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1. INTRODUCTION 

In control theory, Phase and Gain Margins (PM and GM) are 

considered as ubiquitous stability indicators for Linear Time 

Invariant (LTI) feedback control systems in presence of 

dynamic uncertainties (regular or parasitic) [Dorf and Bishop, 

2010]. However, the inability to define such margins for 

characterizing the robustness of Nonlinear (NL) Control 

Systems to unmodeled dynamics (UD) creates a huge issue in 

the design and modelling such systems. Therefore, there is a 

need to introduce new definitions of PM and GM for NL 

systems which are reliable, mathematically proven and 

practically measurable. 

Nevertheless, there exists few results aligned with computing 

PM/GM for NL systems. In [Chang, Chang and Han, 1993], a 

rudimentary idea of PM and GM for NL control systems are 

presented. A phase margin like parameter named Singular 

Perturbation Margin (SPM) is introduced for LTI in [Yang and 

Zhu, 2012] and extended to Nonlinear Time Invariant (NLTI) 

systems in [Yang and Zhu, 2016]. However, PM/GM of NL 

systems are not clearly defined in these works and only 

applicable for a smaller set of NL systems. Another attempt has 

been made in defining of Practical Phase and Gain Margins 

(PPM/PGM) for Sliding Mode Controllers in [Shtessel, 

Foreman and Tournes, 2011] and for Finite Time Convergent 

Controllers in [Rosales, Shtessel and Fridman, 2018]. A novel 

concept of Stability Margin identification based on the 

Describing Function – Harmonic Balance (DF/HB) [Khalil, 

2002] and Circle Criterion (CC) [Khalil, 2002] was introduced 

in the authors’ previous work [Das, Shtessel and Plestan, 2018], 

derived for Lur’e type NLTI systems, which are a class of NL 

systems with a linear block connected by a feedback connection 

to a sector nonlinearity. 

In this paper, PM is defined for Lur’e type NLTI systems as the 

systems’ robustness to cascade UDs and corresponding 

algorithms are developed via DF/HB and CC based techniques. 

Note that unlike the algorithms presented in [Das, Shtessel and 

Plestan, 2018] which rely on an extended geometrical 

interpretation of the Nyquist Stability Criteria (NSC), the 

algorithms presented in this work are refined and simplified 

with no dependency on NSC. Also, a novel Lyapunov’s Second 

Method (LSM) [Khalil, 2002] based technique is introduced for 

PM identification in NLTI system. In this method, the NLTI 

system is augmented with a UD and then a Quadratic Lyapunov 

Function (QLF) for this system is introduced that gives a 

sufficient proof of stability via LSM. This QLF can be 

transformed as convex or quasi-convex optimization problem 

involving Linear Matrix Inequalities (LMIs) [Boyd et al., 1994], 

[Kürşad and Mustafa, 2006], which can be solved to derive a 

PM like metric on the onset of instability. This procedure 

accommodates for a larger class of nonlinearities than in [Das, 

Shtessel and Plestan, 2018] with less restrictive conditions. Note 

again that definition and corresponding algorithms of GM for 

Lur’e type NLTI SISO systems based on LSM approach is 

proposed in [Das, Shtessel and Plestan, 2020].  

The main contribution of this paper are listed below: 

A. Introducing definitions for PM in Lur’e type NLTI SISO 

systems. 

B. Developing computational algorithms for calculating 

Practical Phase Margin (PPM) in Lur’e type NLTI SISO 

systems. The PM in NLTI systems are as PPM since the 

computational algorithms results in a predicted PM 

(DF/HB based algorithm) and a conservatively estimated 

PM (CC and LSM – LMI based algorithms). 

C. Validating the proposed algorithm on a tutorial example of 

Lur’e type NLTI SISO system. 

The paper is divided into seven sections, including the 

introductory part. Sections 2 and 3 introduce the system 

dynamics and preliminaries respectively. Section 4 contains the 

main results, where the definition of PM in NLTI systems is 

introduced and corresponding algorithms used for the PM 
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identification are proposed and discussed. In Section 5, a 

tutorial example is used to validate the efficacy of the proposed 

algorithms. The paper is concluded with comments on the 

obtained results in Section 6 and References. 

2. MATHEMATICAL MODELING AND ASSUMPTIONS 

Consider a Lur’e type NLTI system [Khalil, 2002] given by 

 

,

, ,

x Ax Bw y Cx

w u v v u u Ky

  

    
 (1) 

where state vector 
nx , matrices 

n nA  , 
n mB  , 

r nC  , 
m rK  , the control 

mw  and the output 
ry  with 1r m   (Fig. 1). The following assumptions 

are made for NLTI system (1): 

A1. The triplet  , ,A B C  is completely controllable and 

observable. 

A2. The following sector condition holds globally for the 

static memoryless nonlinearity    : 0, m m    , 

given by 

 2 2
1 2k u u u k u     (2) 

such that  0 0  . Eqn. (2) can be expanded as 

  2 1 0

0T T T T

v k u v k u

v v u v v u u u  

  

    
  (3) 

where 
 1 2

2

k k



  and 1 2k k  . 

A3. The equilibrium point 0x   is globally 

asymptotically stable in the sector  1 2,k k  for any  u . 

The Lur’e type NLTI system (1) can be further reduced to 

 ,x Ax Bv v KCx      (4) 

where  A A BKC   is Hurwitz. The open loop transfer 

function (TF) of the linear part of system (4) is given by 

 
 

 
 

1

'Lur e

Y s
G s C sI A B

V s


    (5) 

where  , ,A B C  is a minimal realization of  'Lur eG s . A 

functional diagram of system (1) is shown in Fig. 1. 

Note that, if   0v u  , then NLTI system (1) transforms 

into an LTI system, given by 

x Ax      (6) 

However, the matrix  A A BKC   is Hurwitz if and only if 

the Kimura – Davison conditions [Kimura, 1994], [Davison and 

Chow, 1973] for output feedback pole assignment are met so 

that the matrix K  exists. Specifically, the following Lemma 

can be cited: 

Lemma: Given  , ,A B C  controllable and observable with 

n nA  , rank B m , rank C r  then for almost all 

 ,B C  pairs, there exists an output gain matrix K  so that 

 A BKC  has  min , 1n m r   eigenvalues assigned 

arbitrarily close to  min , 1n m r   specified symmetric 

eigenvalues. 

 

Fig. 1. Functional diagram of NLTI system (1) 

3. PRELIMINARIES 

3.1. Describing Functions/Harmonic Balance Technique: 

The basic idea of the Describing Function approach, which can 

be used to study limit cycle behavior in NLTI system (4), is to 

replace a given nonlinear element  v u  with a (quasi) 

linear descriptor or Describing Function, whose gain is a 

function of input amplitude [Khalil, 2002]. In order to use the 

DF/HB technique, the following assumptions should be valid 

for  v u  in system (4): 

A4. The nonlinearity  v u  is odd. 

A5. The nonlinear function is time invariant. 

A6. The frequency response characteristic has low-pass 

filter properties, i.e.    ' ' , 1, 2,3...Lur e Lur eG j G jk k    

The DF/HB based frequency domain analysis [Khalil, 2002] of 

NLTI systems (4) allows computing the parameters of a 

predicted limit cycle, specifically, the amplitude 
*A  and the 

frequency 
*  of the fundamental harmonic, via solving HB 

equation  

   
1

' ,Lur eG j N A 


    (7) 

where  ,N A   is a DF of the nonlinear element  v u . 

Since assumption (A3) holds for NLTI system (4), it can be 

further assumed that 

A7. The solution to the DF/HB eqn. (7) does not exist. 
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3.2. Circle Criterion: 

Assume that the assumptions (A1) – (A4) hold for NLTI system 

(4) such that  , ,A B C  is a minimal realization of  'Lur eG s , 

then system (4) is absolutely stable if one of the following 

conditions is satisfied, as appropriate [Khalil, 2002]: 

B1. When 2 10 k k  , the Nyquist plot of  'Lur eG j  

does not enter the disk  1 2,k k  (a circle with the line 

between 
1

2k   and 
1

1k   as diameter). 

B2. When 2 10 k k  ,  'Lur eG s  is Hurwitz and the 

Nyquist plot of  'Lur eG j  lies to the right of a vertical line 

defined by   1
' 1Re Lur eG j k      . 

B3. When 2 10k k  ,  'Lur eG s  is Hurwitz and the 

Nyquist plot of  'Lur eG j  lies inside the disk  1 2,k k . 

Note that assumption (A3) implies that NLTI system (4) is 

absolutely stable in the sense that the following assumption 

holds 

A8. NLTI system (4) does not violate conditions (B1), 

(B2) or (B3), whichever is applicable. 

4. MAIN RESULTS 

4.1. Definition of PM in NLTI system (4): 

Definition 1: The PM in NLTI system (4) is defined as the 

minimum negative phase shift 

minPM       (8) 

added to the frequency characteristics  'Lur eG j , so that a 

limit cycle starts emerging in system (4) or assumption (A8) 

starts becoming invalid. 

4.2. Computational methods for PM identification in NLTI 

system (4): 

The PM in dynamical systems can be characterized as the 

system’s robustness to cascade UD that adds a phase shift to the 

system’s frequency characteristic. In sense of Definition 1, we 

study the effects of the cascade UDs of the first and second 

order given by 

  01
1

01

H s
s







    (9) 

and 

 
2

02
2

02

H s
s





 
  

 
   (10) 

that add phase shifts to the frequency characteristic 

 'Lur eG j  in NLTI system (4). Apparently,  'Lur eG j  will 

experience an additional phase shift 

  1
1 1

01

arg H j tan


 


     , of up to 90 , due to the 

cascade frequency characteristic  1H j  and 

  1
2 2

02

arg 2H j tan


 


      of up to 180 , due to 

 2H j . It means that  1H j  can be used to identify 

90PM   in NLTI system (4). However,  1H j  may not 

be sufficient 90PM   and in this case,  2H j  should be 

employed. Therefore, the PM in NLTI system (4) is given by 

 
*

1 1
1*

01

*
1 2

*
02

, if considered

2

tan H j

PM

tan otherwise


















 




(11) 

such that the values 
* *

01 01 1,      and 

* *
02 02 2,      corresponds to cases on the onset of 

instability in sense of Definition 1. 

Remark 1: Note that the sets of values 
* *
01 1,   and 

* *
02 2,   

obtained via the DF/HB technique are predicted whereas via the 

CC and LSM – LMI techniques are conservative in nature. 

Hence, the PM in NLTI system (4) calculated using these 

techniques is named as Practical Phase Margin or PPM. 

The following algorithms are proposed for PPM computation in 

NLTI system (4) in sense of Definition 1. 

4.3. Algorithms for computing PPM based on DF/HB 

technique: 

In sense of Definition 1, the set of values 
* *

01 01 1,      

or 
* *

02 02 2,      can be computed such that assumption 

(A7) starts violating.  

Firstly, considering the scenario when  1H j  is selected, the 

values 
* *

01 01 1,      can be calculated as solutions to the 

HB eqn. 

     
1

1 ' ,Lur eH j G j N A  


   (12) 

such that the parameters of a predicted limit cycle  1*, *A   

start emerging as solutions to eqn. (12) at 
*

01 01   and does 

not exist for 
*

01 01   (Fig. 2). Similarly, if  2H j  is 

considered then the values 
* *

02 02 2,      can be 

calculated by replacing  1H j  with  2H j  in eqn. (14). 

Following these conditions, the computational algorithms for 

calculating 
* *
01 1,   or 

* *
02 2,   are presented below: 

DF/HB – Algorithm I for computing 
*

01  and 
*

1 : 

Step I: Transforming the DF/HB eqn. in (14) into real and 

imaginary parts gives 
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     

     

1
1 '

1
1 '

Re Re ,

Im Im ,

Lur e

Lur e

H j G j N A

H j G j N A

  

  





        

        

(13) 

Step II: The parameter 
*

01 01   and frequency 
*

1   can 

be computed as the solutions of eqn. (13). 

 

Fig. 2. PPM computation via DF/HB technique 

DF/HB – Algorithm II for computing 
*
01  and 

*
1 : 

Step I: Firstly, calculate the magnitude of both sides of DF/HB 

eqn. in (12) 

     
1

*
1 ' ,Lur eH j G j N A  


  (14) 

Step II: Next, taking argument on both sides of eqn. (12) 

     
1

*
1 'arg arg arg ,Lur eH j G j N A  

 
         

 
(15) 

Or eqn. (15) can be rewritten as 

   
1

1 *
'

01

arg arg ,Lur eG j tan N A


 



  

      
 

(16) 

Step III: The parameter 
*

01 01   and frequency 
*

1   

can be computed as the solutions of eqn. (14) and (16). 

DF/HB – Algorithms for computing 
*
02  and 

*
2 : 

Step I: The parameter 
*

02 02   and frequency 
*

2   can 

be calculated by replacing  1H j  with  2H j  in eqn. (13) 

for computing 
*
01  and 

*
1  or in eqns. (14) – (16) for 

computing 
*
01  and 

*
1 , as appropriate.  

Remark 2: Note that the PM identification in NLTI system (4) 

based on the DF/HB technique can only be accomplished for a 

particular set of nonlinearities whose DF can be computed in 

order to use the HB equation (7) or (12). In order to overcome 

these restrictions, in the next two sections, the CC and LSM – 

LMI based algorithms are proposed for computing PPM in 

system (4) for a class of nonlinear function with less restrictive 

conditions (2), (3). 

4.4. Algorithms for computing PPM based on CC 

technique: 

In sense of Definition 1, the set of values 
* *

01 01 1,      

or 
* *

02 02 2,      can be computed such that Assumption 

(A8) starts violating. 

Firstly, considering the scenario when  1H j  is selected, the 

frequency characteristics    1 'Lur eH j G j   starts 

intersecting the vertical line defined by 

  1
' 1Re Lur eG j k       at some point  1

1 ,k b  (Fig. 3) 

provided 2 10 k k  , which will make condition (B2) invalid, 

at 
* *

01 01 1,     . Note that the coordinate parameter b  

is unknown and identified later on. This condition can be 

presented as the equation 

    1 *
1 ' 1 01 01, whenLur eH j G j k jb       (17) 

 

Fig. 3. PPM computation via CC technique 

The same reasoning applies if  2H j  is considered, with 

parameter 
*
02  and frequency 

*
2 . In this case,  2H j  

should be used in eqn. (17) instead of  1H j . 

Following these conditions, the computational algorithms for 

calculating the set of values 
* *
01 1,   or 

* *
02 2,   based on CC 

are presented: 

CC – Algorithm for computing 
*

01  and 
*

1 : 

Step I: Transforming eqn. (20) into real and imaginary parts 

gives 

   

   

1 '
1

1 '

1
Re

Im

Lur e

Lur e

H j G j
k

H j G j b

 

 

    

   

  (18) 

Step II: Taking magnitude of both sides of equation (17) 

   1 '
1

1
Lur eH j G j jb

k
       (19) 

Step III: The parameter 
*

01 01   , corresponding frequency 

*
1   and b (to be excluded) can be computed as a solution 

to eqns. (18) and (19). 
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CC – Algorithm for computing 
*
02  and 

*
2 : 

Step I: The parameter 
*

02 02   and frequency 
*
2   can 

be calculated by replacing  1H j  with  2H j  in eqns. 

(17) – (19) for computing 
*
01  and 

*
1 . 

4.5. Algorithms for computing PPM based on LSM – LMI 

technique: 

As mentioned earlier, the CC based results obtained in the 

previous section are conservative in nature. Another method 

based on the LSM – LMI technique which gives conservative 

results as well, is discussed in this section. In this case, the least 

conservative result obtained through either of these algorithms 

maybe used for PPM identification in NLTI system (4). 

Remark 3: A limitation of the LSM – LMI algorithm is the 

inability to compute the frequencies 
*
1  and 

*
2  since it is a 

time domain technique. In this case, it can be assumed that these 

values are comparable to the frequencies derived via the CC 

algorithm since both algorithms have similar stability 

constraints and sector conditions. Hence 
*
1  and 

*
2  derived 

via CC algorithm may be used with the parameters 
*
01  and 

*
02  computed through LSM – LMI analysis to calculate PPM 

in NLTI system (4) in sense of Definition 1. 

Next, considering the scenario when  1H j  is selected, it is 

clear that NLTI system (4) augmented by  1H j  is stable for 

*
01 01    and becomes marginally stable at the parameter 

*
01 01   and corresponding frequency 

*
1  . 

In order to compute 
*

01 01  , firstly the stability conditions 

for NLTI system (4) is analysed through the LSM – LMI 

technique, as presented in the following theorem: 

Theorem 1: NLTI system (4) is globally asymptotically stable 

if there exists a positive definite matrix 1P  and a scalar 0   

such that the matrix inequality  

1 1 1

1

0
T T T T T

T

A P P A C K KC P B C K

B P KC

 

 

   
 

   

(20) 

is feasible. 

Proof: Firstly, introduce a QLF candidate 

   1 1 1, 0TV x x P x V x   for NLTI system (4) where 1P  is a 

positive definite matrix. The derivative of function  1V x  is 

given by 

   1 1 1 1 1

1 1 1

1

0
0

T T T T T

T
T T

T

V x x A P P A x v B P x x P Bv

A P P A P B x
x v

vB P

   

             

(21) 

In accordance with LSM [Khalil, 2002], global asymptotic 

stability of the equilibrium point 0x   can be established via 

eqn. (21), which can be rewritten in quadratic function form of 

 ,x v as 

1 1 1

1

0
0

T
T T

T

A P P A P B x
x v

vB P

              

 (22) 

Inequality (22) can be further simplified into LMI form [Boyd 

et al., 1994] as 

1 1 1

1

0
0

T

T

A P P A P B

B P

 
 
  

   (23) 

Remark 2: A marginal stability case for system (4) can be 

analyzed by replacing the sign  by  in eq. (23). 

Next, if assumption (A1) is valid, then the sector condition in 

eqn. (3) can be expanded as a quadratic function of  ,x v  as 

0
1

T T T T
T T xC K KC C K

x v
vKC

 



              

(24) 

The validity of the inequality (24) can be ascertained by the 

LMI 

0
1

T T T TC K KC C K

KC

 



 
 
 

  (25) 

Apparently, through the application of S-Lemma [Boyd et al., 

1994], [Kürşad and Mustafa, 2006], a relation between the 

inequalities (22) and (24) can be established such that the LMI 

(25) is valid if and only if LMI (23) holds and there exists a 

scalar 0   so that the following inequality is feasible 

2 2 2

2
1 0

TT T T T

T

A P P A P BC K KC C K

KC B P

 




   
  
    

(26) 

Inequality (26) can finally be transformed into LMI form as 

given in (20) which can be solved to derive 
1P  and   such that 

NLTI system (4) is globally asymptotically stable. 

The theorem is proven.  

Next, the global asymptotic stability conditions for NLTI 

system (4) augmented by  1H j , are studied in the following 

theorem: 

Theorem 2: NLTI system (4) augmented by  1H j  is 

globally asymptotically stable if there exists a positive definite 

matrix 2 0P   and a decay rate 0  , scalars 

*
01 01, 0     such that the following LMI is satisfied 

1 1 1 1

1 2 01 2 2 01

2 01

2 0

T T T T T

T

A P P A P C K KC PB C K

B P P P P
KC P

  
  

  

    
  
    

(27) 

where positive definite matrix 1P  is derived from LMI (20). 

Proof: Firstly, a state variable model of NLTI system (4) 

cascaded with  1H j  is obtained as 
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 ,
T

N Sv x p       (28) 

where 
1p , 

010

A B
N



 
   

 and  010
T

S  . Next 

introduce a QLF candidate  3 3
TV P    for system (28), 

where 
1

3

2

0

0

P
P

P

 
  
 

 is a positive definite matrix. System (28) 

will be globally asymptotically stable if and only if 

   3 3 , 0V V        (29) 

where   is the decay rate. Inequality (29) is equivalent to 

   3 3

3 3 3 3 3( ) 0T T T T T

V V

N P P N P v S P P Sv

  

    



     
(30) 

which can be written as a quadratic function of  , ,x p v  as, 

1 1 1 1

1 2 01 2 2 01

2 01

0

2 0

0 0

T

T T T T

A P P A P P B x

x p v B P P P P p

vP



  



     
              

(31) 

Condition (31) can be validated with the LMI 

1 1 1 1

1 2 01 2 2 01

2 01

0

2 0

0 0

T

T

A P P A P P B

B P P P P

P



  



  
 

  
 
  

(32) 

Note that, if assumption (A2) holds for system (31), eqn. (3) can 

be written as a quadratic inequality of  , ,x p v  as 

0

0 0 0 0

0 1

T T T T

T T T
C K KC C K x

x p v p

KC v

 



   
     
    
    

(33) 

Equation (33) can be further reduced to LMI form as 

0

0 0 0 0

0 1

T T T TC K KC C K

KC

 



 
 
 
  

  (34) 

A relation between the LMIs (32) and (34) can be derived via 

the lossless S – Lemma [Kürşad and Mustafa, 2006] as 

1 1 1 1

1 2 01 2 2 01

2 01

00
0 0 0 2

0 1 0 0

TT T T T

T

A P P A P PBC K KC C K
B P P P P

KC P

 
   

 

   
    
  

    

(35) 

for some scalar 0  .  

Inequality (35) can be further transformed into LMI form as 

given in eqn. (27) which can be solved to derive matrix 2P  and 

scalars  ,  , 
*

01 01  , such that NLTI system (28) is 

globally asymptotically stable. 

The theorem is proven. 

In sense of Definition 2, the main goal is to compute the 

parameter 
*

01 01   such that LMI (27) is no longer satisfied 

and augmented NLTI system (4) starts violating assumption 

(A3). In this case, the following algorithm is presented for 

calculating the parameters 
*
01 : 

LSM – LMI Algorithm for computing 
*
01 : 

Step I: Compute 
1P  and   by solving LMI (20) as a Convex 

Optimization Problem (COP) 

1 1 1

1

1

minimize

subject to 0

0

T T T T T

T

A P P A C K KC P B C K

B P KC

P



 

 

   
 

   


(36) 

in MATLAB via an LMI solver. 

Step II: If LMI (27) is valid then the following COP can be 

formulated 

1 1 1

minimize

subject to 0

0

T T TA P P A P C K KC



 



  



 (37) 

where 1P  is a solution of (36). COP (37) can be solved for   

in MATLAB via an LMI solver. 

Step III: Again, the following condition can be derived from 

LMI (27) 

*
2 01 2 01 01 01 012 0 2 ,

2
P P


               (38) 

From eqn. (28), it is clear that the parameter 
* min
01

2


  . 

Next, if  2H j  is considered, then NLTI system (4) 

augmented by  2H j  is stable for 
*

02 02   and becomes 

marginally stable at 
* *

02 02 2,     . In this case, a global 

asymptotic stability condition, identical to Theorem 2, can be 

derived for the NLTI system (4) augmented by  2H j , by 

following steps analogous to eqns. (28) – (38) albeit for 

 2H j . The subsequent steps of calculations are not 

mentioned for reasons of brevity. 

LSM – LMI Algorithm for computing 
*
02 : 

Step I: The parameter 
*
02  is computed as 

* min
02

4


  . 

5. EXAMPLE 

Consider a Lur’e type NLTI system (4) with parameters  

0 1 0 0 1

0 0 1 , 0 , 0 , 3

0 6 7 1 0

T

A B C K

     
        
           

(39) 

and with the open loop transfer function 
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 
  '

3

6 1
Lur eG s

s s s


 
  (40) 

It is assumed that system (29) is perturbed by a saturation 

nonlinearity  v sat u  which satisfies the sector conditions in 

eqn. (2) such that 2 10 2k k   . Note that the PM in system 

(39) when   0v sat u   is computed via MATLAB as 49

. In this case, the PPM in NLTI system (4) can be computed as 

follows: 

5.1. DF/HB method: 

Note that, the saturation function  v sat u  has the 

describing function  

   
2

1

2

2
, sin 1

k a a a
N A N A

A A A





                       

(41) 

In case of saturation, a limit cycle starts emerging at A a  and 

the DF   1 2N A k k   . Since, for the LTI system 

90PM  ,  1H j  is selected and the parameters 
* *
01 1,   

are calculated as 
*
01 0.135  , *

1 0.115   via eqns. (14) – 

(16). Thus 40.9PPM  . 

5.2. CC method: 

Using eqns. (17) – (19), 
* *
01 10.15, 0.19    are computed 

and thus 38.29PPM  . 

5.3. LSM/LMI method: 

Following the steps in eqns. (36) – (38), the parameter 
*
01  is 

calculated as 
*
01 0.11   and hence 30.1PPM  . 

Remark 6: The PPMs obtained via CC and LSM/LMI methods 

are more conservative than the one obtained via DF/HB 

algorithm. It was expected, since the DF/HB algorithm is 

applied for a particular nonlinearity while CC and LSM/LMI 

methods are applied for a class of sector nonlinearities. 

6. CONCLUSIONS 

The main contribution of this work is introducing a novel 

concept of Phase Margin identification in Lur’e Type NLTI 

systems. The proposed algorithms based on DF/HB, CC and 

LSM – LMI techniques provide a sufficient PM for NLTI 

systems, however such margins are either predicted or 

conservative in nature. Keeping this in mind, future works may 

include developing algorithms for identification of PM in 

Sliding Mode Controllers and Higher Order Sliding Mode 

Controllers (HOSM). 
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