
Instant detectability of discrete-event
systems ⋆

Kuize Zhang ∗ Alessandro Giua ∗∗

∗ Control Systems Group at Technische Universität Berlin,
Einsteinufer 17, 10587 Berlin, Germany (e-mail: zkz0017@163.com)
∗∗ Department of Electrical and Electronic Engineering, University of

Cagliari, 09123 Cagliari, Italy, (e-mail: giua@unica.it)

Abstract: Detectability is a basic property that describes whether an observer can use the
current and past values of an observed output sequence produced by a system to reconstruct its
current state. We consider particular properties called instant strong detectability and instant
weak detectability, where the former implies that for each possible infinite observed output
sequence each prefix of the output sequence allows reconstructing the current state, the latter
implies that some infinite observed output sequence (if it exists) satisfies that each of its
prefixes allows reconstructing the current state. For discrete-event systems modeled by finite-
state automata, we give a linear-time verification algorithm for the former in the size of an
automaton, and also give a polynomial-time verification algorithm for the latter.

Keywords: finite-state automaton, instant strong detectability, instant weak detectability

1. INTRODUCTION

Detectability is a basic property of dynamic systems: when
it holds an observer can use the current and past values
of the observed output sequence produced by a system
to reconstruct its current state [Shu et al. 2007, Shu
and Lin 2011, 2013, Zhang 2017]. This property plays
a fundamental role in many related control problems
such as observer design and controller synthesis. Hence
for different applications, it is meaningful to characterize
different notions of detectability.

1.1 Literature review

For discrete-event systems (DESs) modeled by finite-state
automata, the detectability problem has been widely stud-
ied [Shu et al. 2007, Shu and Lin 2011, Zhang 2017] in the
context of the ω-language generated by a DES, i.e., taking
into account all infinite-length (infinite for short) output
sequences generated by the DES.
Two fundamental definitions are those of strong detectabil-
ity and weak detectability [Shu et al. 2007]. Strong de-
tectability implies that there exists a positive integer k
such that for all infinite output sequences σ generated
by a system, all prefixes of σ of length greater than k
allow reconstructing the current states. Weak detectability
implies that there exists a positive integer k and some
infinite output sequence σ generated by a system such
that all prefixes of σ of length greater than k allow recon-
structing the current states. Weak detectability is strictly
weaker than strong detectability. Strong detectability can
be verified in polynomial time (see a polynomial-time
algorithm in [Shu and Lin 2011] under the widely-used two
⋆ This work was partially supported by the Alexander von Humboldt
Foundation.

fundamental assumptions (formulated in Assumption 1) of
deadlock-freeness and promptness (having no unobservable
reachable cycle) and another polynomial-time algorithm
given in [Zhang and Giua 2019] without any assumption),
while weak detectability can be verified in exponential time
[Shu et al. 2007]. In addition, checking weak detectability
is PSPACE-complete [Zhang 2017, Masopust 2018].
A few authors have recently studied detectability prop-
erties in the context of ω-languages extending to labeled
Petri nets the notions of strong and weak detectability
which Shu and Lin have originally studied for finite-state
automata. Weak detectability of labeled Petri nets with
inhibitor arcs has been proved to be undecidable in [Zhang
and Giua 2018]. Later the undecidable result has been
strengthened to hold for labeled Petri nets in [Masopust
and Yin 2019]. Strong detectability for labeled Petri nets
has been proved to be decidable with EXPSPACE lower
bound also in [Masopust and Yin 2019] under the two fun-
damental assumptions corresponding to labeled Petri nets.
Moreover, the decidable result for strong detectability of
labeled Petri nets has been strengthened to hold under
only the promptness assumption corresponding to labeled
Petri nets [Zhang and Giua 2020]. Detectability results on
bounded labeled Petri nets can be found in [Tong et al.
2019].

1.2 Contribution of the paper

In many applications, e.g., those concerning safety-critical
systems, it may be necessary to reconstruct the states at
all times and thus neither strong detectability nor weak
detectability meets the requirement. In order to meet the
requirement, we consider instant detectability.
In this paper, we study instant strong detectability which
implies that all prefixes of all infinite output sequences

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 2167

generated by a system allow reconstructing the current
states. We also study instant weak detectability which
implies that for some infinite output sequence generated
by a system, each of its prefixes allows reconstructing
the current state. In this paper, we only consider these
two properties in the context of ω-languages, that is, we
only consider long-term behavior. We point out that by
using slight variants of the methods developed in the
current paper, one can characterize their counterparts in
the context of formal languages consisting of all generated
finite-length (finite for short) output sequences. In more
detail, in the context of formal languages, a system is
instantly strongly (weakly) detectable if for every (some)
finite output sequence generated by the system, each of
its prefixes allows reconstructing the current state 1 . For
instant strong detectability, the notion in the context of ω-
languages is weaker than the one in the context of formal
languages; while for instant weak detectability, the notion
in the context of ω-languages does not imply the one in
the context of formal languages, and vice versa. We also
point out that although instant strong detectability in the
context of ω-languages is weaker than its counterpart in
the context of formal languages, the former implies that for
every finite generated output sequence, most of its prefixes
(except for at most a common number of longest prefixes,
where the number is no less than the number of states)
allow reconstructing the current states (formulated as an
equivalent definition of instant strong detectability in the
context of ω-languages, see Theorems 3.4 and 3.5), which is
rather close to the latter. In the sequel, the two properties
are always referred to as in the context of ω-languages by
default.
The notion of instant strong detectability has been stud-
ied in [Shu and Lin 2013] for finite-state automata
and is called (0, 0)-detectability. Actually, a more gen-
eral (k1, k2)-detectability is characterized in [Shu and
Lin 2013] which describes a more general version of
strong detectability with computation delays, and a sex-
tic polynomial-time verification algorithm in the number
of states is given under Assumption 1. More recently, a
quartic polynomial-time algorithm in the number of states
for verifying (k1, k2)-detectability of finite-state automata
by using a concurrent-composition method has been given
in [Zhang and Giua 2019] without any assumption, thus
strengthening and simplifying the results given in [Shu and
Lin 2013]. The notion of instant weak detectability is a new
property.
The first contribution of this paper is for finite-state au-
tomata, we give a linear-time verification algorithm in the
size of an automaton for instant strong detectability which
exploits a particular characterization of this property and
does not follow from the general but more complex ap-
proach for verifying (k1, k2)-detectability. In the partic-
ular characterization, we do not even use a concurrent-
composition approach, hence the algorithm obtained in
this paper is much more effective than the one designed
in [Zhang and Giua 2019] for instant strong detectability.

1 The notion of instant strong detectability in the context of formal
languages for labeled Petri nets has been proved to be EXPSPACE-
complete in [Jančar 1994], where the notion is called determinism.

The second contribution is that we design a polynomial-
time verification algorithm for instant weak detectability
of finite-state automata. This shows a remarkable dif-
ference between instant weak detectability and weak de-
tectability, as weak detectability has PSPACE lower bound
[Zhang 2017].

1.3 Paper structure

The remainder of the paper is as follows. Section 2 intro-
duces necessary preliminaries. Section 3 shows the main
results. Section 4 ends up with a short conclusion.

2. PRELIMINARIES

Next we introduce necessary notions that will be used
throughout this paper. Symbols N and Z+ denote the sets
of natural numbers and positive integers, respectively. For
a finite alphabet Σ, Σ∗ and Σω are used to denote the
sets of finite sequences (called words) of elements of Σ
including the empty word ϵ and infinite sequences (called
configurations) of elements of Σ, respectively. As usual, we
denote Σ+ = Σ∗ \{ϵ}. For a word s ∈ Σ∗, |s| stands for its
length, and we set |s′| = +∞ for all s′ ∈ Σω. For s ∈ Σ and
natural number k, sk and sω denote the k-length word and
configuration consisting of copies of s, respectively. For a
word (configuration) s ∈ Σ∗(Σω), a word s′ ∈ Σ∗ is called
a prefix of s, denoted as s′ ⊏ s, if there exists another word
(configuration) s′′ ∈ Σ∗(Σω) such that s = s′s′′. For two
natural numbers i ≤ j, [i, j] denotes the set of all integers
between i and j including i and j; and for a set S, |S| its
cardinality and 2S its power set.

2.1 Finite-state automata

A finite-state automaton is formulated as a sextuple
S = (X, T, X0, →, Σ, ℓ),

where X is a finite set of states, T a finite set of events,
X0 ⊂ X a set of initial states, →⊂ X × T × X a transition
relation, Σ a finite set of outputs, and ℓ : T → Σ ∪ {ϵ}
an output function. Automation S is called deterministic
if for all x, x′, x′′ ∈ X and t ∈ T , (x, t, x′) ∈→ and
(x, t, x′′) ∈→ imply x′ = x′′. A state x ∈ X is called
deadlock if (x, t, x′) /∈→ for any t ∈ T and x′ ∈ X. S
is called deadlock-free if it has no deadlock state. Events
with label ϵ are called unobservable. Other events are called
observable. Transitions x

t−→ x′ with ℓ(t) = ϵ are called ϵ-
transitions (or unobservable transitions), other transitions
are called observable transitions. Denote T =: To∪̇Tϵ,
where To and Tϵ are the sets of observable events and
unobservable events, respectively. For an observable event
t ∈ To, we say t can be directly observed if ℓ(t) differs from
ℓ(t′) for any other t′ ∈ T . Labeling function ℓ : T → Σ∪{ϵ}
can be recursively extended to ℓ : T ∗ ∪ T ω → Σ∗ ∪ Σω as
ℓ(t1t2 . . .) = ℓ(t1)ℓ(t2) . . . and ℓ(ϵ) = ϵ. Transition relation
δ is recursively extended to δ ⊂ X × T ∗ × X as follows:
for all x, x′ ∈ X, (x, ϵ, x′) ∈ δ if and only if x = x′; for all
x, x′ ∈ X, s ∈ T ∗, and t ∈ T , one has (x, st, x′) ∈ δ (also
denoted by x

st−→ x′) if and only if (x, s, x′′), (x′′, t, x′) ∈ δ
for some x′′ ∈ X. For two states x, x′ ∈ X, we say x′ is
reachable from x if there is s ∈ T + such that (x, s, x′) ∈ δ;
we say x′ is reachable if either x′ ∈ X0 or x′ is reachable

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2168

from some initial state. More generally, for state x ∈ X
and subsets X ′, X ′′ ⊂ X, we say x is reachable from X ′ if
x is reachable from some state of X ′; X ′ is reachable from
x if some state of X ′ is reachable from x; X ′′ is reachable
from X ′ if some state of X ′′ is reachable from some state
of X ′. More generally, we call a (transition) cycle (i.e.,
x

s−→ x for some s ∈ T +) reachable if some of its states is
reachable (and hence all of its states are reachable). For a
finite-state automaton S, we call the new automaton the
accessible part (denoted by Acc(S)) of S that is obtained
from S by removing all non-reachable states.
For each σ ∈ Σ∗, we denote by M(S, σ) the set of
states that S can be in after σ has been observed, i.e.,
M(S, σ) := {x ∈ X|(∃x0 ∈ X0)(∃s ∈ T ∗)[(ℓ(s) = σ) ∧
(x0

s−→ x)]}. Particularly, for all X ′ ⊂ X and σ ∈ Σ∗ we
denote M(X ′, σ) := {x ∈ X|(∃x′ ∈ X ′)(∃s ∈ T ∗)[(ℓ(s) =
σ) ∧ (x′ s−→ x)]}. Hence we have M(S, σ) = M(X0, σ)
and X ′ ⊂ M(X ′, ϵ) for all σ ∈ Σ∗ and X ′ ⊂ X.
L(S) denotes the language generated by system S, i.e.,
L(S) := {σ ∈ Σ∗|M(S, σ) ̸= ∅}. An infinite event
sequence t1t2 . . . ∈ T ω is called generated by S if there
exist states x0, x1, . . . ∈ X with x0 ∈ X0 such that for
all i ∈ N, (xi, ti+1, xi+1) ∈→. We use Lω(S) to denote
the ω-language generated by S, i.e., Lω(S) := {σ ∈
Σω|(∃t1t2 . . . ∈ T ω generated by S)[ℓ(t1t2 . . .)= σ]}.
The two assumptions widely considered in [Shu et al. 2007,
Shu and Lin 2011, Sasi and Lin 2018] etc. are formulated
as follows, but are not needed in the current paper.
Assumption 1: A finite-state automaton S satisfies

(i) S is deadlock-free, i.e., for each x ∈ X, there exist
t ∈ T and x′ ∈ X such that (x, t, x′) ∈→;

(ii) S is prompt, i.e., there is no unobservable reachable
cycle, i.e., for every reachable state x ∈ X, for every
s′ ∈ (Tϵ)+, (x, s′, x) /∈→.

3. MAIN RESULTS

We now give the concepts of instant strong detectability
and instant weak detectability.
Definition 1 (ISD): An automaton S = (X, T, X0, →
, Σ, ℓ) is called instantly strongly detectable if for each σ
in Lω(S), for each prefix σ′ of σ, |M(S, σ′)| = 1.
Definition 2 (IWD): An automaton S = (X, T, X0, →
, Σ, ℓ) is called instantly weakly detectable if Lω(S) ̸= ∅
implies that there exists σ ∈ Lω(S) such that each prefix
σ′ of σ satisfies |M(S, σ′)| = 1.

By definition, one sees instant weak detectability is weaker
than instant strong detectability. In addition, if Lω(S) =
∅, then S is naturally instantly strongly detectable, and
hence also instantly weakly detectable.

3.1 Verifying instant strong detectability of finite-state
automata

Consider a finite-state automaton S = (X, T, X0, →, Σ, ℓ).
In order to verify instant strong detectability, we construct
an observation automaton

O(S) = (X, {ε, ϵ̂}, X0, →′, {ϵ̂}, ℓ′) (1)
in linear time in the size of S, where →′⊂ X × {ε, ϵ̂} × X,
ℓ′(ε) = ϵ, ℓ′(ϵ̂) = ϵ̂, for every two states x, x′ ∈ X,

(x, ϵ̂, x′) ∈→′ if there exists t ∈ T such that (x, t, x′) ∈→
and ℓ(t) ̸= ϵ; (x, ε, x′) ∈→′ if there exists t ∈ T such that
(x, t, x′) ∈→ and for all t′ ∈ T with (x, t′, x′) ∈→, ℓ(t′) = ϵ.
The labeling function ℓ′ is also naturally extended to
ℓ′ : {ε, ϵ̂}∗ ∪ {ε, ϵ̂}ω → {ϵ̂}∗ ∪ {ϵ̂}ω.
One sees by definition for automaton S, in the correspond-
ing observation automaton O(S), for every two states
x, x′ ∈ X, there is at most one transition from x to x′ in
O(S); there is an observable transition from x to x′ in S if
and only if (x, ϵ̂, x′) ∈→′ (i.e., the unique transition from
x to x′ in O(S) is observable); there is an unobservable
transition from x to x′ and all transitions from x to x′ are
unobservable in S if and only if (x, ε, x′) ∈→′ (i.e., the
unique transition from x to x′ in O(S) is unobservable).
Proposition 3.1: For a finite-state automaton S it holds
that Lω(S) ̸= ∅ if and only if Lω(O(S)) ̸= ∅.

Proof “if”: Suppose Lω(O(S)) ̸= ∅. Then there is an
infinite transition sequence

x0
α1−→ x1

α2−→ · · · (2)
in O(S) such that x0 ∈ X0, x1, x2, . . . ∈ X, α1, α2, . . . ∈
{ε, ϵ̂}, and ℓ′(α1α2 . . .) = (ϵ̂)ω. For every transition
xi

αi+1−−−→ xi+1, where i ∈ N, there is an observable tran-
sition from xi to xi+1 in S if αi+1 = ϵ̂, and there is an
unobservable transition from xi to xi+1 in S if αi+1 = ε.
Hence we can find an infinite transition sequence in S with
the same state sequence as in (2), and the corresponding
label sequence is of infinite length. Hence Lω(S) ̸= ∅.
The “only if” part holds similarly. □
The following useful proposition can be proved by com-
puting strongly connected components of Acc(O(S)).
Proposition 3.2: The property Lω(S) = ∅ for a finite-
state automaton S can be verified in linear time in the size
of S.

Proof Firstly, find the accessible part Acc(O(S)) of
O(S), which takes linear time. Secondly, by Proposition
3.1, we can equivalently check whether Lω(O(S)) ̸= ∅
holds. Compute all strongly connected components of
Acc(O(S)). There are well-known algorithms for comput-
ing all strongly connected components of Acc(S) in linear
time, e.g., the slight variant of the depth-first search.
Thirdly, observe that Lω(O(S)) ̸= ∅ if and only if in
some strongly connected component, there is an observable
transition, because each cycle belongs to only one strongly
connected component. This can also be checked trivially
in linear time. □
Consider a finite-state automaton S = (X, T, X0, →, Σ, ℓ).
In order to verify instant strong detectability, we also need
to construct a bifurcation automaton

Bifur(S) = (X, {ϵ̄, ϵ̌}, X0, →′, {ϵ̄, ϵ̌}, ℓ′) (3)
in linear time of the size of S, where →′⊂ X × {ϵ̄, ϵ̌} ×
X, ℓ′(ϵ̄) = ϵ̄, ℓ′(ϵ̌) = ϵ̌, ℓ′ is also naturally extended to
ℓ′ : {ϵ̄, ϵ̌}∗ ∪ {ϵ̄, ϵ̌}ω → {ϵ̄, ϵ̌}∗ ∪ {ϵ̄, ϵ̌}ω, transitions x

ϵ̄−→ x′

are called fair transitions, transitions x
ϵ̌−→ x′ are called

bifurcation transitions; for every two states i, j ∈ X, (i)
(j, ϵ̄, i), (j, ϵ̌, i) /∈→′ if ¬A1, (ii) (x, ϵ̄, x′) ∈→′ if A1 ∧ A2 ∧
A3, (iii) (x, ϵ̌, x′) ∈→′ otherwise, where

A1 =(∃t ∈ T)[(j, t, i) ∈→],

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2169

A2 =(∄t ∈ T, j′ ∈ X)
[((j, t, j′) ∈→) ∧ (ℓ(t) = ϵ) ∧ (j′ ̸= j)],

A3 =(∀t ∈ T)[(((j, t, i) ∈→) ∧ (ℓ(t) ̸= ϵ)) =⇒
(∄t′ ∈ T, j′ ∈ X)
[((j, t′, j′) ∈→) ∧ (ℓ(t′) = ℓ(t)) ∧ (j′ ̸= i)]].

One sees that both fair transitions and bifurcations transi-
tions can be unobservable transitions or observable transi-
tions. Next we explain the relation between Bifur(S) and
the original automaton S. Here (i) holds if there is no
transition from state j to state i in S; (ii) holds if there
exists a transition from j to i, and none of such transitions
has a bifurcation in S; and (iii) holds if there is a transition
from j to i that has a bifurcation also in S. For the case
that (iii) holds, if A1 holds but A2 does not hold, then for
S one has {j} ⊊ M({j}, ϵ) and hence |M({j}, ϵ)| > 1;
if A1 and A2 hold but A3 does not hold, then for S
one has |M({j}, ϵ)| = 1, {i} ⊊ M({j}, ℓ(t̃′)), and hence
|M({j}, ℓ(t̃′))| > 1 for some t̃′ ∈ T with ℓ(t̃′) ̸= ϵ and
(j, t̃′, i) ∈→.
Simlarly to O(S), in Bifur(S), one also has for every two
states x, x′ ∈ X, there is at most one transition from x

to x′. If in S, there is a transition sequence x0
s−→ x

t−→
x′ with x0 ∈ X0 such that x

ϵ̌−→ x′ is a bifurcation
transition of Bifur(S), then either |M(S, ℓ(s))| > 1 or
M(S, ℓ(st′))| > 1 for some t′ ∈ To such that (x, t′, x′) ∈→.
Hence the occurrence of a bifurcation transition makes
an observed output sequence not allow reconstructing the
current state. One also has that for all states x and x′,
there is a transition from x to x′ in S if and only if
there is a transition from x to x′ in O(S) if and only
if there is a transition from x to x′ in Bifur(S). This
obvious observation is helpful in verifying instant strong
detectability.
Theorem 3.3: The instant strong detectability of finite-
state automata can be verified in linear time.

Proof Consider a finite-state automaton S = (X, T, X0, →
, Σ, ℓ) and its bifurcation automaton Bifur(S) defined by
(3). If Lω(S) = ∅, then S is naturally instantly strongly
detectable. By Proposition 3.2, it takes linear time of the
size of S to check whether Lω(S) = ∅. Next we assume that
Lω(S) ̸= ∅. If additionally |X0| > 1, then by definition
S is not instantly strongly detectable either. Next we
additionally assume that there is a unique initial state.
We claim that S is not instantly strongly detectable if and
only if in S, there is a transition sequence

x0
s1−→ x1

t−→ x2
s2−→ x3

s3−→ x3 (4)

with x0 ∈ X0, x1, x2, x3 ∈ X, s1, s2, s3 ∈ T ∗, t ∈ T
such that ℓ(s3) ∈ Σ+ and there is a bifurcation transition
x1

ϵ̌−→ x2 in Acc(Bifur(S)).

“if”: This holds because the cycle x3
s3−→ x3 with positive-

length label sequence can be extended to an infinite-length
transition sequence with infinite-length label sequence,
and either |M({x0}, ℓ(s1))| > 1 or |M({x0}, ℓ(s1t′))| > 1
for some t′ ∈ T such that ℓ(t′) ̸= ϵ and (x1, t′, x2) ∈→ by
the notion of bifurcation automaton.

x0 x1 x2 x3 x3
bifurcation +

Fig. 1. A sketch for verifying instant strong detectability
of finite-state automata.

“only if”: If S is not instantly strongly detectable, then
there is an infinite transition sequence x0

s1−→ x̄
s2−→ and

a finite transition sequence x0
s′

1−→ x̄′ such that x0 ∈ X0,
x̄, x̄′ ∈ X, x̄ ̸= x̄′, s1, s′

1 ∈ T ∗, ℓ(s1) = ℓ(s′
1), s2 ∈ T ω,

and ℓ(s2) ∈ Σω. Then s1, s′
1 ∈ T + since at least one of x̄

and x̄′ differs from x0. Moreover, |M({x0}, ℓ(s1))| > 1.
Hence in the transition sequence of Acc(Bifur(S)) that
has the same state sequence as x0

s1−→ x̄ of S, there is a
bifurcation transition. In addition, by the finiteness of X
and ℓ(s2) ∈ Σω, in S there is a cycle with positive-length
label sequence reachable from x̄.
We next check the above equivalent condition for instant
strong detectability. See Fig. 1 for a sketch.
(1) Compute the accessible part Acc(O(S)) of the obser-

vation automaton O(S) of S defined by (1).
(2) Compute the set Xc of states x3 of Acc(O(S)) that

belong to a cycle of Acc(O(S)) with positive-length
label sequence. (Then we have Xc ̸= ∅ by Lω(S) ̸= ∅.)

(3) Compute Acc(Bifur(S)).
(4) Check whether there is a bifurcation transition x1

ϵ̌−→
x2 in Acc(Bifur(S)) such that Xc is reachable from
x2. Such a bifurcation transition x1

ϵ̌−→ x2 exists if
and only if transition sequence (4) exists.

The first step and the third step both take linear time.
For the second step, we firstly compute all strongly con-
nected components of Acc(O(S)) in linear time. Observe
that for each strongly connected component, if it contains
a transition, then it contains a cycle containing all its
states and transitions. One then has that the set Xc

consists of all states of all strongly connected components
of Acc(O(S)) containing at least one observable transition.
Hence Xc can be computed in linear time.
Recall that Acc(Bifur(S)) and Acc(O(S)) have the same
set of states, and for every two states x and x′, there is a
transition from x to x′ in Acc(Bifur(S)) if and only if there
is a transition also from x to x′ in Acc(O(S)). Then the
fourth step consumes linear time of S by traversing from
Xc all paths along the inverse direction of transitions. □
Example 1: Consider the finite-state automaton S in
the left part of Fig. 2. Its observation automaton and
bifurcation automaton are shown in the middle part and
the right part of Fig. 2, respectively. It has a unique
initial state and generates a nonempty ω-language. In
addition, all its states are reachable. According to the proof
of Theorem 3.3, one then has Xc = {s0, s1}, and in its
bifurcation automaton there is a transition s0

ϵ̌−→ s1 such
that s1 in Xc is reachable from s1 in the transition. Then
S is not instantly strongly detectable.

Next we give an equivalent representation for instant
strong detectability by using formal languages, which
shows a particular interest of the property. That is, for
automaton S that generates a nonempty ω-language, it

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2170

s0

start

s1

s2

t1 (a)t2 (ϵ)

t3 (b)

t4(b)

t5 (b)

s2 s0

start

s1

ϵ̂

ϵ̂

ϵ̂

ϵ̂

s2 s0

start

s1

ϵ̄

ϵ̌

ϵ̌

ϵ̄

Fig. 2. A finite-state automaton (left), its observation automaton (middle), and its bifurcation automaton (right).

is instantly strongly detectable if and only if for every
σ ∈ L(S), all but at most a number |X| − 1 of longest
ones of its prefixes allow reconstructing the current states.
Theorem 3.4: Consider a finite-state automaton S =
(X, T, X0, →, Σ, ℓ) such that Lω(S) ̸= ∅. It is instantly
strongly detectable if and only if every σ ∈ L(S) can be
written as σ = σ1σ2, where |M(S, σ′

1)| = 1 for all σ′
1 ⊏ σ1

and |σ2| < |X|.

Proof “if”: For all σ̄ ∈ Lω(S) and all σ̄1 ⊏ σ̄, choose σ̄2
such that σ̄1σ̄2 ⊏ σ̄ and |σ̄2| = |X|, then σ̄1σ̄2 ∈ L(S),
and |M(S, σ̄1)| = 1, implying S is instantly strongly
detectable.
“only if”: If σ ∈ L(S) is a prefix of some configuration of
Lω(S), then one has |M(S, σ′)| = 1 for all σ′ ⊏ σ. Next
we suppose that σ is not a prefix of any configuration
of Lω(S). If |σ| < |X|, then we choose σ1 = ϵ and
σ2 = σ, and then we have |M(S, σ1)| = 1, otherwise S
is not instantly strongly detectable. Next we also suppose
|σ| ≥ |X|. Write σ = α1 . . . α|σ| with each αi in Σ. Choose
an arbitrary transition sequence x0

s1−→ · · ·
s|σ|−−→ x|σ| such

that x0 ∈ X0, x1, . . . , x|σ| ∈ X, si ∈ T +, ℓ(si) = αi,
for all i ∈ [1, |σ|]. Then x|σ| differs from any of the
other states x0, . . . , x|σ|−1, otherwise σ is a prefix of some
configuration of Lω(S). By the Pigeonhole Principle, there
exist |σ| − |X| ≤ k < l ≤ |σ| − 1 such that xk = xl. Hence
σ1 . . . σk(σk+1 . . . σl)ω ∈ Lω(S), and |M(S, σ1 . . . σi)| = 1
for all i ∈ [1, l] and |M(S, ϵ)| = 1, since S is instantly
strongly detectable. One also has |σ| − l < |X|, which
completes the proof. □
Similarly to Theorem 3.4, the following a little bit weaker
equivalent condition for instant strong detectability holds
without requiring automaton S to generate a nonempty
ω-language. That is, S is instantly strongly detectable if
and only if for every σ ∈ L(S) of length no less than |X|,
all but at most a number |X| − 1 of longest ones of its
prefixes allow reconstructing the current states. We omit
a similar proof.
Theorem 3.5: A finite-state automaton S = (X, T, X0, →
, Σ, ℓ) is instantly strongly detectable if and only if every
σ ∈ L(S) satisfying |σ| ≥ |X| can be written as σ = σ1σ2,
where |M(S, σ′

1)| = 1 for all σ′
1 ⊏ σ1 and |σ2| < |X|.

3.2 Verifying instant weak detectability of finite-state
automata

A notion of observer has been used to verify weak de-
tectability [Shu et al. 2007]. Due to the similarity be-
tween weak detectability and instant weak detectability,

we firstly use the observer to give an exponential-time
verification algorithm for instant weak detectability, and
then obtain a polynomial-time algorithm by reducing the
observer.
Consider automaton S = (X, T, X0, →, Σ, ℓ). The unob-
servable reach of X0 is defined by UR(X0) := {x′ ∈
X|(∃x0 ∈ X0)(∃s ∈ (Tϵ)∗)[(x0, s, x′) ∈→]}. For a subset
X ′ ⊂ X, its observable reach under σ ∈ Σ is defined
by Reachσ(X ′) := {x′ ∈ X|(∃x ∈ X ′)(∃t ∈ To)(∃s ∈
(Tϵ)∗)[(ℓ(t) = σ) ∧ ((x, ts, x′) ∈→)]}.
The observer of S is defined by a deterministic automaton

Sobs = (Q, Σ, {q0}, →obs),
where Q ⊂ 2X \ {∅} is the state set, q0 = UR(X0) is the
unique initial state, →obs⊂ Q × Σ × Q is the transition
relation and also extended recursively to →obs⊂ Q ×
Σ∗ ×Q, for every transition sequence (q0, σ, q) ∈→obs with
σ ∈ Σ+, q = M(S, σ).
Theorem 3.6: Automaton S is instantly weakly de-
tectable if and only if either Lω(S) = ∅ or in its observer
Sobs, there is a transition sequence from q0 to a cycle such
that all states in the sequence and the cycle, including q0,
are singletons.

Proof This result follows from the finiteness of the
number of states and the Pigeonhole Principle. □
The verification algorithm derived from Theorem 3.6 runs
in exponential time. Next, we improve this result to
obtain a polynomial-time verification algorithm. Consider
automaton S and its observer Sobs, construct a new
automaton

Ss
obs = (Q, Σ, {q0}, →s

obs),
where →s

obs⊂→obs, for every transition (q1, σ, q2) ∈→obs,
(q1, σ, q2) ∈→s

obs if and only if q1, q2 are singletons. Then
the following result directly follows from Theorem 3.6.
Theorem 3.7: Automaton S is instantly weakly de-
tectable if and only if either Lω(S) = ∅ or in automaton
Acc(Ss

obs), there is a cycle.

Automaton Acc(Ss
obs) can be computed in polynomial time

in the size of S. Furthermore, we obtain the polynomial-
time Algorithm 1 for verifying instant weak detectability.
Now we show that Algorithm 1 returns the correct answer
in polynomial time. In Line 1, by Proposition 3.2, it takes
linear time in the size of S to check whether Lω(S) = ∅
holds. By definition, if Lω(S) = ∅ then S is instantly
weakly detectable. Next we assume that Lω(S) ̸= ∅. In
Line 9, it takes time |X|2|Tϵ| to compute UR(X0). By
Theorem 3.7, if | UR(X0)| > 1, then S is not instantly
weakly detectable. Next we assume | UR(X0)| = 1. For

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2171

Algorithm 1
Input: A finite-state automaton S = (X, T, X0, →, Σ, ℓ)
Output: “YES” if S is instantly weakly detectable and

“NO” otherwise
1: if Lω(S) = ∅ then
2: return YES
3: break
4: else
5: if |X0| > 1 then
6: return NO
7: break
8: else
9: q0 := UR(X0)

10: if |q0| > 1 then
11: return NO
12: break
13: else
14: Initiate automaton Acc(Ss

obs) := (Q′, Σ, {q0},
→s

obs), where Q′ = {q0}, →s
obs= ∅

15: Q1 := ∅, Q2 := {q0}
16: while Q2 ̸= ∅ do
17: for q ∈ Q2 do
18: for σ ∈ Σ do
19: if | Reachσ(q)| = 1 then
20: →s

obs:=→s
obs ∪{(q, σ, Reachσ(q))}

21: if Reachσ(q) /∈ Q′ then
22: Q1 := Q1 ∪ {Reachσ(q)}
23: end if
24: end if
25: end for
26: end for
27: Q′ := Q′ ∪ Q1, Q2 := Q1, Q1 := ∅
28: end while
29: if there is a cycle in Acc(Ss

obs) then
30: return YES
31: break
32: else
33: return NO
34: break
35: end if
36: end if
37: end if
38: end if

every x ∈ X and every σ ∈ Σ, it takes time |To||X| +
|X|2|Tϵ| to compute Reachσ({x}). Hence it takes time
|To||X|2 + |X|3|Tϵ| to finish the while structure (Lines
16 through 28). After the while structure, automaton
Acc(Ss

obs) in Theorem 3.7 is generated. In Line 29, it takes
linear time in the size of the final Acc(Ss

obs) to check
whether there is a cycle in Acc(Ss

obs). Again by Theorem
3.7, S is instantly weakly detectable if there is a cycle, and
not instantly weakly detectable otherwise.
Example 2: Reconsider the automaton S shown in the
left part of Fig. 2. Its observer Sobs is shown in the left
part of Fig. 3, and the corresponding Acc(Ss

obs) is shown
in the right part of Fig. 3. By Theorem 3.6 and Sobs, one
has S is instantly weakly detectable, as aω ∈ Lω(S), and
M(S, an) = {s0} for all n ∈ N. On the other hand, by
Algorithm 1, since in Acc(Ss

obs) there is a cycle, then one
also has S is instantly weakly detectable.

s0

start

s1, s2 s1

a

b b

b

s0

start

a

Fig. 3. Observer Sobs of the automaton S in the left part
of Fig. 2 (left), and the corresponding automaton
Acc(Ss

obs) (right).

4. CONCLUSION

In this paper, we studied results on instant strong de-
tectability and instant weak detectability of finite-state
automata. We gave fast polynomial-time verification al-
gorithms for both properties. How to extend these results
to labeled Petri nets are future interesting questions.

REFERENCES
Jančar, P. (1994). Decidability questions for bisimilarity of

Petri nets and some related problems. In P. Enjalbert,
E.W. Mayr, and K.W. Wagner (eds.), STACS 94, 581–
592. Springer Berlin Heidelberg, Berlin, Heidelberg.

Masopust, T. (2018). Complexity of deciding detectability
in discrete event systems. Automatica, 93, 257–261.

Masopust, T. and Yin, X. (2019). Deciding detectability
for labeled Petri nets. Automatica, 104, 238–241.

Sasi, Y. and Lin, F. (2018). Detectability of networked dis-
crete event systems. Discrete Event Dynamic Systems,
28(3), 449–470.

Shu, S. and Lin, F. (2011). Generalized detectability
for discrete event systems. Systems & Control Letters,
60(5), 310–317.

Shu, S. and Lin, F. (2013). Delayed detectability of dis-
crete event systems. IEEE Transactions on Automatic
Control, 58(4), 862–875.

Shu, S., Lin, F., and Ying, H. (2007). Detectability of dis-
crete event systems. IEEE Transactions on Automatic
Control, 52(12), 2356–2359.

Tong, Y., Lan, H., and Guo, J. (2019). Verification of
detectability in labeled Petri nets. In 2019 American
Control Conference (ACC), 5627–5632.

Zhang, K. (2017). The problem of determining the weak
(periodic) detectability of discrete event systems is
PSPACE-complete. Automatica, 81, 217–220.

Zhang, K. and Giua, A. (2018). Weak (approximate)
detectability of labeled Petri net systems with inhibitor
arcs. IFAC-PapersOnLine, 51(7), 167–171.

Zhang, K. and Giua, A. (2019). K-delayed strong de-
tectability of discrete-event systems. In 2019 IEEE 58th
Conference on Decision and Control (CDC), 7647–7652.

Zhang, K. and Giua, A. (2020). On detectability of labeled
Petri nets and finite automata. Discrete Event Dynamic
Systems, in press, 33 pages.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2172

