
Spatio-Temporal Loop Shaping for
Distributed Control of PDE Systems

Ann-Kathrin Schug ∗ Herbert Werner ∗∗

∗ Institute of Control Systems, Hamburg University of Technology,
21073 Hamburg, Germany (e-mail: ann.schug@tuhh.de).

∗∗ Institute of Control Systems, Hamburg University of Technology,
21073 Hamburg, Germany (e-mail: h.werner@tuhh.de)

Abstract: The systems of interest in this paper are described by a possibly large number
of interconnected subsystems, where the spatial discretization into subsystems is induced by
applying an array of collocated actuator/sensor pairs. When considering these types of systems
in a classical centralized fashion, they have a high number of input/output signals on one hand,
and usually a sparse structure on the other. While the method of loop-shaping in classical
control is well-established, the notion of spatially distributed systems makes it possible to
extend frequency domain loop shaping to spatial frequencies and to include weighting filters
with spatio-temporal dynamics. By using a Fourier transform, controller synthesis can be done
for each spatial frequency at a time. This method is applied to the control of the temperature
distribution of a thin metal rod.

Keywords: Spatially-interconnected systems, distributed systems, spatio-temporal loopshaping,
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1. INTRODUCTION

Distributed parameter systems where the underlying sys-
tem dynamics involve signals that not only depend on time
but also on a - possibly multi-dimensional- spatial variable
are subject of a wide field of research for many years now.
Especially the application to systems, where the dynamics
are described by partial differential equations (PDEs) are
of interest in this paper. Possible application involve for
instance the heat equation or vibration control of flexible
structures. By applying an array of actuator/sensor pairs,
a spatial discretization is induced such that the global
system can be described as an interconnection of single-
input/single-output (SISO) subsystems. If the number of
input/output signals is very large, classical control ap-
proaches which consider the problem from a global multi-
input/multi-output (MIMO) point of view quickly turn
impractical due to the high computational complexity
of the controller synthesis and complex implementation.
The centralized controller needs to receive and process
every sensor output and has to have control authority
over each actuator. At the same time, these systems are
usually sparse structured and there are several research
result which aim at exploiting the sparse structure of these
systems in order to obtain low-complexity analysis and
synthesis results.

In Bamieh et al. (2002) it was shown that the dynamics
of spatially invariant systems of infinite extent can be
decomposed into a family of finite dimensional systems
involving spatial frequencies. A closely related approach is
described in D’Andrea et al. (2003), where a shift operator
description of the spatially-interconnected system is used
to obtain sufficient analysis and synthesis results of the
size of a single subsystem. The framework is extended in

Langbort et al. (2005) to include systems with bounded
spatial domains if they satisfy a condition called spatial
reversibility. Another approach which includes possibly
spatially varying systems interconnected over an arbitrary
graph is proposed in Langbort et al. (2004) which in
turn may increase the computational complexity of the
analysis and synthesis problem. The work presented in this
paper is based on the method in Stewart et al. (2003),
where the systems under consideration are described by
circulant transfer matrices, allowing to decompose the
system into its modal SISO subsystems and perform
controller synthesis for each spatial frequency at a time.
An important issue in control of MIMO systems, which
is adressed there, is the direction of the input signal
when utilizing performance criteria such as the H∞ norm.
Especially distributed systems described by PDEs are
often highly ill-conditioned (i.e. the smallest and largest
singular values of the transfer matrix may differ in several
magnitudes). This means that there are signal directions
which are hard to control and may lead to a very high
controller gain which might violate physical limitations
of the actuators on one hand and make the closed-loop
system sensitive to model uncertainties on the other. An
approach to account for this problem during the synthesis
procedure is the main topic of this paper.

We consider spatially-interconnected systems in discrete
time-discrete space input/output form obtained by dis-
cretizing PDEs. Under certain assumption on the system
or else appropriate approximations, these large-scale sys-
tems can be transformed into a family of SISO systems
which are indexed by the spatial frequency. More specifi-
cally, when the global system is described by a symmetric
circular transfer matrix, the system can be brought into di-
agonal form by a real Fourier transform, where the rows of
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the Fourier matrix are the spatial harmonics of the system
(Stewart et al. (2003), Bamieh et al. (2002)). The singular
values are then given by the magnitude of the eigenval-
ues of the transfer matrix, which will be called modal
subsystems. Controller design can then be performed for
each SISO system and therefore spatial frequency at a
time. This has two major advantages compared to classical
MIMO synthesis. First, the computational load of solving
a set of smaller problems is less than solving the large-
scale problem (especially when using methods based on
linear matrix inequalities (LMIs). Second, we propose a
method to extend well-known H∞-loopshaping objectives
such as reference tracking, disturbance rejection or robust-
ness against uncertainties in temporal-frequency domain
to spatially-interconnected systems in the spatio-temporal
frequency domain. Using this approach, control objectives
such as performance requirements or robustness against
model uncertainties can be applied to specific temporal
and spatial frequency regions.

The paper is structured as follows. In Section 2 the system
description used is presented and the spatial frequency
decomposition by a real Fourier transform is introduced.
Furthermore existing results on controller synthesis by
obtaining controllers for each spatial frequency at a time
and recovering a global controller by the inverse Fourier
transform are briefly reviewed. In Section 3 the notion
of spatio-temporal loopshaping is introduced and a spe-
cific structure for spatio-temporal weighting filters in the
framework of H∞-controller design is proposed. Finally,
the procedure is applied to the heat distribution in a thin
metal rod and conclusions are drawn in Section 4.

2. PRELIMINARIES

In this section, spatially distributed systems in the form
of discrete time and space input/output models are intro-
duced. A real Fourier transform is then used to decouple
the large scale system into a family of SISO systems for
each spatial frequency.

2.1 Spatially Interconnected Systems

We are considering systems where the dynamics are de-
scribed by partial differential equations (PDEs), where
the involved signals depend on a temporal and a possibly
multi-dimensional spatial variable. For simplicity we will
assume a single spatial dimension in this paper. As men-
tioned before we are assuming a collocated actuator/sensor
array of size N applied to the system which induces a spa-
tial discretization into subsystems. The following notation
is based on Stewart et al. (2003). Using a finite difference
approximation for the spatial and temporal derivative in
the involved PDE, the system can be described by the
finite difference equation

y(k) = −
my∑
j=1

Ajy(k − j) +

mu∑
i=1

Biu(k − i), (1)

where y(k), u(k) ∈ RN are the output and input vector at
time step k. Applying the Z-transform to the input and
output vector respectively yields

Y (z) = B(z)U(z)−A(z)Y (z). (2)

By writing the matrix factors as

A(z) =

my∑
j=1

Ajz
−j , B(z) =

mu∑
i=1

Biz
−i (3)

the system can further be described by a linear transfer
matrix model

Y (z) = G(z)U(z), (4)

where the system transfer matrix

G(z) = [IN +A(z)]
−1
B(z). (5)

describes the spatio-temporal dynamics of the global sys-
tem. Starting from a PDE, the involved matrix factors
A(z), B(z) ∈ CN×N are structured due to the finite differ-
ence approximation. More specifically, with zero boundary
conditions the coefficient matrices of the transfer factors
are given by band-diagonal Toeplitz matrices of the form

Ãj = T (ãj), ãj =
[
aj1, ..., a

j
na
, 0, ..., 0

]T
∈ RN (6)

exemplary. Most real word applications based on PDEs are
not of infinite extent and therefore involve specific bound-
ary conditions. Since the method in this paper heavily
relies on the spatial frequency decomposition explained in
the following, the system is assumed to be either of inifinite
extent/periodic or spatially reversible with a boundary
matrixB = 1 (compare Langbort et al. (2005)) such that it
can be expressed using periodic boundary conditions. This
essentially means, that the band-diagonal Toeplitz matrix
factors can be expressed in terms of circulant matrices

Aj = T (āj), āj =
[
aj1, ..., a

j
na
, 0, ..., 0, ajna

, ..., aj2

]T
∈ RN

(7)

If the system can not be described using periodic boundary
conditions, a small-gain argument can be used to deter-
mine stability of the original system under perturbation
(which is essentially the difference of the original system
and the circulant system approximation). Details can be
found in Stewart et al. (2003) and Langbort et al. (2005)
and we will assume the underlying system to fulfill this
requirement for the remainder of this paper.

2.2 Spatial Frequency Decomposition

For many distributed systems and especially those that
are described by discretized PDEs, the model in (1)-(5) is
often ill-conditioned. More specifically, in steady state the
ratio of the systems largest and smallest singular value is

σ̄(G(ejω))

σ(G(ejω))
� 1, for ω = 0. (8)

This has to be taken into account when designing a con-
troller, since this may lead to high controller gains when
considering control objectives such as disturbance rejec-
tion and reference tracking, which at the same time may
violate robust stability conditions. It has been shown in
Stewart et al. (2003), Bamieh et al. (2002) that spatially-
invariant systems can be decoupled into a family of in-
dependent modal SISO subsystems. Even more so, every
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symmetric circulant system with the same number of in-
put/output channels can be diagonalized using the same
real Fourier matrix (Stewart et al. (2003), Bamieh (2018))

Fi,j =



√
1
N i = 1√
2
N sin ((j − 1)λi) i = 2, ..., p√
2
N cos ((j − 1)λi) i = p+ 1, ..., N

(9)

with

p =

{
N+2
2 ifN is even

N+1
2 ifN is odd

(10)

as
FG(z)FT = diag(g(λ1, z), ..., g(λN , z)), (11)

where g(λi, z) are the modal subsystems or eigenvalues of
G(z) and

λi =
2π(i− 1)

N
denotes the spatial frequency of the i-th spatial mode.
Since

FG(z)FT =
[
I + FA(z)FT

]−1
FB(z)FT (12)

and

FB(z)FT = F

(
mu∑
k=1

Bkz
−k

)
FT (13)

=

mu∑
k=1

diag(bk(λ1), ..., bk(λN ))z−k (14)

exemplary, the modal subsystems for each spatial fre-
quency λi ∈ [λ1, ..., λN ] are given by

g(λi, z) =
b(λi, z)

1 + a(λi, z)
(15)

with

b(λi, z) =

mu∑
k=1

bk(λi)z
−k. (16)

The eigenfunction directions are equal to the singular vec-
tor directions. They are given by the harmonic functions
of the spatial variable which, in turn, are given by the
rows of the Fourier matrix F (Bamieh et al. (2002)). Since
the singular values of a circulant system are equal to the
magnitude of its eigenvalues, they can be plotted over all
temporal frequencies and on a grid of all spatial frequencies
λi. Figure 1 shows |g(λ, ejω)| for the heat rod used as
an example in Section 4. Here, the first modal subsystem
(corresponding to λ1 = 0) has integral behavior due to the
central difference approximation of the spatial derivative
in the underlying PDE together with the periodic bound-
ary condition. The other modal subsystems are first order
systems with a roll-off at increasing spatial frequencies λi.

2.3 Controller Synthesis

Introducing a reference input r(k) and assuming error
feedback of the form e(k) = r(k) − y(k) the distributed
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Fig. 1. |g(λ, ejω)| in dB over all temporal and spatial
frequencies for the temperature distribution of a metal
rod with periodic boundary conditions

controller structure (reflecting the same structure as the
plant) is

u(k) =

mc∑
l=0

Cle(k − l)−
md∑
n=1

Dnu(k − n), (17)

where each coefficient matrix is in the form of a symmetric
circulant matrices as in (7). The controller may be written
in terms of a transfer matrix as

K(z) = [I +D(z)]
−1
C(z), (18)

with matrix factors according to (3). Again, a transforma-
tion as in (11) can be used to diagonalize the controller
yielding SISO subsystem controller for each spatial fre-
quency λi ∈ [λ1, ..., λN ] as

k(λi, z) =
c(λi, z)

1 + d(λi, z)
. (19)

Because the eigenvalues of symmetric circulant systems
always come in pairs (see for example Olson et al. (2014))
it is even sufficient to design controllers for λi ∈ [λ1, ..., λp]
and then set k(λi, z) = k(λ2+N−i, z) for p+ 1 ≤ i ≤ N .

Since both the plant and the controller are decoupled
by the same Fourier transform, the design of a large
MIMO controller can now be done on the set of small
SISO subsystems for each spatial frequency. The MIMO
controller can then be reconstructed according to Bamieh
et al. (2002), Hovd et al. (1994) as

K(z) = FTdiag(k(λ1, z), ..., k(λN , z))F. (20)

That way it is possible to simplify the synthesis procedure
significantly because it is computationally more efficient
to solve a set of small control problems than to solve
the large control problem (especially, when using LMI
based synthesis methods). In general, the MIMO controller
obtained by the inverse Fourier transform is not sparsely
structured, i.e. the controller may need connection links
to many (possibly all) neighbouring subsystem. In Stewart
et al. (2003) a simple spatial order reduction is proposed.
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While the controller may then be also implemented in a
distributed fashion, here we are not providing a stability
and performance analysis; this is subject of current re-
search.

3. SPATIO-TEMPORAL LOOPSHAPING

In general, several methods can be used to obtain the set
of SISO controllers for the modal subsystems. Here we
will consider H∞-loopshaping since the idea of expressing
control objectives in terms of dynamic weighting filters
can be extended into multidimensional form such that the
filters not only include temporal but spatial dynamics as
well. We will review some approaches on classical H∞ -
loopshaping and motivate the extension of this method to
the spatio-temporal frequency domain first.

GKr

dydu

y
-

e u

Fig. 2. Closed-loop system with disturbances

3.1 Control Objectives

Consider the closed-loop system with input and output
disturbances as well as a reference input as shown in
Figure 2. An illustrative example to show why the direc-
tionality of MIMO systems is important is borrowed from
Stewart et al. (2003). The robust stability of a system Gp
perturbed by an additive unstructured uncertainty ∆ such
that Gp = G+∆ is guaranteed if the nominal unperturbed
system G is stable and the condition

max
dy 6=0

‖u‖2
‖dy‖2

= σ̄
(

[I +KG]
−1
K
)
≤ 1

σ̄(∆)
(21)

holds. At the same time, perfect output disturbance rejec-
tion requires

‖e‖2
‖dy‖2

= 0 ∀dy ∈ L2. (22)

Even though the tracking performance objective is often
only imposed for low frequencies this would imply high
controller gains for weak input directions of the system.
More specifically, if the disturbance input direction is the
same as the output singular vector corresponding to the
smallest singular value of the system σ(G), perfect distur-
bance rejection would imply ‖u‖2/‖dy‖2 = σ−1(G). It is
therefore beneficial to not only separate performance and
robustness requirements in terms of temporal frequencies
but also to take the directions of the disturbances into ac-
count. Since the eigenvalues of circulant transfer matrices
are directly linked to the singular vectors of the system, the
control objectives may be separated in terms of the spatial
frequencies of the system. To avoid large controller gains
which aim to suppress disturbances aligning with the weak
input and output directions of the plant, the performance
objectives for modal subsystems of that specific spatial
frequency can be relaxed. In Figure 1 it can be seen that

the system dynamics have a roll-off for high temporal and
spatial frequencies. This is typical for the distributed sys-
tems considered here and one can therefore conclude that
performance objectives should be applied to the frequency
regions of λ and z where |g(λ, z)| is high and robustness
requirements and upper bounds on controller gains should
be imposed on those frequency regions where |g(λ, z)| is
low.

3.2 Spatio-temporal weighting filters

A rough summary of the control objective criteria in terms
of their frequency regions is that performance objectives
such as good reference tracking and disturbance rejections
are usually applied to low frequencies ω, where the plant
gain is usually high and the relative model uncertainty is
low. More specifically, the loop gain is lower bounded for
small frequency regions and the gain in the high frequency
region is upper bounded. At the same time robustness
requirements are confined to high frequency regions where
the relative model uncertainty is large. At the same time,
the gain at high spatial frequencies usually experiences a
roll-off such that these input directions are hard to control
and therefore robustness requirements and penalties on
controller gains should also be applied to the high spatial
frequency regions.

In classical H∞-loopshaping these criteria are often im-
posed by applying low-pass filter to the performance out-
put (such as the generalized ’error’) and high-pass filter
to the control input u, essentially shaping the sensitivity
and control sensitivity of the loop. This ensures good
tracking in steady state while avoiding control interaction
with high frequency dynamics. When applying weighting
filters with only temporal dynamics, they are valid for
all input directions corresponding to a flat singular value
shape over the spatial frequency axis at each temporal
frequency ω and therefore oriented on the worst-case. The
idea is, that a spatial roll-off can be introduces by including
spatial dynamics in the weighting filters as well, which will
eventually lead to weighting filters parameterized by the
spatial frequency after the transformation into modal sub-
systems. Consider an S/KS-Design with dynamical filters
WS and WK shaping the sensitivity and control sensitivity
of the plant. When step input reference tracking for SISO
systems is considered, WS in continuous time is usually
chosen as a low-pass filter of the form

WS(s) =
ω1

M

1

s+ ω1
. (23)

which (after a finite difference approximation with tempo-
ral sampling T ) in discrete time corresponds to

WS(z) =
Tω1

M z−1

1 + (ω1T − 1)z−1
. (24)

For MIMO systems one may choose diagonal filters shap-
ing the sensitivity of each input/output channel. For each
temporal frequency, this will correspond to a flat singular
value plot in the spatial frequency domain since the sen-
sitivity gain is independent of the direction. To enforce a
roll-off in the spatial frequency domain, spatial dynamics
are added such that AWS

is not diagonal but also of the
form
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AS = T (āS), (25)

BS = T (b̄S), (26)

essentially leading to weighting filters with spatial dynam-
ics. Every modal subsystem is then shaped by the modal
weighting filters wS(λi). The same form can be applied
to the KS-weighting filter to enforce an upper bound
on control action in the high spatial frequency region.
Alternatively, weighting filters can be directly chosen for
the transformed system, but with an additional degree of
freedom or ’tuning knob’ in terms of the dependence on
the spatial frequency. The benefit of this procedure will
be shown on the example of controlling the temperature
distribution in a thin metal rod in the following section.

4. EXAMPLE: HEAT EQUATION

In the following the temperature control of a thin metal
rod of length L described by the PDE

∂y(t, σ)

∂t
= α

∂2y(t, σ)

∂σ2
+ u(t, σ), (27)

is considered, where y(t, σ) is the temperature at time
t and position σ, u(t, σ) is an external heat input and
α = 0.1 is the diffusitivity constant corresponding to
the material of the rod. Applying a uniformly distributed
collocated actuator/sensor array of size N and approxi-
mating the first order temporal derivative by a forward
difference and the second order spatial derivative by a
central difference approximation and scaling the input
signal yields the finite difference equation

y(k, s) = (1− 2β)y(k − 1, s) (28)

+ βy(k − 1, s− 1) + βy(k − 1, s+ 1)

+ u(k − 1, s)

with β = αT/h2 and T, h = L/N being the temporal and
spatial sampling respectively. This can then be brought
into a linear transfer matrix model form as (4) with the
matrix factors being

A1(z) = T (ā1) z−1 (29)

B1(z) = IN z
−1 (30)

with ā1 = [−1 + 2β,−β, 0, ..., 0,−β] assuming periodic
boundary conditions. The system can be brought into di-
agonal form according to (11)-(13) yielding the SISO sub-
systems corresponding to each spatial frequency compo-
nent. The spatio-temporal singular value plot of is shown
in Figure 1. Note that A1 has an eigenvalue of z = 1 with
the corresponding eigenvector 1 corresponding to integral
behavior of the first modal subsystem.

4.1 Controller Design

The objective of the controller is to track a reference tem-
perature profile of the rod. A standard S/KS generalized
plant is used as shown in Figure 3. Two controllers are
designed. Design 1 is done with weighting filters with only
temporal dynamics and Design 2 with weighting filters
with spatio-temporal dynamics. It can be seen in Figure 1
that the weakest input direction corresponds to the highest
spatial frequency. In order to avoid high controller gains,
we want to avoid control action with high spatial frequency

GKr

WKSWS

z1 z2

y
-

e u

Fig. 3. Generalized plant for S/KS design

dynamics. In the classical loopshaping sense, one would
have to apply a weighting filter to the control input signal
u (possibly as a high pass filter to confine the result
to high temporal frequency regions). By adding spatial
dynamics to the weighting filter, this constraint may be
relaxed in the low spatial frequency regions. Specifically,
the weighting filters used to shape the control sensitivity
for Design 1 and Design 2 are

WKS,1 = 1, WKS,2(λi) = 1 + c(λi − λp). (31)

where c ∈ (0, 1
λp

) is a scalar constant, which can be used

to scale the amount of penalty relaxation on the control
sensitivity at low spatial frequencies. Here we select it
such that the control sensitivity is penalized the same
way in high spatial frequency regions for both designs
(WKS,2(λp) = WKS,1) while the constraint is relaxed
for lower spatial frequency regions in Design 2. Another
thing to consider is the integral behaviour of the first
modal subsystems. The shaping filter for the sensitivity of
Design 1 is chosen as the zero-order-hold discretization of
WS,1 = (100)/(10s+1). Using the modal decomposition for
controller synthesis allows to treat first modal subsystem
separately. The sensitivity weighting filters used here for
Design 2 are the zero-order-hold discretizations of

WS,2(λi) =

{
1 if i = 1

10
10s+1 if i = 2, ..., p

(32)

The synthesis for each modal subsystem is then performed
using the hinfsyn command of the Robust Control Tool-
box in Matlab Balas et al. (2005). The MIMO controller
with the same interconnection structure as the plant is
then obtained by back-transformation using the modal
controllers as in (20).

4.2 Results

The controller is evaluated in time domain by simulating
the closed loop response to a reference temperature profile
input. The input reference is a unit pulse r(t = 10 : 70) = 1
applied to subsystems 8 to 11 and r = 0 everywhere else
as shown in Figure 4.

Figure 5 shows the corresponding output response of the
closed loop with the controller using spatially varying
weighting filter WKS(λi) in Design 2. It can be seen that
the reference is tracked well for subsystems 9 and 10,
while the spatial coupling of subsystems 7/8 and 11/12
is controlled to a satisfying degree. This is shown more
clearly in Figure 6 which shows the response of subsystems
at spatial location s = 10, s = 8 and s = 7 for a controller
obtained with spatially constant weighting filter WKS,1
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Fig. 4. Reference Input for Simulation
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Fig. 5. Output response of the closed loop with the
controller obtained by Design 2

(dashed) in Design 1 and weighting filter depending on
the spatial frequency WKS,2(λi) in Design 2. It can be seen
that the performance of the controller obtained with filters
with spatial dynamics is better in terms of the steady state
error, overshoot as well as the coupling to neighbouring
subsystems. This is on one hand due to the fact that the
first modal subsystem is handled separately and that the
penalty on the control action is relaxed for low spatial
frequencies in the second design.

5. CONCLUSION

A spatio-temporal loopshaping technique was investigated
based on a modal decomposition of discretized PDE sys-
tems modeled by circulant transfer matrices. The H∞-
loopshaping was extended such that weighting filters in-
clude spatial dynamics, essentially shaping the loop at each
modal frequency individually. Constraints on the loop such
as performance criteria can be relaxed or strengthened
in certain spatial frequency regions. It was shown on the
example of an actuated heat rod that performance could
be improved compared to standard H∞-synthesis using
weighting filters that are flat in the spatial frequency
domain.
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Fig. 6. Output response of three different sensors for
Design 1 (dashed) and Design 2 (solid)
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