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Abstract: It is “folklore” that the solution to a set reachability problem for a
dynamical system is only noncomputable because of non-robustness reasons.
A robustness condition that can be imposed on a dynamical system is the
requirement of the chain reachable set to equal the closure of the reachable
set. We claim that this condition necessarily imposes strong conditions on the
dynamical system. For instance, if the space is connected and compact and
we are computing a chain reachable robust single valued function f then f
cannot have an unstable fixed point or unstable periodic cycle.
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1. INTRODUCTION

Many problems in control theory can be solved
immediately if one has access to the reachable
set of a dynamical system. Unfortunately, it is
often difficult to exactly compute the reachable
set. However, there are many algorithms that
give approximations to the reachable set, for
example see Gan et al. (2017); Rungger and
Zamani (2018); Fan et al. (2016); Gao and
Zufferey (2016); Lal and Prabhakar (2019).

As exact computation of the reachable set
is difficult, researchers have investigated this
problem through the lens of computability the-
ory, see Collins (2005, 2007); Bournez et al.
(2010); Chen et al. (2015); Fijalkow et al.
(2019); Kong et al. (2015). In fact the reach-
able set of a general dynamical system (both
in discrete time and continuous time) is non-
computable. This means that we need to find
conditions on a dynamical system in order for
the reachable set to be computable.

? This work was supported in part by an NSERC Dis-
covery Grant, the Canada Research Chairs program,
and an Early Researcher Award from the Ontario Min-
istry of Research, Innovation and Science.

It is generally believed that the reachable set is
not computable due to the dynamical system
being “non-physical” or“artificial”; the dynam-
ical system is some mathematical oddity that
would never arise in a practical situation. In-
formally, we may say the dynamical system is
somewhat robust if its reachable set is com-
putable. In this work we will examine the im-
plications of a discrete-time dynamical system
being chain reachable robust (intuitively, the
dynamics are insensitive to infinitesimal per-
turbations) first examined in Collins (2005);
where the authors show that if a dynami-
cal system is chain reachable robust then the
reachable set is computable. In fact the authors
showed, in their framework of computability,
that chain reachable robustness was also a
necessary condition on computability of the
reachable set. This robustness condition was
also used in Bournez et al. (2010) to prove cer-
tain continuous-time dynamical systems have
computable reachable sets.

Although the computability result in Collins
(2005) is sharp, this work (and other work in
the literature to the best of our knowledge)
provided no practically verifiable sufficient con-
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ditions (or any for that matter) for a dynam-
ical system to be chain reachable robust. Our
original intention for this paper was to provide
at least one non-trivial practically verifiable
sufficient condition for a dynamical system to
be chain reachable robust. We have failed in
this regard. Instead, we provide a necessary
condition on chain reachable robustness and
assert that this necessary condition is likely
too strong of a condition for practical pur-
poses. More specifically, we claim that chain
reachable robustness imposes strong conditions
on the long-term behavior of the dynamics.
Our main result, Theorem 11, states that the
long-term behavior of a chain reachable robust
system (in a connected compact metric space)
is always stable and that the number of “long-
term behaviors 1 ” is either one or infinity. In
the case where f : X → X is a continuous
function, X is connected compact set, the dy-
namics are xn = f(xn−1), and the system is
chain reachable robust, then all of the fixed
points and periodic cycles of f are stable. In
the case where there is a unique fixed point
(or periodic cycle), it is globally asymptotically
stable.

In Section 2 we briefly introduce necessary
background information concerning chain reach-
able robustness, multifunctions and minimal
sets. In Section 3 we develop several technical
results about the reachable set (largely under
the assumption the system is chain reachable
robust) to prove Theorem 11. Due to space
limit, the proofs of the preliminary results are
omitted and can be find in Fitzsimmons and
Liu (2020).

2. PRELIMINARIES

For simplicity we will work in metric spaces,
rather than topological spaces like in Collins
(2005, 2007). We will consider discrete time
dynamical systems with control and without.
Let (X,d) be a metric space, U be a set, and
f : X×U → X be a function. Let the dynamics
be

xn+1 = f(xn, un) (1)

for some {un}n∈N ⊆ U . Another way to write
the above is to define a multifunction F : X ⇒
X by F[x] = f(x, U) and the dynamics are

1 By this we are referring to minimal sets, see Subsec-
tion 2.2.

xn+1 ∈ F[xn]. If we wish to not use control,
then will simply write xn+1 = f(xn).

Definition 1. Let (X,d) be a metric space,
C ⊆ X, and F : X ⇒ X be a multifunction.
Define the reachable set

R[F, C] = {x ∈ X : ∃{xn}Nn=0, N ≥ 0, s.t.

xi ∈ F[xi−1], 1 ≤ i ≤ N, x0 ∈ C,
and x = xN}.

If the multifunction is understood, we may
instead write R[C] to be the reachable set.

We can see that R[F, C] =
⋃∞
n=0 F◦n[C], where

F[C] =
⋃
c∈C F[c], F◦0[x] = {x}, and F◦n[x] =

F
[
F◦(n−1)[x]

]
.

For ε > 0 and a set A ⊆ X, we use the
notation Aε = Bε(A) =

⋃
a∈A Bε(a), where

Bε(x) = {y ∈ X : d(x, y) < ε}.
Definition 2. Let (X,d) be a metric space,
C ⊆ X, and F : X ⇒ X be a multifunction.
Let ε > 0, we define an ε-chain of [F, C] to

be {yn}Nn=0, N ≥ 0, with yi ∈ Fε[yi−1] :=
Bε(F[yi−1]), 1 ≤ i ≤ N , and y0 ∈ C.

Define the chain reachable set

CR[F, C] = {x ∈ X : ∀ε > 0,∃{yn}Nn=0, an

ε-chain of [F, C], s.t x = yN}.
If the multifunction is understood, we may
instead write CR[C] to be the chain reachable
set. The reachable set R[F, C] is said to be
chain reachable robust or simply robust if
R[F, C] = CR[F, C].

The chain reachable set is closed assuming that
f is continuous in both its variables and U is a
compact set. In view of (1), an ε-chain of [F,C]

is also of the form: {yn}Nn=0, N ≥ 0, and

d(yi, f(yi−1, ui−1)) < ε,

for 1 ≤ i ≤ N , where {un}N−1n=0 ⊆ U , and
y0 ∈ C. Additionally, if we define Fε[x] =
Bε(F[x]), then CR[F, C] =

⋂
ε>0

⋃∞
n=0 F◦nε [C].

In Collins (2007) the authors showed that
the chain reachable set is an optimal over-
approximation of the reachable set.

The idea of using ε-chains or perturbed dynam-
ics to study the true dynamics is widely used in
verification and control of dynamical systems,
for example see Kong et al. (2015); Liu (2017);
Li and Liu (2018b,a).
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2.1 Multifunctions

A multifunction from X to Y is a function from
X to 2Y \ ∅. If F is a multifunction from X to
Y , we write F : X ⇒ Y and, for all S ⊆ X, we
define F[S] =

⋃
s∈S F[s].

Definition 3. Let X,Y be sets and F : X ⇒ Y .
Define, for all B ⊆ Y , the upper pre-image of
F as

F+[B] = {x ∈ X : F[x] ⊆ B}.
and the lower pre-image of F as

F−[B] = {x ∈ X : F[x] ∩B 6= ∅}.

Often, the lower pre-image is called the inverse
multifunction of F; note that F− is a multi-
function in its own right, while F+ is not.

Definition 4. Let (X, τ), (Y, ρ) be topological
spaces, and F : X ⇒ Y . We say that F is lower
semicontinuous (l.s.c.) if, for all V open in Y ,
F−[V ] is open in X. We say that F is upper
semicontinuous (u.s.c.) if, for all V open in Y
F+[V ] is open in X.

If F is both lower and upper semicontinuous,
then we call F continuous.

We would like to note that, in Collins (2005,
2007), they assume that the multifunctions
being computed are closed-valued continuous
multifunctions.

Proposition 1. Let (X,d), (Y, ρ) be metric spaces
and F : X ⇒ Y . Then

(1) F is l.s.c. if and only if, for all S ⊆ X, we

have F
[
S
]
⊆ F[S].

(2) Assume that F is compact-valued. Then F
is u.s.c. if and only if, for every compact
set C ⊆ X and every ε > 0, there is a
δ > 0 such that F[Cδ] ⊆ Fε[C].

(3) Assume that F is compact-valued. Then
F is u.s.c. if and only if, for every point
x ∈ X and every ε > 0, there is a δ > 0
such that F[Bδ(x)] ⊆ Fε[x].

(4) F is u.s.c. if and only if, for every closed
set C ⊆ Y we have that F−[C] is closed.

(5) If F is l.s.c., then R[F, x] and R[F, x] are
l.s.c. multifunctions of x.

If we have two multifunctions F : X ⇒ Y and
G : Y ⇒ Z, define the composition multifunc-
tion G ◦F : X ⇒ Z by G ◦F[x] = G[F[x]]. The
composition of l.s.c. (u.s.c.) multifunctions is
again l.s.c. (u.s.c.). Suppose that P is a prop-
erty sets can have (i.e. closed, open, convex,

finite etc.). We say F is P -valued if, for all
x ∈ X, F[x] has the property P . Instead of
saying F is singleton-valued we will say F is
single/point-valued. We define F = clF : X ⇒
Y to be F[x] = clF[x] = F[x] for all x ∈ X.

Note both the chain reachable sets and reach-
able sets are multifunctions for a fixed F :
X ⇒ X. In this case R,CR : X ⇒ X, R[x] =⋃∞
n=0 F◦n[x], and CR[x] =

⋂
ε>0 R[Fε, x].

2.2 Minimal Sets

Suppose that X is a metric space and F : X ⇒
X is a multifunction. Then a set A ⊆ X is said
to be a minimal set of F, or simply a minimal
set, if it is a minimal closed, nonempty, invari-
ant set of F. That is, A is closed, nonempty and
satisfies F[A] ⊆ A. Further, for all B ⊆ A that
is closed, nonempty and satisfies F[B] ⊆ B, we
must have that B = A. In a compact space
with F = {f} being single-valued, a minimal
set is where all the long-term behavior of the
sequence {f◦n}n∈N “happens”. In this section
we state a number of results about minimal
sets of a l.s.c. multifunction.

Proposition 2. Let (X,d) be a metric space,
A ⊆ X be a set, and F : X ⇒ X be
a l.s.c. multifunction. Then the following are
equivalent:

(1) A is a minimal set of F.

(2) A 6= ∅ and for all a ∈ A we have R[F, a] =
A.

Furthermore, if R[F, x] is compact for some
x ∈ X, then there is a compact minimal set
A ⊆ R[F, x].

In the case that F = {f} is single-valued,
minimal sets are typically fixed points of f
(even in the multi-valued case, we have F[A] =
A if A is minimal) or limit cycles of f, one of
which must be the case if the minimal set is
finite.

Example 1. Let X be the unit circle in the
complex plane with the usual metric. Every
point in X can be uniquely represented in the
form e2πix, where x ∈ [0, 1) and i2 = −1.
Define the map

f
(
e2πix

)
= e2πi(x+θ)

for x, θ ∈ [0, 1) and f : X → X. If θ = p
q

for p, q ∈ Z, q 6= 0 and p, q are relatively
prime, then the minimal sets of f are all of the
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form {z, f(z), . . . , f◦q(z)}, where z could be any
point in X. In fact, every point in X belongs to
a minimal set. If θ is irrational, then the unique
minimal set of f is X (this follows from the
relatively well-known fact that the sequence
{(x+ nθ) mod 1}n∈N is dense on [0, 1] when θ
is irrational). This is an example of a minimal
set that is not a fixed point or periodic cycle.

Definition 5. Let (X, τ) be a topological space,
A ⊆ X be a set, and F : X ⇒ X be a
multifunction. Then A is said to be Lyapunov
stable if, for every open set V ⊇ A, there is a
open set W ⊇ A with R[W ] ⊆ V .

A Lyapunov stable minimal set is the place
where the long-term behavior of the dynamics
from Equation (1) happens, assuming that the
dynamics reach the minimal set in the long-
term.

Proposition 3. Let (X,d) be a metric space
space, U be a set, and f : X × U → X be
a function such that, for all u ∈ U , we have
that f(·, u) = fu(·) is continuous. Furthermore,
let A be a Lyapunov stable compact set and
{xn}n∈N be a sequence defined by Equation (1)

with {xn}n∈N compact. Then we have

{xn}n∈N ∩A 6= ∅ =⇒
⋂
N∈N
{xn}∞n=N ⊆ A

and, in the case where U is singleton (no
control) and A is a minimal set of F[x] = {f(x)}
where f is continuous, we have {xn}n∈N ∩A 6=
∅ =⇒

⋂
N∈N {xn}

∞
n=N = A.

Effectively we know that if the dynamics
“touch” a Lyapunov stable set we know the
long-term behavior (the limit points of the
dynamics) must also be in this Lyapunov stable
set. At this point it is natural to ask when a
set is Lyapunov stable.

Proposition 4. Let (X,d) be a metric space,
F : X ⇒ X be a multifunction, and A ⊆ X
be a compact invariant set. If R or R is u.s.c.,
then A is Lyapunov stable. In particular, every
compact minimal set is Lyapunov stable.

Later, we will use some results about the set

W(A) =
{
x ∈ X : A ⊆ R[F, x]

}
. (2)

Theorem 5. Let (X,d) be a metric space, F :
X ⇒ X be a l.s.c. multifunction, and A be a
minimal set of of F. Then the following holds
for any local basis B(a), a ∈ A (a local basis

of a point x is a collection of sets with the
following property: for any open V 3 x, there
is a U ∈ B(x) with x ∈ int(U) ⊆ U ⊆ V ):

(1) W(A) = clR−[A].
(2) For any a ∈ A, W(A) =

⋂
V ∈B(a) R−[V ].

(3) clR−[W(A)] =W(A).
(4) W(A) is open if and only if W(A) is a

neighborhood of some a ∈ A.
(5) If R = clR is u.s.c. then W(A) is closed.

3. NECESSARY CONDITIONS ON
ROBUSTNESS IN COMPACT SPACES

For the purposes of this section, we will typi-
cally be working in a connected compact metric
space X and considering a robust multifunc-
tion F; we will call F robust if for all x ∈ X
the set R[F, x] is robust; that is, R[F, x] =
CR[F, x]. From a mathematical point of view,
this ends up being a strong condition.

Lemma 6. Let (X,d) be a compact metric
space and F : X ⇒ X be a multifunction. Then
for all x ∈ X:

CR[x] = R[x] if and only if, for every ε > 0,
there is a δ > 0 for which

R[Fδ, x] =

∞⋃
n=0

F◦nδ [x] ⊆ Rε[x].

It’s unclear to us how to interpret of the ε-δ
condition in the above lemma. Certainly, the
condition has implications on safety problems.
We say [F, x] is safe if R[F, x] ⊆ S where
S ⊆ X is interpreted as a “safe” set. If the ε-
δ condition is satisfied for [F, x] and, for some
ε > 0, we have that Rε[x] ⊆ S (i.e., [F, x] is
ε-safe), then the δ-perturbed system [Fδ, x] is
safe, since R[Fδ, x] ⊆ Rε[x] ⊆ S. That is, ε-
safety of [F, x] implies safety of [Fδ, x] for some
δ > 0. This contrasts to a common use of these
δ-perturbed systems: since R[F, x] ⊆ R[Fδ, x]
for any δ > 0, if [Fδ, x] is safe, then R[F, x]
is safe. In other words, δ-perturbed systems
can be used to determine the safety of the real
system. In contrast, for chain reachable robust
systems, the safety of the δ-perturbed system
is guaranteed by the ε-safety of the real system.

Lemma 7. Let (X,d) be a metric space and
F : X ⇒ X be a u.s.c. multifunction. Then for
all ε > 0 and all compact sets C ⊆ X, there is
δ > 0 for all n ∈ N such that

F◦nδ [Bδ(C)] ⊆ F◦nε [C].
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Note that F◦nε is the n-fold composition of Fε
and not the epsilon enlargement of F◦n.

The lemma above allows us to show that the
ε-chains in the definition of the chain reachable
set are allowed to have initial points within ε
distance of a point in the initial set.

Proposition 8. Let (X,d) be a metric space,
F : X → X be a u.s.c. multifunction and C
a compact set of X. Then

CR[F, C] =
⋂
ε>0

∞⋃
n=0

F◦nε [C]

=
⋂
ε>0

∞⋃
n=0

F◦nε [Bε(C)].

We now can show some necessary conditions
on chain reachable robustness.

Theorem 9. Let (X,d) be a compact metric
space and F : X ⇒ X be a robust u.s.c.
multifunction. Then the following hold:

(1) R is u.s.c.
(2) R (and R) is l.s.c. whenever F is l.s.c.

The multifunction R being continuous (in ev-
ery sense we discuss here) ends up being a
rather strong condition. In particular, it im-
plies some strange things about the minimal
sets of F. In Subsection 2.2, Propositions 2
and 4 showed that there are minimal sets of
F all of which are Lyapunov stable if R is
u.s.c. and X is compact. When we consider
the simpler case of F = {f} being single-valued
with f continuous and assume all minimal sets
are fixed points of f, the fact that all the fixed
points are Lyapunov stable is already a strong
condition. Already, we can tell f(x) = x2 on
[0, 1] is not robust since x̄ = 1 is not Lyapunov
stable. This necessity of Lyapunov stability
actually gets stranger. Theorem 5 gives con-
ditions for the set W(A) to be both open and
closed. Already we can tell thatW(A) is closed
since R is u.s.c. But under the assumption that
the minimal sets are bounded away from each
other we can also show that W(A) is open.

Lemma 10. Let (X,d) be a compact metric
space and F : X ⇒ X be a l.s.c. multifunction
with clR being u.s.c. Suppose that A is a
minimal set of F for which there is an open set
V ⊇ A such that V contains no other minimal
sets except A; that is, A is isolated from other
minimal sets. Then W(A) is open.

Theorem 11. Let (X,d) be a compact con-
nected metric space and F : X ⇒ X is a robust
continuous multifunction. Then either:

(1) F possesses a unique minimal set that is
Lyapunov stable.

(2) F possesses infinitely many minimal sets
(every minimal set is Lyapunov stable).
Further, for every minimal setA and every
open V ⊇ A, there is a minimal set B with
B ⊆ V \A.

In the first case, if in addition F = {f} is
single-valued, then the unique minimal set is
globally attractive; for all x ∈ X we have that⋂
N∈N {f

◦n(x)}∞n=N is the unique minimal set.

Proof. Either there are finitely many minimal
sets or there are infinitely many. Suppose that
there are finitely many, and that A is one of
these minimal sets. We will show that W(A)
is a nonempty, closed and open set, then con-
cluding that W(A) = X by connectedness. By
Theorems 9 & 5,W(A) is closed, it is nonempty
since ∅ 6= A ⊆ W(A) and since there are
finitely many minimal sets there is an open
set of A that contains no other minimal sets.
Thus, W(A) is also open by Lemma 10 and so
X = W(A). Now suppose that B is another
minimal set of F. Then b ∈ B ⊆ W(A) and by
definition of W(A) we have that A ⊆ R[b] = B
(the equality follows from B being minimal
and item (2) of Proposition 2). But B,A are
minimal, so by definition A = B and A is the
unique minimal set in X.

In the case where there is at least one isolated
minimal set we may apply the above argument.
Hence if there are infinitely many minimal sets
there can be no isolated minimal sets. Meaning
that, for every minimal set A and open set V ⊇
A there is a minimal set B with B ⊆ V B 6= A,
since both B,A are minimal if A∩B 6= ∅ then
A ∩ B is a closed nonempty invariant set and
A∩B ⊆ A. But A is minimal so A = A∩B ⊆ B
and B is minimal as well, hence, B = A which
is a contradiction. Therefore, A ∩ B = ∅ and
B ⊆ V \A.

If F is single-valued, the result follows from
Proposition 3. 2

The above theorem gives us a dramatic di-
chotomy about the number and properties of
the minimal sets of a continuous robust multi-
function. In our opinion, the case where F =

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1880



{f} is single-valued with all of its minimal sets
being fixed points is the easiest case to imagine.
In this case it may not be immediately clear if
any such functions can satisfy item (2), given
the stability requirements on the fixed points.
The obvious and easy to forget example of such
a function is the identity map. With further
assumptions, this is in fact the only example.

Corollary 12. Let X = [a, b] ⊆ R, with a < b,
be equipped with the normal metric. Assume
that f is an analytic function whose minimal
sets are all fixed points of f. If f is robust, then
either f is the identity function on X or f has
a unique attracting fixed point on X.

Proof. Suppose that f is robust, by Theo-
rem 11 there are only two cases: either f has
a unique attracting minimal set or f has in-
finitely many minimal sets—none of which are
isolated. By assumption, all these minimal sets
are fixed points. It follows from the identity
theorem that an analytic function on a con-
nected and compact set with an infinite num-
ber of fixed points is the identity function. 2

4. DISCUSSION AND CONCLUSIONS

Since chain reachable robustness in compact
spaces implies that all minimal sets (specifi-
cally fixed points and periodic cycles) must be
stable, chain reachable robustness is an unus-
able condition on any dynamics suspected of
having unstable behavior; which is a realistic
assumption to have when we do not allow for
control. Even if we allow control we should
would expect that point to point controllability
would not hold if all minimal sets are stable
(unless the unique minimal set is the space).

That being said, some “real” systems may ac-
tually be chain reachable robust and any non-
trivial sufficient condition for this would be of
interest in order to check for computability of
the reachable set. A starting point could be
that the functions f(x, u) are non-expansive
functions of x for each u ∈ U , which guarantees
the necessary condition R is u.s.c. and so all the
minimal sets of F would be stable.
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