimal input is an exponentially

Fig. 2. Experiment design example on the sys-
tem G(s)= 2s

s2+0.8s+4 using a second-order stable-

spline kernel (4) with an oscillating component,
κ(s, t)=κ2(s, t)(cos(β2|s − t|) + 1), as suggested in
Chen (2018). 1: GP system identification for white
noise input scaled to energy limit. 2: GP system
identification for optimal input. 3. Comparison of 3σ
confidence bounds. 4: Input sequences in time domain.
5: Input sequences in frequency domain.

decaying oscillation, similar to what was obtained by
Fujimoto and Sugie (2018) for discrete-time, and that the
spectrum of the input sequence is concentrated to the
lower end of the spectrum, quickly dropping off above the
system bandwidth of ∼ 3.8 rad/s. The result is a reduced
posterior variance along the impulse response.

6. SIMULATION

The developed methods were evaluated in numerical sim-
ulation on randomly generated LTI systems in a similar
fashion to Pillonetto et al. (2014), where rmodel was used
to generate random systems of specified order, with an
additional constraint NTs > tf with Ts = 1/(4|λmax|)
where λmax is the pole with largest absolute value, N is
the number of samples and tf is the time where the impulse
response has decayed to essentially zero. This constraint
is imposed in order to be able to select a fast enough
sample rate while still having enough measurements to
capture the whole impulse response. Note that this is
only imposed to ensure comparability by using a fixed
number of measurements for all generated systems and
constitutes no general restriction. A first measurement
sequence is generated using lsim with a zero-order hold
white noise input sequence scaled to have a certain energy,
i.e. uTu = El. Then GP system identification is performed
for each kernel and the mean and variance of the H2-norm
are computed from the posterior IRGP. The optimal input
sequence, limited to the same energy as the white noise
input sequence, is obtained for each kernel and used to
simulate another sequence of measurements, and the norm
estimation process is repeated for the new sequences. Two
metrics are used to compare performance between different
kernels and schemes, relative error (RE) and relative error
overestimation (REO), who we define as
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Fig. 3. RE and REO boxplots using first- and second-order
stable-spline kernels for random fifth-order systems,
100 random systems, 100 measurements and additive
white measurement noise with SNR 20. Ex. denotes
that optimal input design was used to select the
input sequence. The input sequences are limited as
uTu = 100. The boxes indicate the median and the
25th and 75th percentiles, the whiskers indicate the
extreme values and + denotes outliers.

RE =
E[Υ]− ||G||22
||G||22

, REO =
3
√

Var(Υ)

||G||22
− |RE|.

where ||G||22 is the actual squared H2-norm, E[Υ] is the

estimated squared H2-norm and 3
√

Var(Υ) is the 3σ
confidence bound on the norm estimate. RE is hence a
measure of how well the H2-norm is estimated and REO
is a measure of how well the uncertainty is captured by
the norm variance. REO larger than zero indicates that
the confidence bound holds, and small REO indicates
that the confidence bound is less conservative. A boxplot
of the RE and REO for random fifth-order systems is
depicted in Figure 3 for 100 systems using 100 sequential
measurements. It is notable that the performance is good,
even for fairly high order systems, and that the optimal
input design produces significantly better estimates.

7. CONCLUSION

We introduced a framework to estimate the H2-norm via
GP system identification. The proposed method does not
only provide a way to impose prior knowledge while still
being non-parametric, it also enables estimating system
properties from the continuous-time dynamics with infinite
horizon using a finite number of measurements. Further-
more, it inherently handles missing measurements, which
just corresponds to conditioning the prior on fewer data
points, who do not need to be evenly spaced in time. In
the proposed probabilistic framework, confidence bounds
based on the posterior variance can be obtained. Fur-
thermore, the variance can be utilized for optimal input
design. To conclude, estimating system properties using
GP system identification is a very promising lane, not only
considering the results that were obtained in this work, but
also due to possible future research directions, such as the

extension to multiple-input multiple-output systems and
other system properties such as the H∞-norm.
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