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Abstract: Recently, graph theoretic distributed protocols have been introduced for the stabilization
of interconnected multiagent systems with separate agent and control layers. For the case of unstable
local agent dynamics, the existing results focus on only the matched interconnections. Further, except
for a multiagent system of first- and second-order agents, the existing results are limited to the
structurally symmetric control layers based on the undirected communication among controllers. We
aim to relax these restrictions for multiagent systems with partially known unmatched or matched
interconnections. We propose two step-by-step procedures to design robust distributed stabilization gains
for the candidate nonsymmetric control layers in the presence of agent- and multiagent system-level
modeling uncertainties. Combined with an optimal control formulation, we develop a matrix algebraic
approach for the unmatched scenario and a Lyapunov-based approach for the matched case. In each
case, we prove that all state trajectories of the two-layer interconnected multiagent system exponentially
converge to the origin. We examine the feasibility of the proposed ideas in simulation.
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1. INTRODUCTION

In response to the advances in embedded sensing, communica-
tion, and computation technologies, graph theoretic approaches
have received significant attention for distributed consensus in
multiagent systems (MASs). Initial research work was mainly
centered around simple agent models such as single, double,
and high-order integrators to understand and build a relation-
ship between graph and control theories Olfati-Saber et al.
(2007). More complicated modeling scenarios are attracting
attention in recent years. For example, Ai et al. (2017) stud-
ied consensus in the presence of local (agent-level) modeling
uncertainties where each individual agent’s dynamics depend
on its own variables, Oh et al. (2014) investigated the aver-
age consensus problem in an MAS of interconnected agents
with linear time-invariant dynamics, and Tuna (2016) discussed
a consensus problem for a completely known interconnected
MAS using a matrix-weighted Laplacian viewpoint.

Parallel to the research on distributed consensus, Rieger et al.
(2013) proposed the concept of multilayer control based on
the graph theoretic approaches. Focusing on the physical and
execution layers in the work of Rieger et al. (2013), Egerstedt
(2015) discussed that the architectural aspect of cyber-physical
systems could be captured using graph theoretic approaches.
The idea, however, is limited to a completely known intercon-
nected MAS of single integrator agents while the robustness
with respect to the (modeling) uncertainties is a critical issue
for multilayer control systems (Dahleh and Rinehart, 2011).

Rezaei and Stefanovic (2016) proposed a distributed decou-
pling protocol for interconnected MASs with unknown in-
terconnection nonlinearities in the state space domain. The
method, however, was limited to known interconnection topolo-

gies and locally stable agent dynamics (i.e., by ignoring the in-
terconnection terms of the state space model). Since the control
communication protocol is the same as the agent layer inter-
connection topology, it cannot fully capture the architectural
aspect of cyber-physical systems as discussed above. Rezaei
and Stefanovic (2017a) revised the approach such that the ar-
chitectural aspects of cyber-phsycial systems could be captured;
however, the idea is limited to a special interconnection topol-
ogy. In another effort, Rezaei and Stefanovic (2019a) proposed
a distributed stabilization protocol for interconnected MASs
without those restrictions. It can be used to model a cyber-
physical system with separate agent and control layer topolo-
gies; however, that solution approach is based on a structurally
symmetric control layer topology and the matched intercon-
nection scenario (defined in Sections 2 and 3, respectively). In
the work of Rezaei and Stefanovic (2019b), the authors devel-
oped a structurally nonsymmetric control layer topology using
a Lyapunov-based formulation. The result, however, is limited
to the interconnected MASs of single and double integrator
agents. (We refer to Rezaei and Stefanovic (2019a,b) for a more
comprehensive literature survey on this topic.)

In this paper, we develop a two-layer (closed-loop) intercon-
nected MAS with separate agent- and control-layer topologies.
In a step-by-step manner, we propose two mixed graph and
optimal control design procedures to design structurally non-
symmetric control layers and local stabilization gains for MASs
with either unmatched and matched interconnections over the
agent layer. In the unmatched scenario, we propose a matrix
algebraic formulation which relies on the inherent properties
of M-matrices and, in the matched scenario, a Lyapunov-based
formulation which uses the existing flexibility in the Lyapunov
stability analysis of the final design. These ideas are inter-
changeable between the unmatched and matched scenarios, and
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we prove the proposed nonsymmetric distributed protocols are
able to steer all state trajectories of the two-layer interconnected
MAS to the origin despite the agent- and MAS-level modeling
uncertainties.

We provide the required preliminary definitions in Section 2,
the main results in Section 3, a discussion on the proposed ideas
in Section 4, simulation studies in Section 5, and concluding
remarks in Section 6.

2. PRELIMINARIES

We mainly follow standard notation. The symbol 0 refers to
a matrix of all zeros with appropriate dimension, diag{.} a
(block) diagonal matrix of the elements in {.}, and col{xi} an
aggregated column vector of xi for all i belonging to a given set.
‖.‖ denotes the (induced) 2-norm of the (matrix) vector given
as its input argument.

A directed graph or digraph G is a collection of nodes V and
directed edges E : V × V which can be characterized by its
adjacency matrix A or Laplacian matrix L whose definitions
can be found in the standard texts (Mesbahi and Egerstedt,
2010). We consider two graph topologies: Ga to represent the
physical interaction of agents’ dynamics over the agent layer,
and Gc to model the communication (information flow) between
controllers over the control layer. We allow the existence of
selfloops over both layers where, by a selfloop, we refer to an
edge outgoing from and returning to the same node without
passing though any other nodes. Since the standard definitions
of adjacency and Laplacian matrices do not admit selfloops, we
redefine them in the rest of this section and use the results in
the derivations of Section 3.

An agent layer digraph Ga with N nodes is characterized by
an adjacency matrix Aa = [aa

i j] ∈ RN×N where aa
i j 6= 0 if the

ith agent is affected by the jth agent’s dynamics for i, j ∈
{1,2, ...,N}, and aa

i j = 0 otherwise. Note that, different from
the standard definitions, j = i is acceptable and each aa

i j is a real
valued scalar with either positive or negative sign. The set N a

i
indicates the ith agent’s neighbors over Ga which may include
the number i as well (selfloop).

A control layer digraph Gc with N nodes is characterized by
a modified Laplacian matrix Hc = Lc +Sc ∈ RN×N . Lc ∈
RN×N is a standard Laplacian matrix of a digraph G ′c obtained
by removing all selfloops: L c

i j = −ac
i j and L c

ii = ∑ j∈N c
i

ac
i j

with positive edge weights ac
i j (and no selfloop). The set N c

i

characterizes the ith agent’s (controller) neighbors over Gc,
excluding the number i (selfloop). Sc = diag{sc

i } ∈ RN×N is
a diagonal matrix representing the selfloops where sc

i > 0 when
there is a selfloop around the ith controller, and sc

i = 0 otherwise.
These selfloops and directed one-way communications between
the control nodes create a structurally nonsymmetric control
layer to be discussed in Section 3, visually understood in the
simulation setup of Section 5.

Both Ga and Gc can be disconnected; however, all control nodes
in each connected component of Gc must have access (direct
path) to at least one node with a selfloop. For a structurally
symmetric scenario, i.e., an undirected graph G ′ss

c (instead of
G ′c) with selfloops, all eigenvalues are strictly positive real-
valued scalars (Rezaei and Stefanovic, 2019a). In Section 3, we
assume that the agent layer owner shares only the scalar ‖Aa‖
with the control layer designer such that, possibly by intention,

the detailed information of the agent layer interconnection
topology is kept confidential. We use Gc (and Hc) as a design
degree of freedom to be discussed in Section 3.

3. MAIN RESULTS

We consider the following interconnected MAS:
ẋi(t) = Axi(t)+Bui(t)+φi(ηi(t), t)
ηi(t) =Cη i ∑

j∈N a
i

aa
i jx j(t) (1)

where i ∈ {1,2, ...,N} denotes the agent number, xi ∈ Rnx the
ith agent’s state variable, ui ∈ Rnu control input, ηi ∈ Rnη in-
terconnection variable, and (A,B) a pair of stabilizable system
matrices with compatible dimensions. As discussed at the end
of Section 2, the positive scalar ‖Aa‖ is shared with the control
layer design; however, the agent layer topology (both structure
and edge weights) of Ga is kept confidential. The nonlinear
functions φi : Rnη ×R+ → Rnx and interconnection allocation
matrices Cη i are discussed in the next two paragraphs.

In the unmatched scenario, the interconnections are not in the
range space of the control input matrix, φi = Bggi(yi, t), and the
agent model (1) is rewritten as follows:

ẋi(t) = Axi(t)+Bui(t)+Bggi(yi(t), t)
yi(t) =Cyi ∑

j∈N a
i

aa
i jx j (2)

which recovers the (non-specified) model (1) for Bg = Inx .

In the matched scenario, the interconnections are in the range
space of the control input matrix, φi = B fi(zi, t), and the agent
model (1) is rewritten as follows:

ẋi(t) = Axi(t)+B(ui(t)+ fi(zi(t), t))
zi(t) =Czi ∑

j∈N a
i

aa
i jx j (3)

The agent models (2) and (3) satisfy the following assumption.

Assumption 1. The functions fi and gi satisfy fi(0, t) = 0 and
gi(0, t) = 0, are Lipschitz (with unknown Lipschitz constants),
norm bounded f T

i (zi, t) fi(zi, t)≤ γ f izT
i zi and gT

i (yi, t)gi(yi, t)≤
γgiyT

i yi with scalars γ f = maxi(γ f i) and γg = maxi(γgi) known
by the control designer. The interconnection allocation matrices
Czi and Cyi are unknown, and satisfy the norm conditions
‖Czi‖2 ≤ γczi and ‖Cyi‖2 ≤ γcyi with scalars γcz = maxi(γczi) and
γcy = maxi(γcyi) known by the control designer.

We note that the proposed formulation is capable of simultane-
ously modeling both agent- and MAS-level uncertainties. The
former is characterized by selfloops of Ga, i.e., when i ∈N a

i ,
and the latter by the edges of Ga, i.e., when j 6= i and j ∈N a

i .

We consider an exponential stabilization objective (conver-
gence of all trajectories to the origin):

lim
t→∞

xi(t) = 0 ∀i ∈ {1,2, ...,N} (4)

to be achieved using only a few agents’ absolute measurements,
and despite the lack of detailed knowledge about the intercon-
nection topology and type of nonlinearities. Note that neither
the distributed decoupling idea of Rezaei and Stefanovic (2016)
(limited to the Hurwitz A and known Ga) nor the distributed sta-
bilization idea of Rezaei and Stefanovic (2019a) (limited to the
matched scenario) is applicable to the distributed stabilization
problem (4) of this paper. This is because the control layer Gc
is structurally nonsymmetric. Similarly, the idea of Rezaei and
Stefanovic (2019b) is focused on the design of Gc for an MAS
of only first- and second-order agents.
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In Subsection 3.1, we lay a foundation for the distributed
implementation of centralized, cooperative, and decentralized
stabilization protocols using a highly flexible graph theoretic
formulation. In Subsection 3.2, we propose a step-by-step ma-
trix algebraic approach to obtain the stabilization gain for a
candidate control layer topology in the unmatched scenario.
In Subsection 3.3, we propose a step-by-step Lyapunov-based
approach to obtain the stabilization gain for a candidate control
layer topology in the matched scenario.

3.1 Foundation: A graph theoretic formulation

We propose a distributed stabilization protocol:
ui(t) = K

(
∑

i∈N c
i

ac
i j(xi− x j)+ sc

i xi
)

(5)

where the structurally nonsymmetric control layer topology
Gc (neighbor sets N c

i and weighting scalars ac
i j,s

c
i ≥ 0) and

the stabilization gain K ∈ Rnu×nx are two design degrees of
freedom.

Relevant to the configurations in the literature of large-
scale systems (e.g., Lunze (1992)), we use the control
layer topology Gc as an MAS-level design degree of
freedom in order to customize the control configuration
depending on the available type of measurements, in a
distributed fashion:
• Decentralized control: sc

i > 0 and N c
i = /0 for all

i ∈ {1,2, ...,N}.
• Cooperative control: sc

i > 0 for a few i, and N c
i

are assigned such that each control node has a
direct path to a control node with a selfloop.

• Centralized control: sc
i > 0 for all i and N c

i
representing a complete digraph, i.e., N c

i =
{1,2, ...,N}\{i}.

In this paper, the “type” of measurements refers to the agent
owner’s willingness to directly contribute toward the stabiliza-
tion of the interconnected MAS. In particular, an sc

i > 0 means
the ith agent shares its absolute state measurement with the
control operator and an sc

i = 0 the agent’s controller operates
based only on the relative information with respect to its neigh-
bors over Gc. The relative measurement means the control layer
operator does not have the permission to use the absolute mea-
surement of the considered agent. This is different from the tra-
ditional applications of distributed consensus, e.g., unmanned
vehicles, where the relative measurement is a consequence of
using distance measurement sensors.

A challenge arises due to the fact that the same distributed
stabilization protocol (5) must be used under both unmatched
and matched scenarios (Equations (2) and (3), respectively). In
Subsection 3.2, we propose a step-by-step procedure to design
a candidate K and the associated Gc under the the unmatched
scenario. In Subsection 3.3, we propose another step-by-step
approach to design Gc and K under the matched scenario. The
procedures are interchangeable between the two scenarios.

3.2 Design and analysis: Unmatched interconnection

We start this subsection by aggregating the agent models (2),
with unmatched interconnections:

ẋ = Āx+ B̄u+ B̄gg(y) and y =Cy(Aa⊗ Inx )x (6)

where x = col{xi} ∈ RNnx , u = col{ui} ∈ RNnu , y = col{yi} ∈
RNny , Ā = IN ⊗ A, B̄ = IN ⊗ B, Cy = diag{Cyi} ∈ RNny×Nnx ,
Aa ∈ RN×N as defined in Section 2, and g = col{gi} : RNny ×
R+→ RNng . We also obtain the following model of the control
layer by aggregating the distributed stabilization protocol (5)
for all i ∈ {1,2, ...,N}:

u = (Hc⊗K)x (7)

where Hc ∈ RN×N denotes the modified Laplacian matrix of
the control layer topology Gc (see Section 2).

Note that (6) and (7) model a two-layer interconnected MAS
with separate agent and control layers, respectively. The agent
layer topology is unknown and the control layer topology is
a design degree of freedom. Therefore, the proposed graph
theoretic framework not only provides a high-level flexibility
to formulate various control configurations (see the gray box
in Subsection 3.1), but also captures the architectural aspect of
cyber-physical systems in a straightforward manner.

We will use the control layer topology (graph) Gc as an MAS-
level degree of freedom to obtain a candidate K in a step-by-
step manner. Prior to the discussion on the design steps, we note
that the following fact holds for any valid control layer topology
Gc and the associated Hc, introduced in Section 2 (Zhang et al.,
2015).

Fact 1. There exists a positive definite matrix ∆ = diag{δi} ∈
RN×N with scalars δi > 0 such that ∆Hc +H T

c ∆� 0.

The matrix ∆= diag{δi} is obtained according to δi =
δ n

i
δ d

i
where

the numerators satisfy col{δ n
i } = (H −1

c )T 1N and the denom-
inators satisfy col{δ d

i } = H −1
c 1N . We observe that col{δ n

i }
gives the column sums and col{δ d

i } the row sums of H −1
c .

Since Hc is a non-singular M-matrix, we know H −1
c exists and

all of its elements are non-negative real-valued scalars (Alefeld
and Schneider, 1982). Thus, the positive definiteness of ∆ can
be understood from this fundamental property of M-matrices
and non-singularity of H −1

c .

In the next design procedure, we formulate a step-by-step
approach in order to obtain a candidate stabilization gain K
associated to a candidate control layer topology Gc.
Design Procedure 1. Under the unmatched scenario, the can-
didate Gc and K of the distributed stabilization protocol (5) are
designed as follows:

(1) Choose a structurally nonsymmetric control layer Gc to
formulate a control configuration according to the gray
box in Subsection 3.1, and let κ > 0 be a real-valued scalar
such that the inequality ∆Hc +H T

c ∆ < 2κ∆ is satisfied.
Let the state weighting matrix Q ∈ Rnx×nx and the control
input weighting matrices Rv ∈ Rnu×nu and Rw ∈ Rng×ng

be three positive definite design matrices. Introduce a
modified state weighting matrix Qm = Q + Rwm where
Rwm = γgγcyλmax(Rw)‖Aa‖2Inx .

(2) Find the solutions v′i = Kx′i ∈ Rnu and w′i = Gx′i ∈ Rng of
the following modified LQR problem:

min
v′i , w′i∈Ci

∫
∞

0
(x′Ti Qmx′i + v′Ti Rvv′i +w′Ti Rww′i)dτ

subject to ẋ′i = Ax′i +κBv′i +Bgw′i

where Ci is the set of all admissible (static linear state
feedback) stabilizing control signals v′i and fictitious con-
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trol signals w′i for the auxiliary networked nominal dy-
namics ẋ′i = Ax′i +κBv′i +Bgw′i.

(3) Gc represents a valid control layer topology and K a valid
stabilization gain if the following condition is satisfied:

Q̄um
ss � 0 (8)

where, using the operator [∆Hc]sym = 1
2 (∆Hc +H T

c ∆),

we have defined Q̄um
ss =

(
2( [∆Hc]sym

κ
−∆)⊗KT RvK

)
+
(
∆⊗

(Q+KT RvK−2GT RwG)
)
.

In Step (1), we define all required parameters and matrices, and
specify the control configuration according to the gray box in
Subsection 3.1. In Step (2), we note that the modified LQR
problem is subject to an auxiliary networked nominal dynamics
designed for the selected control layer topology (using κ).
Also, the word “modified” refers to the use of a modified state
weighting matrix Qm instead of the arbitrary positive definite
matrix Q, “networked” to the presence of κ which represents
the effect of the control layer topology (vs. the nominal part
ẋ′i = Ax′i +Bv′i of agents (2)), and “auxiliary” to the auxiliary
(or fictitious) control input wi. This fictitious signal is added
for the analysis purpose (in Step (3)) and, otherwise, will never
be implemented. In Step (3), we need to verify an Nnx ×
Nnx matrix inequality. This is a feasible idea noting that Gc
(consequently Hc) is a design degree of freedom. However, we
further know KT RvK < 0 and [∆Hc]sym

κ
−∆ < 0 (see Step (1)).

This means we can replace the high-dimension condition (8)
with the following low-dimension one (Rezaei and Stefanovic,
2016):

Q+KT RvK−2GT RwG� 0 (9)

The use of (8) and (9) will be further clarified in the proof of
Theorem 1.

Following the above design procedure, we know that the candi-
date stabilization gain K and the fictitious gain G are character-
ized as follows (Dorato et al., 1995):

K =−κR−1
v BT P and G =−R−1

w BT
g P (10)

in which the positive definite matrix P ∈ Rnx×nx is the unique
stabilizing solution of the following ARE:

AT P+PA+Qm−κ
2PBR−1

v BT P−PBT
g R−1

w BgP = 0 (11)

The existence and uniqueness of P are guaranteed based on the
stabilizability and observability of the triple (Q1/2

m ,A, [κB,Bg])

in which QT/2
m Q1/2

m = Qm. Note that the pair (A, [κB,Bg]) is
stabilizable because (A,B) characterizes a stabilizable system
and κ > 0. Also, since Gc (or Hc) is a design degree of freedom,
the scalar κ can (and must) be appropriately adjusted to avoid
any poor controllability issues in the modified LQR problem of
Design Procedure 1 or singularity issues in ARE (11).

Based on (10) and (11), it is straightforward to find three
aggregated equalities: IN ⊗ K = −IN ⊗ κR−1

v BT P, IN ⊗G =
−IN ⊗R−1

w BT
g P, and IN ⊗ (AT P+PA+Qm− κ2PBR−1

v BT P−
PBT

g R−1
w BgP) = 0. Thus, the followings hold as well:

∆⊗ (K +κR−1
v BT P) = 0 ∆⊗ (G+R−1

w BT
g P) = 0

∆⊗ (AT P+PA+Qm−κ
2PBR−1

v BT P−PBT
g R−1

w BgP) = 0

We premultiply the first equality with xT (defined after the ag-
gregated model (6)) and postmultiply all of these equalities with
x. After a few manipulations, we conclude that the following
fact holds when K and G are obtained according to Design
Procedure 1 (Lin, 2007).

Fact 2. The following MAS-level equalities hold in an MAS of
auxiliary networked nominal dynamics and the candidate gains
K and G of Design Procedure 1:

2vT R̄v +κV̄ T
x B̄ = 0 2wT R̄w +V̄ T

x B̄g = 0
xT Q̄mx+ vT R̄vv+wT R̄ww+V̄ T

x (Āx+κB̄v+ B̄gw) = 0

where v= col{vi}= K̄x=(IN⊗K)x, w= col{wi}= Ḡx=(IN⊗
G)x, V T

x = ∂V̄
∂x , V̄ = xT (∆⊗P)x, Q̄m =∆⊗Qm, R̄v =∆⊗Rv, and

R̄w = ∆⊗Rw.

Now we are ready to propose the main result of this subsection
in the next theorem.

Theorem 1. (Robust stability, unmatched scenario) Let the can-
didate Gc and K be designed using Design Problem 1. In a par-
tially unknown MAS of agents (2) with unmatched interconnec-
tions, the linear stabilization protocol (5) exponentially steers
all state trajectories of the two-layer structurally nonsymmetric
interconnected MAS to the origin.

Proof: To facilitate the analysis, we rewrite (and decompose)
the two-layer MAS of (6) and (7) as follows:

ẋ = Āx+κB̄v︸ ︷︷ ︸
Networked nominal dynamics

+ B̄gg+κB̄Ēcv︸ ︷︷ ︸
Uncertainties over Ga and Gc

(12)

in which v = (IN ⊗K)x, and Ēc = (Hc
κ
− IN)⊗ Inu is treated

as the source of a fictitious modeling uncertainty (to be able
to propose a low dimension formulation in Step (2) of Design
Procedure 1). We introduce the following candidate Lyapunov
function:

V̄ (x) = xT (∆⊗P)x� 0

Along the uncertain trajectories of the two-layer MAS (12), we
find:

˙̄V = V̄ T
x ẋ = V̄ T

x (Āx+κB̄v+ B̄gg+κB̄Ēcv)

= V̄ T
x (Āx+κB̄v+ B̄gw)−V̄ T

x B̄gw+κV̄ T
x B̄Ēcv+V̄ T

x B̄gg

which, using Fact 2, results in the followings:
˙̄V =−xT Q̄mx− vT R̄vv−wT R̄ww+2wT R̄ww−2vT R̄vĒcv−2wT R̄wg
≤−xT (

∆⊗ (Q+KT RvK−2GT RwG)
)
x−2vT R̄vĒcv

≤−xT Q̄um
ss x≺ 0

where the negative definiteness is guaranteed by design (see
Step (3) of Design Procedure 1). The negative definiteness
remains valid if we use the low-dimension condition (9).
This is because −2vT R̄vĒcv ≤ 0 and ∆ � 0. Moreover, us-
ing the Rayleigh-Ritz inequality, we find λmin(∆⊗ P)‖x‖2 ≤
V̄ ≤ λmax(∆⊗P)‖x‖2 and ˙̄V ≤−λmin(Q̄um

ss )‖x‖2 which indicate
the exponential convergence of all trajectories to the origin
with a bound ‖x(t)‖ ≤ α exp−β t ‖x(0)‖ characterized by α =√

λmax(∆)λmax(P)
λmin(∆)λmin(P)

and β = λmin(Q̄um
ss )

2λmax(∆)λmax(P)
(Khalil, 2002). �

3.3 Design and analysis: Matched interconnection

We start this subsection by aggregating the agent models (3),
subject to the matched interconnections, and finding the fol-
lowing agent layer dynamics:

ẋ = Āx+ B̄(u+ f (z)) and z =Cz(Aa⊗ Inx )x (13)

where z = col{zi} ∈RNnz , Cz = diag{Czi} ∈RNnz×Nnx , and f =
col{ fi} : RNnz×R+→RNnu . Since we use the same distributed
stabilization protocol (5) for both matched and unmatched
scenarios, the control layer is still modeled by (7) as in the
previous subsection.

In the next design procedure, we formulate a step-by-step
approach in order to design a candidate control layer topology
Gc and a candidate stabilization gain K.
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Design Procedure 2. Under the matched scenario, the candi-
date Gc and K of distributed stabilization protocol (5) are de-
signed as follows:

(1) Choose a structurally non-symmetric control layer Gc to
formulate a control configuration according to the gray
box in Subsection 3.1. Let Hc ∈ RN×N be its modified
Laplacian matrix.

(2) Find a (non-unique) correction matrix H cor
c ∈RN×N such

that H ss
c = Hc +H cor

c ∈ RN×N represents a valid modi-
fied Laplacian matrix associated to a structurally symmet-
ric control layer topology G ss

c (see Section 2). Let σ > 0 be
the smallest (real-valued positive) eigenvalue of H ss

c . Let
the state weighting matrix Q ∈ Rnx×nx and input weight-
ing matrix Rv ∈ Rnu×nu be two positive definite design
matrices, and introduce a modified state weighting matrix
Qm = Q+Rvm where Rvm = 1

σ2 γgγczλmax(Rv)‖Aa‖2Inx .
(3) Find the solution v′i = Kx′i of the following modified LQR

problem:

min
v′i∈Ci

∫
∞

0
(x′i(τ)

T Qmx′i(τ)+ v′i(τ)
T Rvv′i(τ))dτ

subject to ẋ′i = Ax′i +σBv′i

where Ci is the set of all admissible (static linear state
feedback) stabilizing signals for ẋ′i = Ax′i +σBv′i.

(4) Gc represents a valid control layer topology and K a valid
stabilization gain if the following condition is satisfied:

Q̄m
ss � 0 (14)

where Q̄m
ss :=

(
IN⊗Q

)
+ 1

σ

(
(H ss

c −2[H cor
c ]sym−σ IN)⊗

KT RvK
)
.

We can discuss the above steps similar to Design Procedure 1.
Further, in Step (4), we directly use the existing flexibility in
the Lyapunov-based proof of stability (see Theorem 2). This is
unlike Design Procedure 1 which relies on Fact 1 as a property
of the M-matrix Hc.

We know the candidate control gain is characterized by:
K =−σR−1

v BT P (15)

and the minimum cost of the modified LQR formulation
in Step (3) of Design Procedure 2 is given by V (x′i(0)) =
x′Ti (t)Px′i(t)|t=0 (Dorato et al., 1995). The positive definite ma-
trix P ∈ Rnx×nx is the unique stabilizing solution of the follow-
ing ARE:

AT P+PA+Qm−σ
2PBR−1

v BT P = 0 (16)

and the existence and uniqueness of P � 0 are guaranteed
based on the stabilizability and observability of the triple
(Q1/2

m ,A,σB) in which QT/2
m Q1/2

m = Qm. The above networked
nominal dynamics, represented by (A,σB), are stabilizable.
This is because the pair (A,B) is stabilizable by assumption,
and σ > 0 by design. As discussed after Design Procedure 1
for the unmatched scenario, the designer can use the freedom
in Gc, Q, and Rv in order to obtain a sufficiently large σ > 0 and
avoid any potential poor controllability or singularity issues in
solving the above ARE.

Based on (15) and (16), it is straightforward to find IN ⊗ (K +
σR−1

v BT P)= 0 and IN⊗(AT P+PA+Qm−σ2PBR−1
v BT P)= 0.

After a few manipulations, we conclude the following fact if the
candidate K is obtained according to Design Procedure 2.

Fact 3. The following MAS-level equalities hold in an MAS
of networked nominal dynamics and the candidate gain K of
Design Procedure 2:

2vT R̄v +σV̄ T
x B̄ = 0

xT Q̄mx+ vT R̄vv+V̄ T
x (Āx+σ B̄v) = 0

where V̄ = xT (IN⊗P)x, Q̄m = IN⊗Qm, and R̄v = IN⊗Rv.

Note that V̄ , Q̄m, and R̄v are different from those of Fact 2
for the unmatched scenario. We provide the main result of this
subsection in the next theorem.
Theorem 2. (Robust stability, matched scenario) Let the candi-
date Gc and K be designed based on Design Procedure 2. In
a partially unknown MAS of agents (3) with matched inter-
connections, the linear stabilization protocol (5) exponentially
steers all state trajectories of the two-layer structurally nonsym-
metric interconnected MAS to the origin.

Proof: Based on the proposed approach in Design Procedure 2,
we first note that the aggregate distributed protocol (5) can be
written as follows:

u = (H ss
c ⊗K)x− (H cor

c ⊗K)x
We rewrite the two-layer interconnected MAS (13) as follows:

ẋ = Āx+σ B̄v︸ ︷︷ ︸
Networked nom. dyn.

+ B̄ f (z)+σ B̄Ēcv︸ ︷︷ ︸
Uncert. over Ga and Gc

− B̄(H cor
c ⊗K)x︸ ︷︷ ︸

Design Proc. 2
(17)

where Ēc = (H ss
c

σ
− IN)⊗ Inu < 0 is treated as a source of

fictitious modeling uncertainties (to obtain K using a low-
dimension formulation in Step (3) of Design Procedure 2).

We propose a candidate Lyapunov function:
V̄ (x) = xT (IN ⊗P)x� 0

and find ˙̄V = V̄ T
x
(
Āx+σ B̄v+σ B̄Ēcv+ B̄ f − B̄(H cor

c ⊗ Inu)v
)

along the unknown trajectories of the two-layer MAS (17)
with a structurally nonsymmetric control layer topology Gc.
This can be grouped as ˙̄V = V̄ T

x (Āx + σ B̄v) + σV̄ T
x B̄Ēcv−

σV̄ T
x B̄(H cor

c ⊗ Inu)
v
σ
+σV̄ T

x B̄ fσ where fσ = 1
σ

f is an aggre-
gated vector of scaled nonlinearities. Ultimately, we reach to:

˙̄V = −xT Q̄mx− vT R̄vv−2vT R̄vĒcv+
2
σ

vT R̄v(H
cor

c ⊗ Inu )v−2vT R̄v fσ

≤ −xT Q̄m
ssx≺ 0

based on Fact 3 and decomposition Q̄m = Q̄+ R̄vm. Note that the
negative definiteness is guaranteed by Step (4) of Design Pro-
cedure 2. We further find λmin(P)‖x‖2 ≤ V̄ ≤ λmax(P)‖x‖2 and
˙̄V ≤ −λmin(Q̄m

ss)‖x‖2, based on the Rayleigh-Ritz inequality.
This indicates the robust exponential convergence of all state
trajectories to the origin, i.e., ‖x(t)‖ ≤ α exp−β t ‖x(0)‖ with

α =
√

λmax(P)
λmin(P)

and β = λmin(Q̄m
ss)

2λmax(P)
(Khalil, 2002). �

4. DISCUSSION

The problem considered in this paper can be discussed based on
the literature of networked control systems. In particular, the pi-
oneering work of Wang and Lemmon (2011) (subsection IV.B)
proposed a design formulation to obtain the local stabilization
gain K for a completely known linear time-invariant system.
Their (non-graph theoretic) design formulation requires to si-
multaneously solve a set of linear matrix inequalities (LMIs)
in order to obtain K, the dimension of these LMIs are varying
depending on the completely known interconnection topology,
it does not capture the architectural aspect of cyber-physical
systems because the networked control topology is identical
to the physical interconnection topology, and all agents must
contribute toward the stabilization by sharing their absolute
measurements with the control layer operator.
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We have proposed a mixed graph and optimal control frame-
work to deal with a scenario where the detailed interconnection
topology is unknown, there exist unmatched or matched agent-
and MAS-level nonlinear modeling uncertainties, and only a
few agents might be willing to share their absolute informa-
tion with the control layer operator. In this way, the problem
foundation is markedly broadened. Furthermore, unlike Wang
and Lemmon (2011) and Rezaei and Stefanovic (2016), we are
able to systematically capture the architectural aspect of cyber-
physical systems because the control layer (a design degree of
freedom) is completely different from the unknown agent layer
interconnection topology.

The modified LQR formulations of this paper may end in a con-
servative solution approach. But this is well justified, because
the agent layer owner shares neither the type of nonlinearities
nor detailed information about the interconnection topology
and allocation matrices, which creates both agent- and MAS-
level modeling uncertainties. Recently, assuming a known in-
terconnection topology Ga (Wang and Lemmon, 2011), we have
proved that the distributed stabilization problem can be ad-
dressed using a non-modified LQR formulation and an adaptive
control idea with a control cooperation layer whose topology
is different from that of agent (and decoupling) layer (Rezaei
and Stefanovic, 2020). Also, as a key trade-off, the need for the
known upper-bounds on the unknown interconnection terms in
Assumption 1 is relaxed. We are currently working to extend
that result to unmatched and nonlinear interconnection sce-
narios over the agent layer, and to structurally nonsymmetric
control layers. An extension of these ideas to dynamic (Rezaei
and Stefanovic, 2017b) or static output feedback would be
interesting as well.

5. SIMULATION VERIFICATION

Now we verify the feasibility of the proposed ideas in Section 3.
We first introduce the agent layer topology Ga and control layer
topology Gc as depicted in Fig. 1. We examine the unmatched
scenario in Subsection 5.1 and validate the matched scenario in
Subsection 5.2.

The agent layer topology Ga is chosen such that the agents 1
and 2 build a sub-MAS which is totally decoupled from other
agents. Also, we note that the agent 5 is not affected by any
agents, and agent 8 is affected by agent 7. Over this layer, each
dashed black arrow represents an edge weight of -1 and solid
gray arrow an edge weight of 1. Following the definition of
Aa in Section 2, the (unknown) adjacency matrix Aa can be
obtained using the agent layer graph in Fig. 1.

The structurally nonsymmetric control layer topology Gc is
chosen to be different from the unknown Ga, and to satisfy
all requirements of Section 2. Control nodes 1 and 2 show
a distributed implementation of a centralized controller in the
sense that the control action of each node is determined based
on all information in the sub-MAS of agents 1 and 2 (we have
limited this case to two agents in order to avoid visualization
problem). Also, the control nodes 3 to 7 represent a cooperative
control protocol in which only agents 4 and 6 share their ab-
solute information with the control layer operator. The control
node 8 represents a decentralized control configuration in the
sense that it relies on only its own absolute measurement for
the stabilization purpose, despite the fact that it is affected by
agent 7 over Ga. Over this graph, the green arrow shows an edge
weight of 1.5, black a weight of 1, blue a weight of 0.5, and

Agent layer

a1

a2

a3

a4
a5

a6

a7

a8

Contro
l layer

c1

c2

c3

c4
c5

c6

c7

c8

Fig. 1. Two-layer (closed-loop) interconnected MAS with sepa-
rate control and agent layers. ci and ai denote ith controller
and agent, respectively. Due to the space limitation, we
use the same topology for both unmatched and matched
scenarios. (See Section 5 for a description of the setup.)

t(s)

0 10 20 30 40 50 60 70 80 90 100

‖xi‖

×104

0

1

2

3

4

Fig. 2. Diverging norms ‖xi‖ of (open-loop) agent layer dynam-
ics in Fig. 1 for i ∈ {1,2, ...,8}.

pink a weight of 0.25. We follow the definition of the modified
Laplacian matrix (Section 2) to obtain Hc using the control
layer graph in Fig. 1.

5.1 Unmatched interconnection

We characterize an MAS of 8 interconnected agents (2) using
the following system matrices:

A =

[
0 1.5
−0.5 0

]
B =

[
0
1

]
Bg =

[
−0.5
0.5

]
The (unknown) coupling matrices and nonlinearities are Cyi =
[0,1] for all i∈{1, ...,8}, g1(y1)= 0.5sin(y1), g2(y2)=−0.4y2,
g3(y3, t) = 0.5tanh(t) tanh(y3), g4(y4) = −0.4y4, g5(y5) =
−0.5sin(y5), g6(y6, t) = 0.4sin(t)sin(y6), g7(y7) = 0.5y7, and
g8(y8) = 0.4sin(y8). As depicted in Fig. 2, we note that the
above interconnected MAS (shown over the agent layer) results
in unstable open-loop dynamics with diverging behavior.

We follow the steps of Design Procedure 1 to find K =
[−2.2738,−4.3828], G = [1.8281,−1.5016] (will not be im-
plemented, as discussed in Subsection 3.2), and the control
layer Gc of Fig. 1 which characterizes a mixed centralized,
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Fig. 3. Unmatched scenario: Converging norms ‖xi‖ of the two-
layer interconnected MAS in Fig. 1 for i ∈ {1,2, ...,8}
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Fig. 4. Matched scenario: Converging norms ‖xi‖ of the two-
layer interconnected MAS in Fig. 1 for i ∈ {1,2, ...,8}.

cooperative, and decentralized configuration. Figure 3 depicts
the converging response of all state trajectories to the origin.

5.2 Matched interconnection

We assume that the interconnected MAS in the matched sce-
nario is characterized similar to the unmatched one in Subsec-
tion 5.1 replacing gi by fi, yi by zi, and Cyi by Czi.

Following the steps of Design Procedure 1, we find K =
[−1.7388,−4.9160] and the control layer Gc of Fig. 1 (without
loss of generality, we indeed fix it in advance to avoid the need
for a new figure for the two-layer MAS). Figure 4 depicts the
converging response of all state trajectories to the origin.

6. SUMMARY

We consider the distributed stabilization problem in intercon-
nected multiagent systems, where the underlying dynamics are
subject to both agent- and multiagent system-level modeling
uncertainties in either unmatched or matched scenarios, the
interconnection topology is only partially known to the control
designer, and only a few agents may provide their absolute mea-
surements to the control operator. We propose two mixed graph
and optimal control formulations which are capable of handling
the aforementioned challenges. The proposed graph theoretic
framework not only captures the architectural aspect of cyber-
physical systems, but also makes it possible to simultaneously
implement all centralized, cooperative, and decentralized con-
trol configurations in a distributed fashion. We comment on
the trade-offs in the assumptions and solution approaches of
this paper compared to a few other references, and validate the
feasibility of the proposed ideas in simulation.
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