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Abstract: A novel uncertainty based contingent model predictive control algorithm is presented
for autonomous vehicles operating in uncertain environments. Nominal model predictive control
relies on a model to predict future states over a horizon and hence requires accurate models and
parameterization. In application, environmental conditions and parameters may be unknown
or varying, posing robustness issues for model predictive control. This work presents a new
selectively robust adaptive model predictive control algorithm that is applied to collision
imminent steering controllers for automotive safety. In this context, uncertainties in the road
coefficient of friction are estimated using unscented Kalman filtering and the controller is
updated based upon the estimated uncertainties. The utility of the uncertainty based controller
is demonstrated in a collision imminent steering scenario and compared to nominal deterministic
model predictive control, as well as a baseline adaptive scheme. The results suggest the
uncertainty based controller can improve the robustness of model predictive control by nearly
50% for deterministic model predictive control and over 10% for the baseline adaptive scheme.

Keywords: Automotive control, nonlinear predictive control, adaptive control, robust control,
parameter estimation, Kalman filtering

1. INTRODUCTION

Recently, the advancement of active safety features have
drawn interest to assist human drivers in safety critical
scenarios, for example in the case of collision imminent
steering (CIS), e.g., Wurts et al. (2018, 2019). In such a
scenario, a vehicle is forced to perform immediate evasive
steering to avoid a forward collision where braking alone
is insufficient due to the close proximity of an obstacle.
Due to the aggressive nature of this maneuver, the vehicle
is often pushed near its handling limits, requiring accu-
rate modeling of the vehicle’s nonlinearities and hence a
nonlinear control formulation.

Model predictive control (MPC) has drawn interest in such
applications, as it allows for one to formally and explicitly
implement safety constraints and vehicle dynamics, e.g.,
Liu et al. (2017); Anderson et al. (2010); Chakraborty
et al. (2013); Schwarting et al. (2017); Brown et al. (2017).
However, such approaches often rely on exact knowledge
of the system and environment parameters and may not
be suitable for situations where the environment is only
partially known, such as when road conditions are un-
known a priori, e.g., Wurts et al. (2019); Liu et al. (2017);
Laurense et al. (2017). Such a scenario is likely to occur
in practice, for example when the road friction is reduced
due to weather or road surface changes. While the feedback
and controller update of MPC inherently provides a level
of robustness in terms of model discrepancy, large uncer-
tainties in models can still lead to failure, e.g., Liu et al.
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(2016, 2019). In fact, due to the sensitivity of tire models
to the coefficient of friction, a deviation of just 2% can lead
to failure in certain scenarios, e.g., Laurense et al. (2017).
Conservative formulations can offer robustness, but at the
expense of performance, e.g., Liu et al. (2019). As such,
being able to learn these model uncertainties and adapt
the controller in real-time is critical in safely transitioning
autonomous features from controlled and known experi-
mental situations to real world applications.

To address this need, researchers have considered esti-
mating the coefficient of friction and updating control
strategies online, e.g., Chen et al. (2014); Ji et al. (2018);
Falcone et al. (2007); Borrelli et al. (2005). Chen et al.
(2014) utilized MPC with a linear time-varying vehicle
model for the design of a lane keeping system. Ji et al.
(2018) utilized a cornering stiffness based model for lateral
motion control and path tracking. Finally, Falcone et al.
(2007) used a nonlinear vehicle model with Pacejka tire
models in nonlinear MPC (NMPC); however, due to high
computational costs, the model is only suitable for low
speed operation and a linearized model is utilized for high
speed operation. Further, Falcone et al. (2007) assume
a trajectory is known a priori and employ MPC in an
attempt to follow the trajectory. A similar study was also
reported by Borrelli et al. (2005).

While the results of these studies are promising, two limi-
tations of them must be considered when vehicles are op-
erating at high speeds and are pushed near their handling
limits. First, linearization can lead to large discrepancies
between the control model and the physical system, which
poses safety issues, especially considering the high speeds
and aggressive nature of CIS maneuvers, e.g., Liu et al.
(2017); Wurts et al. (2019). Second, if the trajectory plan-
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ning and trajectory tracking problems are decoupled as in
these studies, safety issues may arise in CIS, where the
vehicle is operating near its handling limits. This results
from the fact that without a complete understanding of the
vehicle’s handling limits, planners can generate reference
trajectories that the vehicle may not be able to follow no
matter how sophisticated the trajectory trackers may be.

Alsterda et al. (2019) address the problem of operat-
ing on unknown road conditions by using contingent
MPC (CMPC), a selectively robust MPC formulation de-
signed to address the conservative nature of robust MPC
(RMPC). In this approach, two separate predictions are
solved by MPC simultaneously; a nominal and a contin-
gent prediction. The objective is to find a feasible control
such that the initial control move of the nominal and con-
tingent models are consistent. In this way, it was demon-
strated that contingent MPC can outperform deterministic
MPC when preparing for an ice covered terrain instead of
snow. While this approach proposes a method for planning
for these discrete scenarios, additional robustness could
be achieved by not necessarily planning for two separate
scenarios, but by learning about the coefficient of friction
online and exploiting the uncertainty of the learned pa-
rameter in a similar manner as contingent MPC.

Based upon this review, it is evident that a gap exists in
learning the road conditions online and incorporating these
observations in a control architecture suitable for scenarios
where vehicles are operating near their handling limits.
To this extent, the contribution of this work is the de-
velopment of an uncertainty based contingency MPC for-
mulation for CIS under uncertain road conditions. While
this article focuses specifically on the CIS application, the
approach could be applied to off-road autonomous vehi-
cles and a more general class of systems where real time
decision-making is influenced by an unknown environment.

The remainder of this paper is organized as follows. In Sec.
2 the CIS problem, vehicle modeling, friction estimation,
and uncertainty based contingent MPC are presented.
In Sec. 3, the impact of uncertain road conditions on
controller error are presented along with the integration of
friction estimation to mitigate these resulting errors. Sec.
4 discusses the utility of the uncertainty based contingent
MPC formulation. Finally, Sec. 5 draws the concluding
remarks of this study.

2. PROBLEM FORMULATION

2.1 Collision Imminent Steering

The CIS scenario occurs in high speed applications, for
example highway operation, and begins with a vehicle
centered in the right lane of a right hand curved highway
and travelling at 35 m/s. At time t0 the vehicle identifies
an obstruction in the right lane 55 m ahead. Due to the
high speed of the vehicle, there is insufficient time for
the vehicle to brake to prevent collision, which requires
a 62.4 m lead at a peak deceleration of 1g, where g
is the gravitational acceleration. As such, the vehicle
must perform an emergency lane change into the left
lane to prevent collision. For the purposes of this work,
the maneuver is considered safe if the vehicle (i) avoids
collision with the obstacle, (ii) does not violate the outside
lane boundaries, and (iii) settles in the center of the left
lane. Due to the aggressive nature of this maneuver, the
controller forces the vehicle to operate near its handling

limits, see Wurts et al. (2018). Further information on CIS
can be found in Wurts et al. (2019).

2.2 Vehicle Models

This work utilizes two vehicle models; a 14 degree-of-
freedom (DoF) vehicle model representing the plant and
a 3 DoF bicycle model for predictions in the unscented
Kalman filter (UKF) and MPC framework.

In this work, the 14 DoF model represents the ground
truth. Details on the 14 DoF model can be found in Shim
and Ghike (2007).

For the vehicle trajectory predictions in MPC and the
UKF, the prediction model is represented as a 3 DoF
bicycle model, as this has shown to be of a proper balance
between level of fidelity and efficiency for short-horizon
predictions, e.g., Liu et al. (2016); Dallas et al. (2020).
The bicycle model is given as

ż(µ*) =



u cosψ − v sinψ
u sinψ + v cosψ

wz
0

(Fyf(µ*) cos(δf ) + Fyr(µ*))/Mt − uωz
(Fyf(µ*) cos(δf )Lf − Fyr(µ*)Lr)/Izz

δ̇f

 (1)

where the state vector, z, is defined as

z :=



x
y
ψ
u
v
ωz
δf

 =



global x position of CoM
global y position of CoM

yaw angle
longitudinal velocity

lateral velocity
yaw rate

front steering angle

 (2)

and µ∗ is the road coefficient of friction, Mt is the vehicle
mass, Izz is the vehicle’s yaw moment of inertia, and Lf

and Lr are the distances from the vehicle’s center of mass
(CoM) to the front and rear axles, respectively. Finally, the
tire lateral forces, Fyf and Fyr, are given by the nonlinear
Pacejka formula

Fy(µ*) = −µ*Fz sin
(
C arctan

(
B
Vx
Vy

))
(3)

where Vx and Vy are the tire patch velocities in the
longitudinal and lateral directions, Fz is the normal load
on the tire, and B and C are Pacejka curve parameters,
see Pacejka (2006).

2.3 Coefficient of Friction Estimation

To estimate the coefficient of friction, a UKF is utilized
as described in Dallas et al. (2020), but with the pre-
diction model given by the bicycle model and Pacejka
tire model of Eqs. (1)-(3). To achieve the UKF prediction
model format of Dallas et al. (2020), the bicycle model
of Eq. (1) is appended with an additional state represent-
ing the coefficient of friction with trivial dynamics. The
UKF utilizes this model in a predictor-corrector scheme,
where (i) predictions are performed by the 3 DoF bicycle
model appended with the coefficient of friction, and (ii)
correction is performed based upon measurements of the
vehicle states. The UKF then determines the best estimate
based upon the uncertainties of the measurements and the
3 DoF bicycle model. In this work, vehicle state measure-
ments are obtained by corrupting the 14 DoF model with
Gaussian noise of standard deviations given in Table 1.
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Table 1. Measurement standard deviations
used for sensor simulation.

State Noise (σ)
x 1.2 (m)
y 1.2 (m)
ψ 0.0175 (rad)
u 0.25 (m/s)
v 0.25 (m/s)
ωz 0.0175 (rad/s)

The sensor noise is higher than typically reported, e.g.
(Ryu et al., 2002), and hence acts as a worst-case scenario.
Furthermore, the scenario assumes a discrete change in the
coefficient of friction at t0, acting in a worst-case manner.
A more detailed explanation of the UKF is given in Wan
and Van Der Merwe (2000); Kol̊as et al. (2009). Although
many other estimation techniques are available, the UKF
is used in this work, because it was found to offer a suitable
balance between computational efficiency and estimation
accuracy, see Dallas et al. (2020).

2.4 Model Predictive Control Formulation

The nonlinear MPC formulation extends upon Wurts et al.
(2019), which also serves as the nominal deterministic
MPC formulation for benchmarking purposes. Briefly, the
formulation is designed to minimize the peak tire slip,
thereby minimizing the aggressiveness of the maneuver
while maximizing available control authority. A more
detailed explanation can be found in Wurts et al. (2019).
To map the control inputs to future vehicle states, the RK4
integration scheme is applied to an augmented vector of
Eq. (1) to apply contingent MPC. Thus, the augmented
dynamics become

żc(µ*) =

[
ż(µ1)
ż(µ2)

]
(4)

with the control input, u, being

u =

[
uµ1

uµ2

]
=

[
δ̇µ1

f

δ̇µ2

f

]
(5)

with δ̇f being the steering rate of the front tires and µ1

and µ2 representing lower and upper bounds on the confi-
dence interval of the estimate of the coefficient of friction,
respectively. For this work, one, two, and three standard
deviation bounds are analyzed, which are reported to MPC
by the UKF at each new MPC iteration. The nominal
deterministic formulation is then extended to a contingent
MPC formulation as follows.

min
u

(uµ1

1 − u
µ2

1 )2 +
1

ρobj
ln

n∑
i=1

eρobj|α
µ1
i
|

subject to


dleft edge
i

dright edge
i

|αf,i| − αpeak

|αr,i| − αpeak

|δf (ti)| − δmax
f

|δ̇f (ti)| − δ̇f
max

 ≤ 0 ∀ i ∈ [1, n]

(xt)i − (xstable)i = 0 ∀ i ∈ [4, 7]

(xt − xc)2 + (yt − yc)2 = r2lane

arctan
( yt − yc
xt − xc

)
=
π

2
− arctan

( vt
u0

)
(6)

where ρobj is the constraint aggregation parameter, d • edge

are distances to the edges of the drivable tube, αf,r are the

tire slip angles at the front and rear tires, αpeak is the peak
slip angle constraint, and δmax

f and δ̇max
f are constraints on

the maximum steering angle and steering rate of the front
tires. Finally, xt represents the terminal state, (xc, yc)
represents the terminal road arc position, rlane is the lane
radius of curvature, and xstable is the terminal constraint
on the last four states of Eq. (2).

The equality and inequality constraints maintain consis-
tency with Wurts et al. (2019), and the detailed descrip-
tions can be found therein. However, there are several
differences in the formulation of the cost function of Eq.
(6). First, the contribution of the peak tire slip to the cost
is only calculated for the lower bound of the coefficient of
friction, µ1. This is because the lower coefficient of friction
makes it harder for the vehicle to induce the lateral force
necessary to satisfy the problem constraints, hence forcing
a larger slip angle, effectively pushing the vehicle towards
its handling limits. Second, an additional cost is added
to attempt to force the first control moves of the two
contingency models to be equal. Here it is suggested that
only the first control move of each contingency model be
equal, as only the initial control move is applied and future
control inputs are discarded in the next MPC iteration. In
the case that uµ1

1 and uµ2

1 are not equal, an average of
the two is sent to the controller, as this represents the
current best estimate of µ. This situation would occur if
the vehicle is quite close to the obstacle and the constraints
are active for both contingency models. For this work, a
3.2 s time horizon with 50 ms discretization time step is
used to represent current automotive architectures. Hence
a zero order hold is placed on the first control move that
is sent to the plant. Finally, the equality and inequality
constraints are applied to relevant variables of both con-
tingency models.

The optimal control problem (OCP) of Eq. (6) is solved
through IPOPT (see Wächter and Biegler (2006)) and
the trajectory is simulated using multiple shooting on
a custom CUDA implementation. Within each segment,
the system dynamics of Eq. (1) are numerically simulated
using RK4 integration, directly accounting for the system
dynamic constraints as in Wurts et al. (2019). The peak
computation time of the UKF is less than 770 µs. The
CUDA wall time is 800 µs and the total wall time is be-
tween 80 ms and 4 s on an Intel-i7 CPU and NVidia GTX
1080 GPU. In comparison, the nonadaptive deterministic
and baseline adaptive MPC have a peak wall time of 55
ms. However, it is worth noting that the total wall time is
approximately 99% solve time in IPOPT versus 1% wall
time simulating the contingent trajectories for fitness and
feasibility. Introducing the contingency between the two
models adds significant cross sensitivity in the optimiza-
tion problem, which could feasibly be addressed by a more
efficient solver.

3. MPC PREDICTION ERROR AND INTEGRATION
OF UKF

3.1 MPC Prediction Error

The uncertainty of the coefficient of friction manifests in
MPC error due to the inaccuracies of the resulting bicycle
model predictions over the horizon. A misrepresentation
of the coefficient of friction can result in two conditions:
the plant is over-responsive or under-responsive. When
the predicted coefficient of friction is lower than the true
plant value, the plant is over-responsive and results in
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Fig. 1. Open loop trajectory for low coefficient of friction (red dotted line), nominal (black solid line), and high coefficient
of friction (green dashed line) under the same control inputs. Blue lines represent the safe drivable tube.

more aggressive turns than intended by the controller.
This can result in overturning into the obstacle when
the controller attempts to turn in avoidance of the outer
lane boundary. In the case that the predicted coefficient
of friction is larger than the true plant value, the plant
is under-responsive and reacts by less aggressive turning
than intended by the controller. This results in failure,
since the vehicle drifts outside of the outer lane boundary
instead of correctly counter-steering back towards the
inside of the turn. This under-responsive case is the focus
of this work and correlates to the scenario of a vehicle
suddenly encountering degraded road conditions in terms
of reduced friction, such as a patch of ice or snow.

To demonstrate these MPC errors, the impact of the
coefficient of friction is depicted in Fig. 1 for a low
coefficient of friction (red dotted line), a nominal value
(black solid line), and a high coefficient of friction (green
dashed line) under the same open-loop control input.
As such, the proposed CMPC attempts to address this
scenario by finding a feasible solution through estimating
both lower and upper bounds on the confidence interval
of the coefficient of friction estimate. By doing so, the
impact of prediction error is minimized such that the CIS
maneuver can be completed in a safe manner, as described
in Sec. 2.1. This applies a more conservative adaptation to
the road conditions than directly utilizing the current best
estimate of the coefficient of friction.

3.2 Friction Estimator and MPC Integration

To address the prediction error described in Sec. 3.1, the
UKF estimator is implemented to run in parallel with
contingent MPC as follows. First, the UKF is running
at a 1 kHz prediction rate with a 50 Hz measurement
update, received from the noise-corrupted plant states.
This update rate is selected to be comparable to standard
sensors. At the initial time, t0, in each MPC iteration, the
UKF sends CMPC the current estimate of the coefficient
of friction and the standard deviation of the estimate
obtained from the UKF state covariance matrix. From
this data, µ1 and µ2 are calculated as required by CMPC.
CMPC then solves for the optimal control input sequence
for the entire prediction horizon by assuming µ1 and µ2

are held constant. The first control move generated by
the OCP is sent to the plant. While the OCP is being
solved, the UKF is running independently. This process
is then repeated such that at the initialization of the next
CMPC iteration, the UKF reports the current coefficient of
friction estimate and its standard deviation corresponding
to the shifted t0.

4. RESULTS AND DISCUSSION

To assess the utility of the uncertainty based contingent
MPC, CIS simulations are run for various controller cases.
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Fig. 2. Sample CIS maneuver for under-responsive initial-
ization. Top plot shows the vehicle trajectory (red),
middle plot shows the steering profile of the maneu-
ver, and bottom plot depicts the estimator perfor-
mance (solid blue line) and contingency range (shaded
cyan region).
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Fig. 3. Various initializations of coefficient of friction for
1σ uncertainty based MPC simulations. Green dots
depict success and red squares demonstrate failure in
solving the OCP.

Each simulation initializes the scenario with a separate
plant coefficient of friction and initial guess used by the
prediction model at the beginning of an event. While
the problem is initialized with these coefficients, as the
simulation runs the estimator is attempting to determine
an estimate of the plant’s coefficient of friction.
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As an example, Fig. 2 shows profiles of the vehicle’s tra-
jectory, steering angle, and estimated coefficient of friction
when the initial prediction model guess is 0.8 and the
true plant value is 0.6. The top plot depicts the vehicle
departing the right lane and successfully avoiding collision
(red solid line). The UKF’s ability to recover the plant
coefficient of friction is depicted in the bottom plot. The
estimator initially believes the coefficient to be 0.8, but
rapidly converges to within 2% of the true plant value
(0.6) in less than 250 ms. Such fast convergence is critical,
because prior to estimator convergence, the vehicle may
exhibit the over- and under-responsive behaviors men-
tioned in Sec. 3.1. Hence, the more rapidly the estimator
can converge, the earlier corrected control inputs can be
applied.

Fig. 3 shows the various under-responsive initializations
studied. A distinct region of failure exists around a large
success area. In the far left failure region, which occurs
at around 0.52 plant coefficient of friction, the plant co-
efficient of friction is extremely low, thus reducing the
vehicle’s ability to generate large lateral forces. In this
under-responsive scenario, failure occurs in the OCP solver
due to the vehicle drifting outside of the lane boundary,
as the control inputs fail to produce the required forces
for successful counter-steering. At low plant coefficients of
friction, below approximately 0.5, the OCP solver fails, as
there is no feasible solution even with exact parameteriza-
tion. This low coefficient of friction is responsible for the
failure in the lower region of all points of initial prediction
coefficient of friction below approximately 0.55, because
the uncertainty based MPC lower bound on the coefficient
of friction becomes parameterized with a value less than
0.5, causing the optimizer to fail to find a feasible solution.
Finally, a success region exists where the area represents
the achievable robustness to initial plant prediction mis-
match. In this region, the estimator is able to successfully
predict the coefficient of friction to allow for the prediction
model to achieve enough accuracy as compared to the
plant for a successful maneuver. In particular, the con-
tingency based MPC formulation demonstrates the most
improvement in the far left side where the plant coefficient
of friction is low (0.52). This improvement becomes evident
when the results for the 1σ uncertainty based contingent
MPC in Fig. 3 are compared to the baseline adaptive MPC
case in Fig. 4. Here, the baseline adaptive MPC scheme
refers to updating the MPC prediction model with the
current best estimate of the coefficient of friction from
the estimator, rather than using the uncertainty based
formulation. In addition, the results of the nonadaptive
deterministic algorithm are shown in Fig. 5. It is observed
that the number of successful OCP solves, and thus the
algorithm’s robustness, is significantly reduced without
any adaptation. The increased area of the success region
in Fig. 3 compared to the two benchmarks thus depicts
the improvement gained by the contingency based MPC
formulation.

Table 2 depicts the improvement in terms of success rate
for the initial coefficient of friction mismatch. The adaptive
schemes (baseline and uncertainty based MPC variations)
significantly expand the success region of the CIS maneu-
ver compared to the nonadaptive deterministic scheme.
Furthermore, 1σ contingency yields the largest success rate
for initial mismatch of coefficient of friction between the
plant and prediction models, with only about 20% failure.
As seen in Fig. 3, the majority of failures occur at low
plant coefficient of frictions, where no feasible solution
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baseline adaptive MPC simulations. Green dots depict
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Fig. 5. Various initializations of coefficient of friction for
nonadaptive deterministic MPC simulations. Green
dots depict success and red squares demonstrate fail-
ure in solving the OCP.

exists even with exact parameterization, suggesting the 1σ
uncertainty based MPC covers the majority of the feasible
operation range. At larger uncertainty bounds (2 and 3
σ), the uncertainty based contingent MPC formulation
becomes too conservative and degrades the performance
as compared to smaller uncertainty bounds, because the
lower bound prediction model easily becomes parameter-
ized by a low coefficient of friction (0.5), where there is no
feasible solution to the problem. Hence, the lower failure
region of Fig. 3 is expanded.

These results suggest that uncertainty based contingent
MPC can improve robustness in under-responsive opera-
tion, for example when the road coefficient is degraded
due to moisture or ice, and that adaptive controllers are
critical when autonomous vehicles are operating in real
world scenarios with only partially known or unknown
road conditions. However, it is important to select the un-
certainty bounds properly to avoid an overly conservative
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Table 2. Success rate under initial coefficient
of friction mismatch.

MPC formulation Success rate
Deterministic 29.2%

Baseline adaptive 67.9%
Uncertainty based MPC 1σ 78.3%
Uncertainty based MPC 2σ 64.1%
Uncertainty based MPC 3σ 48.1%

solution that reduces the robustness benefits of uncertainty
based contingent MPC.

5. CONCLUSION

This work considers increasing the robustness of au-
tonomous vehicles in CIS applications through adaptation
to road conditions. In particular, the coefficient of fric-
tion, and its variance, is estimated online by a UKF and
integrated into a new single-level uncertainty based con-
tingent MPC for CIS. The uncertainty based contingent
MPC seeks to find control moves such that vehicle models
parameterized within confidence intervals of the estimate
satisfy the problem formulation. Through simulation of a
CIS maneuver, it is shown that the developed uncertainty
based contingent MPC can outperform deterministic MPC
and a baseline adaptive scheme by increasing the initial-
ization error range of the road coefficient of friction for
which the OCP can still be successfully solved. Therefore,
it is concluded that the developed algorithm could improve
the robustness of autonomous vehicles if it can be solved
in real time.

Future work should explore various solvers and bench-
marking the computational performance for uncertainty
based contingent MPC. If real time is achieved by one of
these solvers, it is also of interest to perform experimental
validation of the proposed scheme.
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