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Abstract: Variable pitch quadrotors can experience actuation faults and failures of two main
types: one type related to the rotor system and the other one related to the blade pitch servo. In
this paper, we face the fault tolerant attitude tracking problem for a variable pitch quadrotor,
in case of partial loss of effectiveness of the rotor system or lock-in-place of the blade pitch
servo. The proposed solution is based on the combination of the Disturbance Observer Based
Control design paradigm together with that of Active Fault Diagnosis. In detail, an observer
is designed for estimating the thrust produced by each rotor. An active diagnosis scheme is
adopted to discriminate which fault/failure is affecting the system. Finally, a control allocation
algorithm solves the optimal redistribution problem of the control effort among the rotors,
subject to different constraints. The proposed overall optimal fault tolerant control scheme can
be coupled with most of the nonlinear control laws commonly applied to conventional, fixed
pitch, quadrotor systems. Numerical simulations show the capability of the proposed scheme to
handle both loss of effectiveness of the rotor system or lock-in-place of the blade pitch servo.

Keywords: UAVs; Fault detection and diagnosis; Fault accommodation and Reconfiguration
strategies; Active Fault Diagnosis; Applications of FDI and FTC.

1. INTRODUCTION

The most common multirotor configuration, namely the
quadrotor, is equipped with four fixed pitch blades con-
nected to a motor, controlled by an independent Electronic
Speed Controller (ESC). Variable Pitch (VP) quadrotors,
instead, can vary both the rotation speed of each motor
and the blade pitch of each propeller, resulting in rele-
vant advantages w.r.t. Fixed Pitch (FP) quadrotors: they
possess higher thrust rate of change, reverse thrust, allow
reverse flight capabilities, and scale well with size (Cutler
et al., 2011; Cutler and How, 2012; Gupta et al., 2016).

From a control point of view, both FP and VP quadrotors
have similar dynamics, making it possible to easily adapt
control laws designed for FP quadrotors to the VP ones.
The main difference, instead, lies at the control allocation
level, since the pitch of each propeller can be varied: this
results in additional degrees of freedom for the allocation,
which can be exploited to satisfy additional constraints
such as minimizing energy consumption, handling the
presence of faults and failures, etc.

The control allocation strictly depends on the model of the
thrust provided by each rotating propeller (Pretorius and
Boje, 2014; Fresk and Nikolakopoulos, 2014; Cutler and
How, 2015; Gupta et al., 2016; Arellano-Quintana et al.,
2018), and two main alternatives are proposed in the liter-
ature. The simpler one is to assume constant motor speeds
and use pitch angles as sole control inputs, as proposed in
Cutler et al. (2011); Pretorius and Boje (2014); Gupta

et al. (2016); Pang et al. (2016). A less common (and
more complex) alternative is to exploit both pitch angles
and motor speeds to produce the desired thrust, as done
in Sheng and Sun (2016); Arellano-Quintana et al. (2018)
(and, partially, in Fresk and Nikolakopoulos (2014); Porter
et al. (2016)). The latter alternative is harder to solve
online, due to its inherent nonlinearity, but at the same
time it provides input redundancy which is necessary to
provide actuator fault tolerance while satisfying actuation
constraints.

By the way, none of the previous works deal with ac-
tuator faults or failures in VP quadrotors. Actuation
fault/failures in this kind of vehicles are mainly of two
types: they may affect the rotor system (ESC, motor, and
propeller) or the blade pitch servo. As for the rotor system,
the most common fault consists in a Loss Of Effectiveness
(LOE), i.e., the produced thrust is reduced with respect to
the commanded/desired one, eventually degenerating into
a failure when the thrust is zero. LOE has many causes:
battery voltage affects thrust (Podhradskỳ et al., 2013),
pitch increase may slow down motor speed due to increased
drag (Cutler and How, 2015), and finally any physical
damage to the rotor system should also be considered.
As for the pitch servo instead, lock-in-place is a common
failure in electromechanical servo actuators (Qiao et al.,
2018), namely the blade pitch becomes stuck and can not
be changed anymore.

In this paper, we propose a Fault Tolerant Control (FTC)
scheme to solve the attitude tracking problem for a VP
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quadrotor. The scheme can deal with both rotor system
faults and lock-in-place failures, while taking into account
both actuator saturation and rate limits. In detail, assum-
ing accessible state, a nonlinear observer is developed to
detect thrust anomalies. When an anomaly is detected,
an active diagnosis strategy is adopted to discern between
LOE or lock-in-place, and provides the estimation accord-
ingly. The control allocation algorithm exploits such infor-
mation and distributes the control efforts among the actu-
ators, commanding both blade pitches and motor speeds
in case of LOE (accommodation policy), while modifying
the motor speed only for the corresponding locked-in-place
pitch servo (reconfiguration policy).

The paper is structured as follows. The mathematical
model of the quadrotor is shortly introduced in Section 2.
Section 3 is devoted to the design of the control scheme. In
Section 4, the fault detection, isolation, and estimation al-
gorithms are detailed. Numerical simulations are presented
in Section 5 and conclusions end the paper.

2. SYSTEM MODEL

The mathematical model of VP drones is not so different
from its FP counterpart: the only difference is the way
forces and moments are generated. We follow a Newton-
Euler approach, as we have done in the previous work
Lanzon et al. (2014) regarding FP drones, where we have
considered an earth fixed frame OE − {xE , yE , zE} and
a body fixed frame OB − {xB , yB , zB}, together with a
roll, pitch, yaw convention. Let ϕ, θ, and ψ be the roll,
pitch, and yaw angles, let p, q, and r be the rotational
speeds along the axes of OB , let z be the zE component
of the center of mass position in the earth frame and g
the gravitational acceleration (see Fig. 1(a)). We denote
with τp, τq, and τr the generalized torques provided by the
actuators, and we define the artificial variables up = τp/l,
uq = τq/l, and ur = τr. Moreover, we denote with uf the
upward lift force produced by the actuators, and acting
on the center of mass. Neglecting the gyroscopic effect,
the following model describes the attitude and altitude
dynamics of a generic multirotor drone (please refer to
Table 1 for the meaning of each parameter):

Ixṗ = −qr(Iz − Iy)− krpp+ lup
Iy q̇ = −pr(Ix − Iz)− krqq + luq
Iz ṙ = −pq(Iy − Ix)− krrr + ur
ϕ̇ = p+ q sin(ϕ) tan(θ) + r cos(ϕ) tan(θ)

θ̇ = q cos(ϕ)− r sin(ϕ)

ψ̇ = (q sin(ϕ) + r cos(ϕ))/ cos(θ)

mz̈ = −cos(ϕ) cos(θ)uf − ktż +mg

(1)

The vector u = [uf up uq ur]
T

represents the general-
ized virtual inputs for the system, namely the control
forces/torques we want to generate in order to fly the sys-
tem. The way how these forces/torques are then effectively
generated is related to the rotors configuration.

2.1 Input mapping

Let us consider the case of rectangular, untwisted blades
with uniform inflow. As long as the propeller is not
stalling, the thrust Ti and the torque Qi of each rotor,
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Fig. 1. Variable pitch quadrotor.

i = 1, . . . 4, can be expressed as a function of thrust
coefficient and rotational speed using blade element theory
and momentum theory (Gupta et al., 2016):

Ti = (CTi(αi)ρπR
4)w2

i ω
2
i
.
= cL(αi)w

2
i ω

2
i (2)

Qi = (CQi(αi)ρπR
5)w2

i ω
2
i
.
= cD(αi)w

2
i ω

2
i (3)

where ωi > 0 is the rotational speed of the i-th mo-
tor, wi are additional (unknown, nominally equal to 1)
parameters that take into account potential thrust loss
effects (as it will be discussed in the following section), and
cL(αi), cD(αi) are the lift and drag coefficients. CTi(αi)
and CQi(αi) are dimensionless thrust and torque coef-
ficients: assuming steady, linearized blade aerodynamics
(see Leishman (2006) for further details), they nonlinearly
depend on the pitch angle αi as follows:

αi =
6CTi
σClαi

+
3

2

√
CTi
2

(4)

CQi =
C

3/2
Ti√
2

+
1

8
σCd0i (5)

As rectangular untwisted blades are symmetric, the equa-
tions (4) and (5) in Leishman (2006) can be extended to
the case of negative pitch angles, obtaining a negative lift
coefficient because the thrust changes direction, while the
drag coefficient remains positive because it counteracts the
propeller rotation. In particular, the resulting CTi(αi) is
an odd function of αi, while CQi(αi) becomes an even
function of αi. Also note that it is not possible to ob-
tain an explicit function CTi(αi) from (4) in terms of
elementary functions. We assume that the pitch angles
αi and the motor speeds ωi represent control variables
(see Fig. 1(b)), where the former are commanded via pitch
servo-actuators and the latter are commanded by means
of ESCs. The system is inherently overactuated: for each
given control command u, more than one combination of
control variables αi, ωi that produce such effort exist. The
input mapping is finally given by

uf = cL(α1)w2
1ω

2
1 + cL(α2)w2

2ω
2
2

+cL(α3)w2
3ω

2
3 + cL(α4)w2

4ω
2
4

up = −cL(α2)w2
2ω

2
2 + cL(α4)w2

4ω
2
4

uq = −cL(α1)w2
1ω

2
1 + cL(α3)w2

3ω
2
3

ur = −cD(α1)w2
1ω

2
1 + cD(α2)w2

2ω
2
2

−cD(α3)w2
3ω

2
3 + cD(α4)w2

4ω
2
4

(6)
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Fig. 2. Overview of the control scheme.

2.2 Actuator dynamics and faults

Both the motor and the pitch servo have fast dynamics if
compared with the vehicle dynamics, hence they can be
modeled with simple saturations and rate limits, as done
in Cutler et al. (2011). Two major actuator faults/failures
may occur:

• servo-actuator failure: the pitch angle becomes unre-
sponsive (lock-in-place);
• rotor fault: the produced thrust is lower than ex-

pected (wi < 1, LOE, e.g., the actual motor speed
may differ from the commanded one).

As we independently control pitch and speed of each actua-
tor, both issues can be overcome effectively in many cases,
provided that the fault and/or failure are diagnosed in
short time. On the contrary, in case of rotor complete fail-
ure (or, similarly, stuck pitch in feathered position), there
is no further actuator redundancy to be exploited (Mancini
et al., 2007; Baldini et al., 2019a) and the quadrotor
vehicle becomes underactuated: the tracking task cannot
be performed anymore, hence different strategies must be
adopted to safely land the vehicle (Lanzon et al., 2014).

3. CONTROL ALLOCATION

The overall control scheme is reported in Fig. 2. As-
suming the reference is provided, any (nonlinear) control
law giving un, namely the nominal generalized control
forces/torques, is suitable for this scheme, because accom-
modation and reconfiguration are performed by the control
allocation algorithm. The actuator faults and the vehicle
dynamics have been already discussed in Section 2, while
the Fault Detection and Diagnosis (FDD) module will be
discussed in the Section 4.

The proposed solution avoids nonlinear programming al-
gorithms, which may result slow, and relies on reasonable
approximations to make the problem linear. Let us define
čL(αi) and čD(αi) as polynomial functions (fourth and
second order, respectively) that approximate cL(αi) and
cD(αi) respectively, that is to say the inverse of (4), (5).
There, the approximation error in |αi| > 3◦ is up to 1.7%
for the lift and up to 4.3% for the drag coefficient (see
Fig.3). We rewrite (6) as u = BT , namely:

Fig. 3. Lift and drag coefficients, polynomial approxima-
tions.

ufupuq
ur

 =

 1 1 1 1
0 −1 0 1
−1 0 1 0

−cD/cL cD/cL −cD/cL cD/cL


T1T2T3
T4

 (7)

where T = [T1 T2 T3 T4]
T

are the upward lift forces
defined in (2). The relation is still nonlinear, because the
allocation matrix is input-dependent, but we also note that
cD(αi)/cL(αi) is almost constant when αi is sufficiently
distant from zero (|αi| > 3◦), which is true in the most
effective pitch configurations: in fact, small pitch angles in-
volve very low lift forces and thus they are avoided in most
of the flight time. Hence we approximate cD(αi)/cL(αi)
with čD(α̂i)/čL(α̂i), where α̂i is the blade pitch estimated
by the FDD module, resulting in the locally approximated
allocation matrix B̌, which is numerical. We rewrite (7) in
the Quadratic Programming (QP) framework considering
the energy-like cost function and constraints:

min
T
‖T‖2

s.t. B̌T = un
Timin ≤ Ti ≤ Timax (∀i = 1, . . . , 4)

(8)

where Timin
and Timax

are calculated at each step as:

Timin =

{
čL(αimin)ŵ2

i ω
2
imin if čL(αimin) ≥ 0

čL(αimin)ŵ2
i ω

2
imax if čL(αimin) < 0

Timax
=

{
čL(αimax)ŵ2

i ω
2
imax if čL(αimax) ≥ 0

čL(αimax)ŵ2
i ω

2
imin if čL(αimax) < 0

(9)

and the bounds of αi and ωi are given by the constraints:
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αimin = max ( αmin , α̂i − κidαi )
αimax = min ( αmax , α̂i + κidαi )
ωimin = max ( 0 , ωipr − dωi )
ωimax = min ( ωmax , ωipr + dωi )

(10)

Note that the bounds Timin and Timax depend on the
current pitch angles. This makes possible to consider con-
straints on both the instantaneous values of Ti and its
rate. Moreover, ŵi is the rotor system LOE estimated by
the FDD module, αmin, αmax, 0, ωmax model the actuator
saturation, dαi , dωi model the maximum variation in one
allocation step (in nominal conditions), κi ∈ {0, 1} is
employed to lock the pitch angle when necessary (reconfig-
uration), and ωipr represents the solution of the previous
allocation step. We solve the constrained QP problem
with the weighted least squares method (Harkegard, 2002)
because of its short computation time and its capability
to cope with feasible and unfeasible constrained problems.
It solves the following relaxed problem with an active set
method:

Tall = arg min
T

[ ‖T‖2 + γ‖Ξ(B̌T − un)‖2]

s.t. Timin
≤ Ti ≤ Timax

(∀i = 1, . . . , 4)
(11)

where γ = 106 prioritizes the constraint B̌T = un and
Ξ = diag([1, 1, 1, 100]) is a weighting matrix to cope with
the unbalanced values in the rows of B̌.
Once Tall is obtained, it is necessary to find the cou-
ples (αalli , ωalli) such that Talli = čL(αalli)ŵ

2
i ω

2
alli

(∀i =
1, . . . , 4), which is certainly possible because Tall satisfies
the box constraint in (11). Among the possible solutions,
we prefer to keep the motor speed as constant as possible,
because the pitch angle is more responsive (Cutler and
How, 2015), and to vary motor speed only when the pitch
alone is not sufficient to obtain the desired thrusts.

4. FAULT DIAGNOSIS AND ACCOMMODATION

The fault diagnosis problem consists in estimating both
the LOE of the rotor system wi and the blade pitch αi, as
well as providing the index of the eventually stuck pitch
servo. The problem can be solved (see Fig. 4) given the
knowledge of:

• the allocated pitch angles αall
• the allocated motor speeds ωall
• the measure y of the state variables

where for allocated we mean the output of the allocation
algorithm (also see Fig. 2). Since the problem requires the
determination of eight independent variables (estimation
of α and ω) which affect only the last four equations
of (1), the problem cannot be solved without additional
knowledge (e.g., measuring jerk), thus we propose the
policy described in the following. First of all, we recover the
allocated forces Tall and the allocated generalized inputs

uall =
[
uallf uallp uallq uallr

]T
:

Talli = čL(αalli)ŵ
2
i ω

2
alli (i = 1, . . . , 4) (12)

uall = B̌Tall (13)

We remark that uall may differ from un for two reasons:
the allocation performs some approximation, and the effort
un may be infeasible due to the constraints.

4.1 Input observer

The allocated input uall can be substantially different
from the actual input u acting on the vehicle, because
of the presence of actuator faults. The following input
observer provides an estimation of this difference, namely
∆u = u−uall, which is bounded if we neglect the presence
of measurement noise and we assume uall and u̇all are
bounded as well. Such boundedness conditions also ensures

that
∥∥∥∆̇u

∥∥∥ ≤ ρ for some ρ > 0.

Let us define η1 = [z ϕ θ ψ]T and η2 = [ż p q r]T , so that
model (1) can be rewritten in the form

η̇1 = γ1(η1, η2) (14)

η̇2 = γ2(η2) + Γ(η1)uall + Γ(η1)∆u (15)

where γ1 and γ2 are four dimensional vectors, Γ is a square
matrix of order four and all of their entries are smooth
with respect to the denoted variables. Moreover, Γ(η1) is
invertible for −π2 < ϕ, θ < +π

2 .

We define the variable

s = −λ(η1, η2) + ∆u (16)

where λ(·, ·) is a continuously differentiable function to
choose. We can show that, after some manipulation (fol-
lowing the DOBC framework as in Chen et al. (2016)), the
dynamics of s is

ṡ = −∂λ(η1, η2)

∂η2
Γ(η1)s+R(η1, η2, uall) + ∆̇u (17)

where

R(η1, η2, uall) = −∂λ(η1, η2)

∂η1
γ1(η1, η2)

− ∂λ(η1, η2)

∂η2
[γ2(η2) + Γ(η1)(λ(η1, η2) + uall)]

is a function of known variables. We can find an observer
in the form

˙̂s = −∂λ(η1, η2)

∂η2
Γ(η1)ŝ+R(η1, η2, uall) (18)

∆̂u = ŝ+ λ(η1, η2) (19)

The dynamics of the observation error s̃ = s−ŝ is described
by

˙̃s = −∂λ(η1, η2)

∂η2
Γ(η1)s̃+ ∆̇u (20)

which can be made ultimately bounded choosing

λ(η1, η2) = Φ(η1)Γ(η1)−1η2 (21)

where Φ(η1) ∈ R4×4 is any matrix such that

ΦT (η1)P + PΦ(η1) ≥ α0I ∀η1 (22)

for some symmetric positive definite matrix P ∈ R4×4

and α0 > 0. Indeed, consider the Lyapunov function
V = s̃TP s̃, it follows that

V̇ = −s̃T
[
ΦT (η1)P + PΦ(η1)

]
s̃+ 2s̃TP ∆̇u

≤ −α0 ‖s̃‖2 + 2ρ ‖P‖ ‖s̃‖
(23)

which is negative for ‖s̃‖ ≥ 2ρ ‖P‖ /α0, and hence s̃ is

ultimately bounded. The estimation error ∆̃u = ∆u− ∆̂u
is

∆̃u = [s+ λ(η1, η2)]− [ŝ+ λ(η1, η2)] = s− ŝ = s̃ (24)

and then
˙̃

∆u = ˙̃s, thus ∆̃u is ultimately bounded as well.
Any constant symmetric positive definite matrix Φ(η1)
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Fig. 4. Detail of the fault detection and diagnosis algorithm.

satisfies (22), hence we impose Φ(η1) = kobsI4, where
kobs > 0 is a project parameter.

4.2 Loss of effectiveness estimation

In order to obtain an estimation of the LOE, let us start
assuming there are no stuck faults at this stage. From the

knowledge of û = uall + ∆̂u, we can estimate the LOE
wi of each actuator, assuming that no servo failures occur
(their presence is tackled later). In fact, we can calculate

T̂ = B̌−1û (25)

ˆ̄wi =

√
T̂i

čL(αalli)ω
2
alli

(i = 1, . . . , 4) (26)

A single solution always exists, because we know that T̂i
and čL(αalli) have the same sign, ωalli > 0 in any working
condition and hence we require ˆ̄wi to be positive as well.
Finally, it is necessary to low pass filter ˆ̄wi to counter the
effects of sensor noise: in this way, we obtain the estimation
ŵi of wi, that measures the LOE of each i-th actuator.
The estimation ŵi is then fed to the control allocation
algorithm, in order to compensate such thrust loss.

4.3 Severe fault detection

The difference between Tall and T̂ is minimal when w
varies slowly, since the allocation algorithm performs an
online accommodation exploiting ŵ. Abrupt variations
of w, instead, as well as servo failures, make T̂ differ
significantly from Tall. As such, the residual rd = Tall − T̂
is adopted for severe fault detection. Due to the presence of
noise, basic thresholding is not sufficient and we evaluate
each scalar residual rdi (i = 1, . . . , 4), with a Narendra
filter (Hecker et al., 2011):

ξ̇i = −γNξi + ‖rdi‖2

θi = αN‖rdi‖+ βN
√
ξi

(27)

where αN ≥ 0, βN > 0, γN > 0 are design parameters to
choose according to the measurement noise. The following
adaptive threshold δ is defined:

δ = δN +

4∑
i=1

θi
4

(28)

where δN is a constant term depending on the noise am-
plitude, while the second term accounts for simultaneous
variations of each θi. When a severe fault occurs, if we

assume the probability of simultaneous severe faults to be
negligible, then we expect the threshold δ to be crossed
by a single θi. When a steep reference change is provided
instead, all θi are expected to increase and possibly cross
the threshold δ as the result of inaccurate estimation in
fast transients. Using such adaptive method, if θi < δ,
then no severe fault is happening (i.e., ifaulty = 0 in Fig.
4), instead if θi > δ then the i-th actuator is subject to
a severe fault (i.e., ifaulty = i in Fig. 4) and we need to
determine whether this is the consequence of an abrupt
LOE or of a servo failure.

4.4 Active fault diagnosis

Once the faulty actuator has been isolated, a feasible
strategy to distinguish between pitch servo failure or
abrupt rotor fault is necessary. In fact, note that the effects
of pitch failure and abrupt LOE on the same actuator
are not separable with passive methods, because they
share the same input channel. For this reason, an Active
Fault Diagnosis (AFD) solution is here adopted, which in
general consists in using an auxiliary input signal that is
injected into the monitored system in order to improve the
quality of decision (Gao et al., 2015; Punčochář and Škach,
2018). The triggering event that starts the procedure is
the detection of a severe fault, i.e., ifaulty 6= 0. Then, the
injection is kept for a fixed time length, and the decision
is made at the end of the interval. The main concern is
to ensure that the active diagnosis does not compromise
stability, so we propose the following maneuver, which has
no impact at all in absence of faults and failures.
Let us assume the quadrotor is hovering, for the sake
of clarity: the i-th thruster has to provide an upward
force Tn,i, hence the control allocation generates a couple
(αalli , ωalli) such that Talli = čL(αalli)ŵ

2
i ωalli ≈ Tn,i.

We suppose an accurate estimation ŵi of wi is available
and αi > 0 because we are hovering. If we force αalli to
decrease, the allocation increases ωalli to prevent Talli from
dropping (as long as saturation and rate limit allows it).
In presence of faults, the actual force Ti differs from the
allocated one Talli , depending on the nature of the fault:

• if the pitch angle is stuck, αi > αalli → Ti > Talli ;
• if the rotor is faulty, w2

i ω
2
i < ŵ2

i ω
2
alli
→ Ti < Talli .

Due to the presence of noise and detection delays, this idea
is not usable in this form, moreover we only dispose of the
estimation T̂i of Ti. So, the input injection consists in com-
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manding the allocation to constrain a strictly decreasing
αalli over time for a fixed time length, and we introduce

di =
T̂i − Talli

T̂i
≈
cL(αi)w

2
i ω

2
i − čL(αalli)ŵ

2
i ω

2
alli

cL(αi)w2
i ω

2
i

(29)

It can be shown that an abrupt fault on the rotor system
makes di < 0 as soon as the speed increases; on the
contrary, a stuck pitch makes di > 0 as soon as αalli < αi,
which is not necessarily true when the active detection
starts, because αalli may have increased during the detec-
tion delay while αi was stuck. As a precaution, we freeze
the value of ŵi (for the calculation of di only, and eventu-
ally for the subsequent stuck estimation) at the beginning
of the active diagnosis phase, to prevent it from converging
to wi and thus complicating the diagnosis. Finally, to cope
with noise, we use a run-sum test (Isermann, 2006), voting
on the basis of the sign of di, and we weigh more the
last samples, because they have a greater chance to satisfy
αalli < αi in the case of servo failures. The result of the
run-sum test, after a fixed time length active diagnosis,
is the decision whether the i-th rotor is affected by an
abrupt fault or the i-th pitch angle is locked-in-place. In
the first case, no additional action is taken, because the
estimation (26) will converge to wi. In the second case, it
is also necessary to estimate the stuck pitch angle for a
correct allocation of the control effort.

4.5 Stuck estimation

Once the servo failure on actuator i has been isolated, the
estimation of αi is straightforward: it is sufficient to isolate
cL(αi) from (6), and then to substitute each w2

i ω
2
i with

ŵ2
i ω

2
alli

and each cL(αj), j 6= i, with čL(αallj ). We obtain
a system of four linear equations in the only unknown αi:
there are no unknowns in one of the equations (the second
or the third, depending on i), hence such equation can be
removed. Moreover, the fourth equation depends on cD(αi)
while the others depend on cL(αi), so the fourth equation
is arbitrarily discarded to avoid further approximations.
In conclusion, cL(αi) is obtained as the least squares
solution of the linear system made of the remaining two
equations, and ˆ̄αi is consequently calculated using (4).
The estimation α̂i is obtained low pass filtering ˆ̄αi, to
reduce the impact of noise. Finally, the reconfiguration
block feeds the information about the current pitch angles
to the allocation algorithm, including the status of the
pitch servo and, eventually, the estimation of the stuck
pitch angle. If the i-th servo is not affected by a failure,
we set α̂i = αalli instead.

5. SIMULATION RESULTS

We have tested the control scheme in simulation with a
VP quadrotor whose parameters are reported in Table 1.
The control law is based on feedback linearization (see, for
example, Zhou et al. (2010); Baldini et al. (2019b)); more-
over, to increase realism of the simulation, the effectiveness
of each motor wi is supposed to slightly decrease when
the respective propeller drag coefficient cDi increases. Ac-
celerometer and gyroscope additive white gaussian noise
is simulated according to the datasheet of the (TDK
InvenSense, 2016) MPU-9250 IMU, which is commonly
adopted by the commercial Cube autopilot (also known

as Pixhawk 2 autopilot). Noise on the remaining state
variables is assumed to be one order of magnitude lower
due to Kalman filtering.

Table 1. Quadrotor parameters.

Parameter Name Value Unit

Total system mass m 1.37 [kg]
Inertia about xB , yB Ix,Iy 7.5 · 10−3 [kg ·m2]
Inertia about zB Iz 1.3 · 10−2 [kg ·m2]
Arm length l 0.3 [m]
Lift curve slope clα 5.23 [−]
Zero lift drag coefficient cd0 0.01 [−]
Propeller radius R 0.18 [m]
Propeller chord c 0.03 [m]
Rotor solidity σ 0.106 [−]
Gravitational acceleration g 9.81 [m/s2]
Air density ρ 1.225 [kg/m3]
Linear friction coefficient kt 4.8 · 10−2 [N · s/m]
Roll friction coefficient krp 5.6 · 10−4 [N · s ·m]
Pitch friction coefficient krq 5.6 · 10−4 [N · s ·m]
Yaw friction coefficient krr 5.6 · 10−4 [N · s ·m]
Minimum pitch angle αmin −19 [deg]
Maximum pitch angle αmax 19 [deg]
Pitch angle rate limit dαi 630 [deg/s]
Maximum motor speed ωmax 339 [rad/s]
Motor speed rate limit dωi 7330 [rad/s2]

5.1 Single flight

We propose a simulation where three faults occur. In
particular, actuator 2 experiences a gradual LOE at t = 5s,
servo 3 fails (i.e. lock-in-place) at t = 10 s and actuator 4
is subject to an abrupt LOE at t = 15 s (see Figs. (6)-(7)).
The reference trajectory and the tracking performances are
reported in Fig. 5. The first fault is not sufficiently abrupt
to make the residual overcome the threshold (see Fig.
8), so no AFD is triggered and a simple accommodation
thanks to ŵi (Fig. 7) is performed, and the commanded
motor speed is increased consequently. The tracking per-
formances temporarily decrease, see in particular ϕ in
Fig. 5. The second fault is detected after 274 ms: the AFD
ends after additional 50ms, it isolates the failure in servo 3
(stuck) and commands control reconfiguration, thus avoid-
ing to use αall3 as a control variable. The pitch estimation
error is less than 0.6deg, and the LOE estimation shows an
offset that partially compensates for the pitch estimation
error. The tracking performances do not show significant
variations in this time interval. Finally, the third fault is
detected after 96ms: the AFD isolates a LOE in rotor 4, so
no reconfiguration is performed. A transient performance
deterioration occurs until the LOE estimation ŵ4 settles
to the right value.

5.2 Error analysis

We have performed 100 simulations with the same ref-
erence of the previous scenario, injecting in each test
only one severe LOE or servo failure. In 50 simulations,
a random servo fails at t ∈ [1, 15]s; in the remaining
simulations, a random rotor is affected by a LOE which
starts at t ∈ [1, 15]s and decreases to wi ∈ [0.8, 0.95] after
∆t ∈ [0.1, 0.5]s. The random variables are independently
uniformly distributed in their interval. The results are re-
sumed in Table 2, which reports the success rates, namely
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Fig. 5. Tracking performances.

Fig. 6. Control inputs.

Fig. 7. Loss of effectiveness and its estimation.

the number of flights correctly executed without crash.
The servo failure seems to be less critical than abrupt
LOE: the FTC scheme manages positively 48 cases, while
the remaining ones are detected but they are tackled too
late for the vehicle to recover. If the pitch failure detection

Fig. 8. Residual evaluation.

is disabled (i.e., the adaptation using ŵ is active, while
no stuck detection is performed), 17 flights are completed
successfully because ŵ alone is sufficient to avoid a crash,
but the system shows a degradation of performances. In
case of abrupt LOE, 42 scenarios are managed positively
by the proposed scheme, while in absence of adaptation
all of the flights fail. This means that the control law
itself cannot withstand abrupt thrust losses (up to 40%
of the lift force when the fault occurs) in such aggressive
maneuvering.

Table 2. Success rate in presence and in ab-
sence of FTC

FTC non FTC

Servo failure 48/50 17/50
Abrupt LOE 42/50 0/50

6. CONCLUSION

We have proposed a control scheme for variable pitch
quadrotors to cope with two kinds of actuator faults that
affect the same input channel: pitch lock-in-place and
rotor LOE. We have used AFD to determine the nature
of the fault and then to eventually command a control
reconfiguration that involves only the control allocation
level. Simulation results show the severe consequences
of such actuator faults if not tackled, as well as the
effectiveness of the proposed solution. As a future work,
we are experimentally investigating whether the following
approach can cope with a bent or chipped propeller, which
is a common damage in real flights. We are also developing
a variable time interval to shorten the AFD in case of LOE,
in order to increase the success rate in presence of abrupt
LOE.
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