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Abstract: The voltage received by each customer connected to a power distribution line with
local controllers (inverters) is regulated to be within a desired margin through a class of slope-
restricted controllers, known conventionally as droop controllers. We adapt the design of the
droop controllers according to the known bounds of the net power consumption of each customer
in each observation time window. A sufficient condition for voltage regulation is provided for each
time window, which guides the design of the droop controllers, depending on the properties of the
distribution line (line impedances) and the upper bound of all the customers’ power consumption
during each time window. The resulting adaptive scheme is verified on a benchmark model of a
European low-voltage network by the CIGRE task force.
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1. INTRODUCTION

The proliferation of harnessing renewable energy sources
such as solar and wind at the customer end has been
motivated by meeting environmental sustainability goals
in lieu of being financially viable. This is actuated via
connecting alternating current/direct current (AC/DC)
inverters which are co-located with the customer to the
power distribution network, see Lopes et al. (2007). As
a result, the customer departs from the traditional role
of being merely a consumer, as the customer can now
have a dual role of also being a producer. Consequently,
fluctuations outside of the safety margin in the voltage
received by the customer can occur, especially when there
are many customers. Therefore, this calls for a systematic
design of the local inverters (controllers) to guarantee that
the voltages at the customer end are within a safety margin
specified by the operator.

This paper concentrates on regulating the voltage level of
each customer connected to a power distribution network
in a line configuration, which is achieved by adapting the
controller design based on each customer’s projected power
consumption. In this setup, power is delivered to each
customer with the substation at the head of the line, and
the customers connect to line sequentially, as shown in
Figure 1. A nominal voltage v̄ is communicated by the
substation to each inverter, which injects reactive power
by employing the so-called droop controllers, which has
been used for voltage regulation in Andrén et al. (2015);
Turitsyn et al. (2010); Simpson-Porco et al. (2017); Farivar
et al. (2013); Jahangiri and Aliprantis (2013); Han et al.

? This work is supported in part by the Swedish Research Council
(grant 2016-0861), the Swedish Energy Agency (project LarGo!), and
the Swedish Civil Contingencies Agency (project CERCES).

(2017); Zhu and Liu (2016); Liu et al. (2008); Schiffer et al.
(2014); Jafarian et al. (2018), to name a few.

In our previous papers, Chong et al. (2019b) and Chong
et al. (2019a), we showed that voltage regulation can
be guaranteed with a class of slope-restricted droop con-
trollers, which differs from the conventional droop con-
trollers used in the literature listed earlier, in two ways:
(i) the input to the controller is the difference of the
squared received and nominal voltages, and (ii) a class of
droop functions satisfying a slope restriction property is
identified, which expands beyond the piecewise continuous
saturation function used in the literature. Further, a suffi-
cient condition for voltage regulation uses only the upper
bound of all the customers’ net power consumption, which
has the additional benefit of preserving privacy. A draw-
back of our previous results is a sufficient condition that
is overly conservative, resulting in a higher than needed
generation of reactive power by the controllers. In this
paper, we consider finite observation time windows, where
the upper bounds of the customers’ power consumption
is known beforehand. This allows us to adapt the design
of our class of droop controllers, while still guarantee-
ing that all the customer’s voltage are within a desired
margin of the nominal voltage. This adaptive scheme is
tested on a benchmark model of the residential feeder of
a European low-voltage distribution line, and shown in
simulations that less reactive power needs to be generated
by the controllers. Additionally, more active power can be
injected into the line, which increases the revenue of each
customer.

The remainder of the paper is structured as follows. We
first introduce the notations used, followed by Section 2
where we present a model of a power distribution line
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with inverters. The voltage regulation objective is then
stated in Section 3, which is achieved via local injection
of reactive power into the distribution network by the
inverters. In Section 4, we present a scheme that adapts
each local controllers’ droop characteristics according to
the a priori known bounds on the net active power and
consumed reactive power during an observation window.
We then verify this adaptive scheme on a benchmark
model in Section 5 and show in simulations that the
adaptive scheme performs better than the non-adaptive
scheme according to two performance metrics. Section 6
concludes the paper with discussions for future work.

Notation Let R = (−∞,∞), R≥0 = [0,∞), R>0 =
(0,∞), N = {0, 1, . . . }. Let the set of complex numbers
be denoted by C. We denote the set of integers {i, i +
1, i + 2, . . . , i + k} as N[i,i+k]. Let (u, v) where u ∈ Rnu

and v ∈ Rnv denote the vector (uT , vT )T . The identity
matrix of dimension n is denoted by In and a matrix of
dimension m by n with all elements 1 is denoted by 1m×n.
A diagonal matrix with elements di, i ∈ N[1,n] is denoted
by diag(d1, d2, . . . , dn). Given a symmetric matrix P , its
maximum (minimum) eigenvalue is denoted by λmax(P )
(λmin(P )). The infinity norm of a vector x ∈ Rn, is
denoted |x| := max

i∈N[1,n]

|xi| and for a matrix A ∈ Rn×n,

|A| := max
i∈N[1,n]

∑
j∈N[1,n]

|aij |, where aij is the row i-th and

column j-th element of matrix A.

2. MODEL OF A POWER DISTRIBUTION LINE
WITH INVERTERS

We consider a model of a distribution grid infrastructure
with N customers feeding into a low-voltage (LV) grid in a
line configuration, as shown in Figure 1. Each customer i ∈
N[1,N ] has a renewable energy source such as a photovoltaic
cell, modelled as a controllable voltage source (Simpson-
Porco et al., 2017). Each renewable energy source is
equipped with an inverter 1 which is able to generate
reactive power qg,i while generating near maximum active
power ρg,i.

For each customer i ∈ N[1,N ], the received voltage level is
vi and the voltage level at the point of connection with the
distribution line is v′i, with a corresponding line impedance
Z ′i = R′i + jX ′i in between customer i and the connection
point on the distribution line, where R′i ∈ R≥0 is the
resistance and X ′i ∈ R≥0 is the reactance. In between
each connection point, the corresponding line impedance
is Zi = Ri + jXi, where Ri ∈ R≥0 is the resistance and
Xi ∈ R≥0 is the reactance. Each customer has a load
which can consume reactive qc,i and active powers ρc,i,
independently of the generated reactive qg,i and active
powers ρg,i.

Under the assumption that the power losses in the distri-
bution lines are negligible, we use the linearized DistFlow
model in Baran and Wu (1989) for describing the power

1 This is enforced by curtailing the generated active power ρg,i
based on the generated reactive power qg,i and the power rating
of the inverter, known as the apparent power s̄i, according to
ρg,i ≤

√
s̄2i − q

2
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Fig. 1. Infrastructure of the low-voltage distribution grid.

flow in a line configuration 2 . Additionally, we also model
the point-to-point voltages of the connection point at
the distribution line v′i and the customer’s end vi in the
last equation of (1). The relationship between the power
flow and point-to-point voltage of key nodes of interest
i ∈ N[0,N ], in Figure 1 is

Pi+1 = Pi + ρi+1,
Qi+1 = Qi + qi+1,

v′i+1
2

= v′i
2 − 2βi(Pi, Qi),

v′i
2

= vi
2 − 2β

′

i−1(ρi, qi),

(1)

where Pi andQi are the respective total active and reactive
powers flowing from customer i to customer i + 1; ρi :=
ρg,i − ρc,i and qi := qg,i − qc,i are the net injection of the
respective active and reactive power into the distribution
line from customer i; βi(r, s) := Rir +Xis and β′i(r, s) :=
R′ir +X ′is with β′−1(r, s) = 0 for all r, s ∈ R.

Our modelling assumptions are stated in Assumption 1
below.

Assumption 1. (Modelling assumptions). For each
customer i ∈ N[1,N ]:

(i) The reactive power qc,i consumed by each customer i
is bounded and the bound ∆c is known, i.e. |qc,i(t)| ≤
∆c, for all t ≥ 0.

(ii) The net injected active power ρi is bounded and the
bound ∆ρ is known, i.e. i.e. |ρi(t)| ≤ ∆ρ, for all t ≥ 0.

(iii) The node voltages at the receiving end vi for each
customer i is locally measurable.

(iv) The nominal voltage reference v̄ is communicated to
each customer i.

2 The nonlinear terms in the DistFlow model by Baran and Wu
(1989) capture the power losses in the distribution lines, which we
assume are negligible.
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3. PROBLEM FORMULATION

We aim to regulate the customers’ received voltage levels vi
for i ∈ N[1,N ], such that it lies within a safe operating range
of the reference voltage communicated to each customer,
v̄ ∈ R, i.e. for a given δ ≥ 0,

v̄ − δ ≤ vi(t) ≤ v̄ + δ, ∀t ≥ 0. (2)

This is achieved by only managing the flow of the reactive
powers Qi in the distribution grid. To this end, controllers
Σi (actuated by the inverters) are designed for each
customer, which is also known in the literature such
as in Andrén et al. (2015), as droop control. In Chong
et al. (2019a), we showed that a class of slope-restricted
droop controllers can be designed to achieve the voltage
regulation objective (2), for the power distribution model
considered in this paper.

In this paper, we consider the case where we update the
droop controllers Σi at discrete time instants tk, k ∈ N,
due to new information about the bounds on the power
consumption (∆c and ∆ρ respectively. Cf. Assumption 1).
Without loss of generality, we consider t0 = 0 and assume
that the observation time window [tk, tk+1) is sufficiently
large such that no Zeno phenomenon may occur. Further,
the bounds are known a priori for each observation window
[tk, tk+1). For example, power consumption in a commer-
cial district peaks during business hours and declines after
hours. The motivation behind this setup is to adapt our
controllers to the known bounds on the power consumption
for certain time epochs. We denote these bounds on the
consumed reactive and active powers during the observa-
tion window [tk, tk+1) as ∆c,k and ∆ρ,k, respectively. We
then update the droop function Ki,k accordingly, in the
droop controllers Σi defined as follows

Σi : q̇g,i = − 1

τi
qg,i +

1

τi
Ki,k(v̄2− v2i ), ∀t ∈ [tk, tk+1), (3)

where τi ∈ R>0 is the time-constant of the inverter’s re-
sponse and the droop function Ki,k(w) is a static mapping
from the difference of the squared voltages w to the set-
point for the reactive power, updated at tk. The droop
function Ki,k satisfies the slope-restriction and saturation
property (4) as assumed in Chong et al. (2019a), which we
state in the following assumption.

Assumption 2. During each observation window t ∈
[tk, tk+1), k ∈ N, the droop function Ki,k, i ∈ N[1,N ] in
(3) satisfies

0 ≤ Ki,k(v)−Ki,k(w)

v − w
≤ di,k, ∀v, w ∈ R, v 6= w,

(4)
and |Ki,k(v)| ≤ K̄i,k, for all v ∈ R, where di,k ≥ 0 and
K̄i,k ≥ 0. 2

The parameter di,k is a design parameter chosen according
to the condition in Section 4.

At each update time tk, we reset the state of all the
controllers (3) to zero 3 as follows

qg,i(t
+
k ) = 0. (5)

Under this setup, we aim to meet the voltage regulation
objective (2).

3 This choice was made to simplify the re-design of the droop
function Ki,k according to condition (10) in Theorem 3.

4. ADAPTIVE SCHEME FOR VOLTAGE
REGULATION

To assist in formulating our main result, we rewrite the
distribution model (1) and droop controllers (3) in new
coordinates, with yi = v̄2−v2i , ηi := v2i−1−v2i for i ∈ N[1,N ]

and y0 := v̄2 − v′20. The resulting system for i ∈ N[1,N ] is

q̇g,i = − 1

τi
qg,i +

1

τi
Ki,k(yi), t ∈ [tk, tk+1),

qg,i(t
+
k ) = 0,
yi = ηi + yi−1,

ηi = v2i−1 − v′
2
i + v′

2
i − v2i ,

= 2βi−1(Pi−1, Qi−1) + 2β′i−2(ρi−1, qi−1)
−2β′i−1(ρi, qi),

(6)

where we recall that βi(r, s) = Rir+Xis, β
′
i(r, s) = R′ir+

X ′is and β′−1(r, s) = 0 for all r, s ∈ R.

Our voltage regulation objective (2) can then be restated
in the new coordinates as:∣∣v̄2 − vi(t)2∣∣ = |yi(t)| ≤ ε, ∀i ∈ N[1,N ], ∀t ≥ 0, (7)

where ε := −δ2 + 2v̄δ. Note that the satisfaction of (7)
implies that objective (2) holds. Henceforth, we will state
our main result such that that the equivalent objective (7)
is satisfied.

Before doing so, we write the system (6) in the com-
pact form below, by applying (Chong et al., 2019a,
Proposition 4). Let qg := (qg,1, qg,2, . . . , qg,N ), qc :=
(qc,1, qc,2, . . . , qc,N ), ρ := (ρ1, ρ2, . . . , ρN ) and y :=
(y1, y2, . . . , yN ). The model (6) in compact form is written
as follows

q̇g = A(τ)qg −A(τ)Kk(y), t ∈ [tk, tk+1),
qg(t

+
k ) = 0,
y = Hqg + φ(ρ, qc) + y01N×1,

(8)

where

• A(τ) = diag
(
− 1
τ1
,− 1

τ2
, . . . ,− 1

τN

)
,

• Kk(y) = (K1,k(y1),K2,k(y2), . . . ,KN,k(yN )),
•

H = −2


X0 X0 . . . X0

? (X0 +X1) . . . (X0 +X1)
...

. . .
. . .

...

? . . . ?
∑

i∈N[0,N−1]

Xi


− 2diag

(
X ′0, . . . , X

′
N−1

)
,

where ? denotes a block component of a symmetric
matrix,

• φ(ρ, qc) =

(
φ0, . . . ,

∑
i∈N[0,j−1]

φi +
∑

i∈N[0,j−2]

2β′i(ρi+1, qc,i+1)

, . . . ,
∑

i∈N[0,N−1]

φi +
∑

i∈N[0,N−2]

2β′i(ρi+1, qc,i+1)

)
,

where

φi(ρ, qc) := 2Xi

 ∑
j∈N[i+1,N]

qc,j

− 2Ri

 ∑
j∈N[i+1,N]

ρj


− 2β′i(ρi+1, qc,i+1).

Let {tk}k∈N where tk+1 − tk ≥ T > 0, {∆c,k}k∈N and
{∆ρ,k}k∈N be a sequence of update time instants, a se-
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quence of a priori known bounds on the consumed reactive
power and net injected active power, respectively. We are
now ready to state our main result, where the proof can be
found in a full version of this paper [Chong and Sandberg
(2020)].

Theorem 3. Consider the distribution model (1) and
droop controllers (3) with N customers under Assump-
tion 1 and 2. For any ε ≥ 0, if there exist ∆φ,k =
∆φ,k(∆ρ,k,∆c,k) > 0 and εy > 0 for all k ∈ N, such that

ε ≥ ∆φ,k + εy, (9)

then there exist dk ≥ 0, K̄k ≥ 0, τmax > 0 and τmin > 0
satisfying

dk ≤
(ε−∆φ,k − εy) exp(−tk/τmax)

τmax

τmin
|H| (∆φ,k + εy) +

(
τmax

τmin

)2
|H|2 K̄k

, (10)

where

• dk := max
i∈N[1,N]

di,k,

• τmax := max
i∈N[1,N]

τi and τmin := min
i∈N[1,N]

τi,

• K̄k := max
i∈N[1,N]

K̄i,k,

•
∆φ,k := N(N + 1)

(
R̄∆ρ,k + X̄∆c,k

)
+ 2(2N − 1)

(
R̄′∆ρ,k + X̄ ′∆c,k

)
,

where
· R̄ := max

i∈N[1,N−1]

Ri, R̄′ := max
i∈N[0,N−2]

R′i,

· X̄ := max
i∈N[1,N−1]

Xi, X̄ ′ := max
i∈N[0,N−2]

X ′i,

• |v̄2 − v′0(t)2| ≤ εy, for all t ≥ 0,

such that the received voltage vi of each customer i meets
the voltage regulation objective (7). 2

The sufficient condition (10) in Theorem 3 provides a
guideline for adapting the droop controller (3) according
to the a priori known bounds ∆c,k, ∆ρ,k on the power
consumption during each observation window [tk, tk+1),
k ∈ N. The design parameter dk in (10) guides the design of
the droop functionKi,k in each of the droop controllers (3).
For instance, a piecewise saturation function commonly
considered in the literature such as Andrén et al. (2015)
takes the form below

Ki,k(w) :=

−Q̄i,k, w ≤ wmin,i,k,

−
(

1− w − wmin,i

wm,i,k − wmin,i,k

)
Q̄i,k, w ∈ (wmin,i,k, wm,i,k],

0, w ∈ (wm,i,k, wn,i,k],(
w − wn,i,k

wmax,i,k − wn,i,k

)
Q̄i,k, w ∈ (wn,i,k, wmax,i,k],

Q̄i,k, w > wmax,i,k,
(11)

where wmin,i,k ≤ wm,i,k ≤ 0 ≤ wn,i,k ≤ wmax,i,k are design
parameters, Q̄i,k ∈ R≥0 is the saturation limit of the i-th
inverter satisfying Q̄i,k = s̄i, where s̄i ∈ R is the maximum
apparent power of the i-th inverter. This droop function
(11) satisfies Assumption 2 with K̄i,k = Q̄i,k and

di,k := min

{
Q̄i,k

wmax,i,k − wn,i,k
,

Q̄i,k
wm,i,k − wmin,i,k

}
.

(12)

5. CASE STUDY ON A BENCHMARK MODEL

We validate our results on a benchmark model of N = 5
customers in the residential feeder of the European low
voltage CIGRE distribution grid (Strunz et al., 2009, Fig.
7.7), shown in Figure 2. The topology of the benchmark
model can be mapped to our model shown in Figure 1
according to Table 1. The model parameters as found in
(Strunz et al., 2009, Table 7.26) are summarised in Table
2. The reference voltage v̄ communicated to each customer
is v̄ = 230 V and the nominal voltage at the substation is
v′0(t) = v̄ + 5 sin(t) V to model harmonic perturbations.

S1

R1

R2 R3

R4

R5 R6 R7 R8 R9

R10

R11

R12 R13 R14
R15

R16 R17

R18

Fig. 2. Residential feeder of the European low voltage
CIGRE benchmark grid. Arrows in black represent
loads and the arrows in green represent inverters.

Table 1. Mapping of nodes from the benchmark
topology to our topology

Node label

Benchmark topology
(Strunz et al., 2009, Fig. 7.7) Our topology in Figure 1

in Figure 2

R1 v′0
R3 v′1
R11 v1
R4 v′2
R15 v2
R6 v′3
R16 v3
R9 v′4
R17 v4
R10 v′5
R18 v5

Table 2. Parameters as found in (Strunz et al.,
2009, Table 7.26)

i 1 2 3 4 5

Ri−1 [Ω] 0.00343 0.00172 0.00343 0.00515 0.00172

Xi−1 [Ω] 0.04711 0.02356 0.04711 0.07067 0.02356

R′i−1 [Ω] 0.00147 0.00662 0.00147 0.00147 0.00147

X′i−1 [Ω] 0.02157 0.09707 0.02157 0.02157 0.02157

Apparant
power of
each 4200 6500 4700 5300 3600
inverter
s̄i, [VA]

Our simulation study considers the observation instants
t0 = 0 s, t1 = 100 s, t2 = 200 s and t3 = 300 s, where
the a priori known upper bounds on the net active power
and the consumed reactive power has changed in between
the observation instants as shown in Table 3 and as seen
in Figure 3. All the inverters (3) have a time constant
of τi = 100, for i ∈ N[1,N ]. By applying Theorem 3, we
choose the design parameter dk according to (10) which
then guides the design of the droop functions Ki,k in
(11) by choice of the droop characteristics wmin,i,k, wm,i,k,
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wn,i,k and wmax,i,k. Here, the saturation value K̄i,k is set
to the apparent power s̄i of each inverter, K̄i,k = s̄i, for all
k ∈ N (c.f. Table 2 for values of s̄i). Hence, by the physical
capabilities of the inverter, the injected active power is

limited to ρg,i ≤
√
s̄2i − q2g,i. Figure 4 shows that the

resulting adaptive scheme achieves the voltage regulation
objective (2).

0 100 200 300

200
400
600
800

1000
1200

q
c,

i [k
V

ar
]

0 100 200 300

t [s]

0

2000

4000

6000

c,
i [k

W
]

Fig. 3. Reactive qc,i and active ρc,i powers consumed by
each customer i.

Table 3. Simulation scenario and the applica-
tion of (10) in Theorem 3

Observation window
[tk, tk+1) k = 0 k = 1 k = 2

Upper bound on the
net injected active
power for all
customers, ∆ρ,k 460 1300 750

Upper bound on the
consumed reactive
power for all
customers, ∆c,k 360 1200 960

dk obtained from
(10) in Theorem 3 0.1418 0.0181 0.0099

Parameters of the
droop function Ki,k,
i ∈ N[1,5] in (11)

according to dk:

[wmax,i,k]


29613
45830
33138
37369
25383




232320
359540
259980
293160
199130




423930
656080
474390
534950
363360


wmin,i,k = −wmax,i,k

wm,i,k = wn,i,k 0 0 0

For comparison, we consider the case where we do
not adapt the droop controller (3) in accordance to
the known bounds ∆c,k and ∆ρ,k for each observation
window. Instead, only an initial design based on the
largest known bound for the entire observation win-
dow [t0, t3) for the droop controller (3) is used, i.e.
we design the droop function Ki,k for all i ∈ N[1,N ],
k ∈ N[0,3] based on the maximal known bounds ∆c =
max
k∈N[0,2]

∆c,k = 1200, ∆ρ = max
k∈N[0,2]

∆ρ,k = 1300, resulting

0 100 200 300

0
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20

q
g,

i [k
V

ar
]

0 100 200 300

1000

2000

3000

4000

5000

g,
i [k

W
]

0 100 200 300

t [s]

210

220

230

240

250

v i [V
]

Fig. 4. Adaptive droop controllers: Vertical red lines indi-
cate the observation instants tk, k ∈ N[0,2]. Legend:
Customer 1 (blue), 2 (red), 3 (orange), 4 (purple), 5
(green). (Top) Solid lines indicate the output of the
droop controllers qg,i. (Middle) The active power ρg,i
injected into the distribution line by each customer
i. (Bottom) Solid lines indicate the voltages of each
customer vi are within 10 % of the nominal voltage
v̄ for all t ≥ 0. Dashed lines indicate (1 ± p)v̄, where
p = 0.1.

in di,k = 0.3251 and consequently, wm,i,k = wn,i,k =
0, [wmax,i,k] = [12918, 19992, 14456, 16301, 11073], and
wmin,i,k = −wmax,i,k for i ∈ N[1,5] and k ∈ N[0,3]. Figure 5
shows that the voltage regulation objective (7) is achieved.

We use the performance metrics Pq :=
∫ t3
0
|qg(s)|ds and

Pρ :=
∫ t3
0
|ρg(s)|ds to compare the adaptive vs. non-

adaptive droop controllers. The metric Pq is motivated
by achieving the voltage regulation objective with less
reactive power generated by the inverter. The metric Pρ is
used to monitor profit as increasing the injection of active
power into the distribution network increases the genera-
tion of revenue. For the simulation scenario described, the
adaptive scheme outperforms the non-adaptive scheme in
the aforementioned performance metrics with Pq = 2.9456
[kJ], Pρ = 1.6182 [MJ] (adaptive) and Pq = 30.833 [kJ],
Pρ = 1.2404 [MJ] (non-adaptive).

6. CONCLUSIONS AND FUTURE WORK

We have presented a scheme that adapts to the known
bounds of the load’s net power consumption with guar-

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

12599



0 100 200 300

0

50

100

150

q
g,

i [k
V

ar
]

0 100 200 300

1000

2000

3000

4000

5000

g,
i [k

W
]

0 100 200 300

t [s]

210

220

230

240

250

v i [V
]

Fig. 5. Non-adaptive droop controllers: Vertical red lines
indicate the observation instants tk, k ∈ N[0,2]. Leg-
end: Customer 1 (blue), 2 (red), 3 (orange), 4 (pur-
ple), 5 (green). (Top) Solid lines indicate the output
of the droop controllers qg,i. (Middle) The active
power ρg,i injected into the distribution line by each
customer i. (Bottom) Solid lines indicate the voltages
of each customer vi are within 10 % of the nominal
voltage v̄ for all t ≥ 0. Dashed lines indicate (1± p)v̄,
where p = 0.1.

antees on each customers’ voltage being within a desired
safety margin through local inverters injecting reactive
power into the distribution network. Future work will
take into account the unmodelled dynamics in the power
distribution line.
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