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Abstract: Overcropping in fruit trees results in decreased fruit size, poor fruit quality, biennial bearing, 

and reduction in productive life of orchards.  Although flowers and fruits are removed/thinned naturally, 

they require additional thinning for commercial grade fruit production. Integration of machine vision 

system in mechanical/chemical thinning facilitates automated selective blossom thinning. The primary 

requirement for automating blossom thinning is to estimate the blossom density in apple trees under 

varying background and lighting conditions. In this work, we implement Mask-RCNN algorithm to 

perform instance segmentation of apple blossoms. Different image augmentation techniques were 

implemented and their impact on blossom detection were assessed. Experiments were conducted to 

achieve optimal values of hyperparameters of the deep learning network during the training. 

Implementation of image augmentation was crucial to reduce validation loss and improve detection 

accuracy of segmentation algorithm.  The proposed system achieved average precision (AP) of 0.86 in 

detecting blossoms in test dataset previously unseen by the network. 
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1 INTRODUCTION 

Fruit trees often bloom more flowers/blossoms and set more 

fruits than the desired amount for achieving target yield, size, 

and quality in commercial farming. Unlike stone fruits, pome 

fruits like apples produce clusters of flowers and fruits in 

each bud. Crop thinning, therefore, is crucial as it discourages 

overbearing and early fruit drop, improves fruit size, color 

and overall quality, reduces limb damage and avoid biennial 

bearing. Current blossom thinning approaches involve hand 

thinning, chemical thinning, and mechanical thinning 

(Bound, 2018; Wang et al., 2013). Hand thinning involves 

removing excess blossoms manually. Although, hand 

thinning is an effective method of removing blossom, 

growers are facing difficulty in finding sufficient workers and 

accommodating the increasing cost of farm labors (Glozer 

and Hasey, 2006; Hertz and Zahniser, 2013). On the other 

hand, chemical and mechanical thinning suffer from high 

variability and uncertainly in thinning results due to variation 

in environment, weather parameters, canopy density, canopy 

types and density of blossom and green fruit.  

Robotic thinning systems require a robust sensing system in 

addition to precision thinning devices to identify, locate and 

effectively remove unwanted flowers. One of the major 

challenges in vision-based blossom thinning is to develop 

robust and accurate blossom detection algorithms that can 

detect apple blossoms in varying background, noise, and 

lighting conditions typical in an orchard environment. There 

have been a few research efforts in developing machine 

vision systems for blossom detection and localization. The 

detection algorithms are based on extraction of feasible color 

channel followed by contrast variation (Gebbers et al., 2013), 

threshold operation, and morphological image processing 

(Krikeb et al., 2017; Xiao et al., 2014; Aggelopoulou et al., 

2011; Hočevar and Demšar, 2014). However, these color 

thresholding and morphological operations have limited 

capability to minimize the effect of varying lighting 

condition, varying shape and texture, and random noise 

present in the field environment. Recently, there are 

promising implementations of machine learning and deep 

learning techniques in blossom and green fruit detection in 

outdoor environment (Dias et al., 2018a; Dias et al., 2018b; 

Bargoti and Underwood, 2017). Researchers have used 

FasterRCNN for fruit detection in apples, mangoes, almonds 

as well as flower detection in apples (Bargoti and 

Underwood, 2017; Farjon et al., 2019) Considering high 

blossom density in full bloom period, bounding box based 

Faster RCNN is not capable to provide desired precise pixel 

level blossom segmentation. Dias et al. (2018a) implemented 

semantic segmentation of blossom through a pipeline 

involving iterative computation of region proposals   

followed by feature extraction using CNN, dimensionality 

reduction by PCA, and classification using SVM. While this 

approach performed better compared to conventional 

machine learning techniques, the computation of region 

proposal via super pixel is prone to image variations, which 

might not lead to optimal region proposals. As the complete 
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detection architecture is based on the segmentation of region 

proposals, the generalizability of this approach is likely to be 

inferior than end-to-end architecture (Jiang and Li, 2020; 

Dias, 2018b). Improving their previous work, Dias et al. 

(2018b) proposed division of each image into grids, CNN 

application for foreground and background segmentation in 

each grid followed by refine of region growing approach. The 

system outperformed Dias et al. (2018a) in terms of accuracy.  

However, the system has room for improvement in 

evaluation time as it took 50 seconds, on average for each 

image.  Furthermore, creating portraits, storing, and loading 

prediction scores adds computational overhead. 

Deep learning techniques have been proven to be more 

robust, accurate, and reliable in various computer vision-

based object detection methods. Transfer learning takes 

advantage of existing knowledge of related task or domain to 

increase the learning speed and performance of the system  

by fine-tuning the pretrained models using corresponding 

dataset (Kamilaris and Prenafeta-Boldu, 2018). The 

generalizability of the detection algorithm in multiple 

environments, their applicability in real time vision-based 

robotics are two major challenges of implementing neural 

networks in industry.  Further research and development are 

necessary to make these systems robust and widely 

applicable to the targeted blossom detection and thinning.  

Our approach utilizes a unified end-to-end instance 

segmentation architecture that takes a single image as an 

input and returns the all instances of flowers (blossom 

detection + classification at pixel level) without any pre-

processing. We report average detection speed of 1.27 

seconds for images with a pixel resolution of 1920 x 1080.  

Mask Region-based Convolution Neural Network (Mask R-

CNN) is extension of Faster R-CNN (He et al., 2017; Ren et 

al., 2015), which can perform pixel level segmentation and 

mask generation for the objects in images. An existing Mask 

R-CNN algorithm proposed originally by Facebook AI 

Research (FAIR) was fine-tuned to detect apple blossoms. 

This article provides the details of experimental methods, as 

well as performance evaluation against an image dataset 

acquired in a commercial apple orchard without pre-

processing and background manipulation. Section 2 describes 

the data collection strategy, dataset preparation, and the 

techniques followed to implement the deep learning 

algorithm. Section 3 incorporates the results and discussion. 

Section 4 includes the conclusions derived based on the 

results from this work and presents a potential direction for 

further research and development in this area. 

2 MATERIALS AND METHODS 

2.1 Data Collection and Vision Sensor 

The experimental data was collected in commercial apple 

orchards during hand blossom thinning in April 2018 and 

2019 (Washington, USA). Orchards were formally trained 

into 2D fruiting wall architectures - vertical for Scifresh 

variety and V-trellised system for Envy. Data collection was 

performed in daylight condition without any background 

manipulation. Imaging sensors were positioned ~1.5m from 

the canopy trunk centre and ~1m above the ground reference. 

This study used a low-cost Microsoft Kinect V2 time of flight 

based RGB-D sensor for image acquisition for both years. 

The sensor system constituted two cameras, namely IR 

camera (512 x 424) and RGB camera (1920 x 1080) with a 

field of view of 70 and 60 degrees, respectively (Amon et al., 

2014). 2D RGB images were used for instance segmentation 

of apple blossoms. In future, results from blossom 

segmentation will be combined with the depth information 

which allows estimation of spatial distribution of blossoms 

(blossom density estimation) and development for thinning 

rules for vision based-thinning system. 

2.2 Blossom Detection 

2.2.1 Mask R-CNN 

Deep learning is the extension of classical machine learning 

techniques for hierarchical feature learning. The main 

advantage of deep learning is its capability to create and learn 

from features at different levels (higher-level features can be 

formed using the lower level features) (Kamilaris and 

Prenafeta-Boldu, 2018). Mask R-CNN is the extension of 

Faster R-CNN for predicting segmentation masks on each 

Region of Interest (RoI) (He et al., 2017; Ren et al., 2015), 

see Fig. 1.  Mask R-CNN employs identical first stage 

computation of RPN as Faster R-CNN while modifying the 

second stage with additional branch for segmentation mask 

computation. (He et al., 2017). 

2.2.2 Network Implementation 

In this work, the implementation of Mask R-CNN was based 

on Feature Pyramid Network (FPN) with ResNet101 as 

backbone (Lin et al., 2017; He et al., 2016). ResNet uses 

residual learning mechanism that reduces number of  

               

Fig. 1: Architecture of Mask RCNN based instance segmentation framework 
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parameters to be tuned and hence reduces overall 

computational cost. Furthermore, residual links speed up the 

convergence of deep learning network (Khan et al., 2019). 

The Mask R-CNN implementation in this work was extended 

from the existing implementation from Matterport Inc. 

(Sunnyvale, CA) released under MIT License (Abdulla, 

2017). The system is Keras implementation with TensorFlow 

as the backend engine for low-level computations. We 

employed transfer learning by using pretrained model trained 

in MSCOCO image dataset (Lin et al., 2014). To determine 

the optimal number of layers to train, the ResNet101 

backbone was trained up to 100 epochs using three different 

strategies  i) training all network layers with randomized 

initial weights, ii) training convolution layer five and up, iii) 

training the RPN, classifier, and mask heads of the network. 

The network was trained using stochastic gradient descent 

with momentum of 0.9 and learning rate of 0.0005. Low 

value of learning rate results optimal set of weights at the cost 

of longer training time.   

2.2.3 Image Dataset 

The image dataset constituted 205 images of 1920 x 1080-

pixel resolution. The entire dataset was labelled with 

Labelbox annotator without any pre-processing or 

background manipulations (Labelbox Inc. ). Each image was 

annotated at pixel level with multiple polygonal masks 

indicating cluster of apple blossoms. As summarized in Table 

1, 177 images collected from Scifresh and Envy orchard in 

2019 (8317 flower clusters) were randomly divided into 

training (150), and validation (27) images. In addition, 28 

Scifresh and Envy images with 1374 blossom instances 

collected in 2018 were used for testing the system accuracy. 

Since flowering location, biological properties of plant, 

image acquisition time, and flowering intensity varies every 

year, using same orchard block for acquiring training, 

validation, and testing images does not provide replicated 

result in test set. 

Table 1: Division of training, testing, and validation dataset 

 Orchard Blocks (Year) # Images # Blossom Instances 

Training Scifresh & Envy (2019) 150 6879 

Validation Scifresh & Envy (2019) 27 1438 

Testing Scifresh & Envy (2018) 28 1374 

Total  205 9691 

2.2.4 Data Augmentation 

Data augmentation is crucial in improving overall learning 

and performance by enlarging the dataset artificially without 

taking new images.  This is particularly important when 

available dataset is  small (Kamilaris and Prenafeta-Boldu, 

2018). We employed each data augmentation approach to 

60% of training images which increased the training dataset 

from 150 images to 240 images for all augmentation 

techniques. To improve and assess the variability in the 

dataset, six different data augmentation techniques were 

implemented, namely: (a) Flip input images horizontally 

(Flip L-R), (b)Flip input images vertically (Flip U-D), 

(c)Rotate input images in a range of -60 to +60 degrees 

(Rotate), (d) Scale input images by a factor of 0.5 to 1.5 

(Scale), (e) Combination of horizontal and vertical flips, 

rotation, and scaling in random order (Combined), (f) 

Comprehensive augmentation involving horizontal flip, 

vertical flip, random crop, gaussian blur (S.D. = 0 to 0.5), 

contrast variation, additive gaussian noise(mean=0, S.D.= 0 

to 12.75), scaling, and rotation in random order (Comp). 

2.2.5 Performance Assessment 

For each of the input images, the instance segmentation 

algorithm outputs binary mask indicating whether the region 

of interest (pixel) belongs to “blossom” or “background” 

class. The manually labelled blossom instances were assigned 

as ground truth, which were compared against the detection 

results achieved by the proposed algorithm. Three 

performance matrices were observed: Precision, Recall, and 

Average Precision (AP). 

TruePositive
Precision=

TruePositive+FalsePositive
                        (1) 

True Positive
Recall =

True Positive+False Negative
          (2) 

The AP presents the precision recall curve as the weighted 

mean of precisions at each class score threshold with the 

increase in recall from previous threshold used as weight. 

The computation of AP does not use interpolated variant of 

precision values. (Davis and Goadrich, 2006; Pedregosa et 

al., 2011). The average precision formulated in Pedregosa et 

al. (2011) is given as: 

1( )t t t

t

AP R R P                                                       (3) 

Where, tR and tP  are the precision and recall values for the 

classifier threshold t .The overall validation loss was 

computed as the combination of classification loss ( )classL , 

bounding box loss (
bboxL ), and the mask loss (

maskL ) (Abdulla, 

2017).  

overall class bbox maskL L L L              (4) 

The class loss considers the confidence of the model in 

predicting the correct class. Bounding box loss takes into 

account of the distance between the true bounding box 

parameters (origin, width, height) and the predicted bounding 

box. Finally, the mask loss considers model confidence in the 

binary classification of each pixel in “blossom” or 

“background”. Mask loss is the binary cross entropy for the 

pixel classification. The lower the value of the validation 

loss, the better the model trained with the given dataset. 

Please refer (Abdulla, 2017) for formulation details.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16021



 

 

 

4 

 

3 RESULTS AND DISCUSSION 

As summarized in Table 1 a total of 27 images were used for 

validation while 28 images for accuracy evaluation of the 

implemented algorithm.  

3.1 Training ResNet101 Layers 

As shown in Fig. 2, among the three training methods (see 

section 2.2.2), training all the backbone layers surpassed 

performance in terms of validation loss throughout the whole 

training and validation process. When only network heads 

were trained, the network suffered from high validation loss. 

The performance of the network was comparatively better 

when training was performed for the layers five and up.  

Training the lower layers leveraged to extract low level key 

information helpful for identifying apple blossom geometry. 

Furthermore, up to around the eighth epoch, the validation 

loss for all trained layers decreased significantly with 

continued reduction up to the final epochs. 

3.2 Image Augmentations 

In the second experiment, ResNet101 backbone was trained 

in all layers up to 100 epochs by varying the augmentation 

techniques while keeping all the hyperparameters the same. 

The image augmentation is crucial in increasing the 

variability and preventing the model from overfitting. The 

same test dataset used for assessing the performance of 

training different network layers was used for assessing the 

detection performance under varying augmentations. Based 

on the precision recall metrics, the precision recall curve was 

plotted along with the computation of mean average precision 

over recall range. Fig. 3 shows that the model without any 

augmentation started to overfit after ~20 epochs, and the 

validation loss increased linearly with increase in training 

epochs. Among the single augmentation techniques, rotation 

provided lower validation loss compared to scaling,  

 
Fig. 2: Assessing training performance for three different training approaches 

using “combined” augmentation technique. As shown by the green curve, the 
validation loss computed from the model trained with all layers of ResNet-

101 achieved the lowest loss among the three different methods. 

 

Fig. 3: Validation loss for models with various data augmentation 

techniques. Figure shows that the model without augmentation starts to 

overfit very early in the training process and the model with rotation, 
combined, and comprehensive augmentation have the least loss at the final 

epochs. 

horizontal and vertical flip of image during complete training 

interval. As the distribution of flowers in the trees are 

randomly orientated in all possible directions there is no 

significant difference in the flip up-down and flip left-right 

augmentation, see Fig. 2. Relatively lower validation loss 

was observed with rotation, combined, and comprehensive 

augmentation, which is desirable to achieve enhanced object 

detection. However, the numerical difference of validation 

loss is not high at each epoch compared to flip and scaling 

type augmentation. The validation loss for rotation and 

combined augmentation seems to be increasing towards the 

end of the training epochs. Training can be extended to a 

greater number of epochs for identifying if the model starts to 

overfit after 97th epochs. Fig. 4 shows algorithm performance 

by comparing the human labelled ground truth (blue 

polygons) with detection results (red polygons) achieved by 

Mask R-CNN algorithm. The algorithm was successful in 

detecting majority of blossoms with some inaccuracy. Further 

training and fine tuning with additional dataset might help 

improve detection performance. Moreover, the algorithm was 

able to detect true blossoms that are not labelled by humans 

as blossoms, see Fig. 4. 

The accuracy assessment in test data set did not entirely, 

replicate the performance trend as seen in validation loss 

computation, see Fig. 5. Deviating from validation loss 

assessment, the comprehensive and rotation augmentation 

performed poorly in object detection with mean average 

precision of 0.60 and 0.75, Table 1. It was found that the 

comprehensive augmentation performed much worse 

compared to the model without image augmentation 

AP=0.75. This might be the case of model overfitting where 

the CNN performed well in training and validation images 

but not in the test images. Further training and evaluation in 

additional dataset would be necessary to validate these 

results. 
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Fig. 4: Detection result achieved by Mask R-CNN algorithm compared with ground truth dataset [(a), (b): Scifresh and (c): Envy]. Objects inside blue, and red 

polygons indicate ground truth and detection results, respectively. (d) Representative examples of different detection scenarios 

The horizontal and vertical flip tentatively displayed similar 

behaviour in object detection as in the validation loss 

computation. The horizontal and vertical flip added little 

variability in the data set with trivial performance 

improvement compared to the model without augmentation. 

Among all single augmentation techniques, the image scaling 

technique improved the overall detection with minimal 

additional computation overhead (AP=0.86). We 

implemented image scaling in a range of 0.5 to 1.5, which 

increased the variability in the data set without loss of 

information. However, when scaling was combined with the 

rotation, horizontal and vertical flip, that did not contribute 

any further improvement in AP. 

 

Fig. 5: Precision recall curve obtained by testing each of the models over test 

set. With higher area under the curve, the scaling and combined model 

outperformed all other models.  

Table 2: AP for Intersection over Union (IOU)>50 computed from all 

augmentation methods over the test dataset. 

 No 

Aug 

Flip 

L-R 

Flip 

U-D 

Rotate Scale Combined Comp 

 AP 0.75 0.79 0.78 0.75 0.86 0.86 0.60 

The system was deployed in 24 GB NVIDA TITAN Xp, and 

achieved average detection speed of 1.27 seconds per image. 

Farjon et al. (2019) implemented Faster-RCNN to detect 

blossoms and reported AP = 0.68 (IOU>0.3). Our approach 

surpassed algorithm performance reported by Farjon et al. 

(2019) with AP = 0.86 (IOU>0.5).   

4 CONCLUSION 

Integration of machine vision system in mechanical thinning 

facilitates automated robotic blossom thinning. In this study 

we proposed deep leaning-based blossom detection algorithm 

and evaluated performance accuracy in images acquired in 

commercial apple orchard. It was observed that Mask-R-

CNN based deep learning algorithm was able to detect apple 

flower blossoms with mean average precision of 0.86. 

Experiments showed that the accuracy could be significantly 

enhanced by combining different data augmentation 

techniques. The performance of the model in detecting 

flowers could potentially be further improved by increasing 

the size of the dataset and/or by employing different image 

augmentation techniques. However, one should be cautious 

about impact of image augmentation as image augmentation 

can sometimes result in loss of information. In the future 

multi class object detection will be implemented to estimate 

and validate the canopy parameters such as branch/trunk 

diameter. Information about the canopy structure will be 

False Positive (Human Error) 

False Negative (Algorithm Error) 

True Positive 

False Positive (Algorithm Error) 

(a) (b) 

(c) 
(d) 
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helpful in estimating blossom density and development of 

thinning rules. Furthermore, high resolution images are 

preferred for blossom density estimation because it facilitates 

additional details to be visible such that single/individual 

flowers detection can be improved. As resolution of images 

acquired by Microsoft Kinect V2 are not enough to identify 

individual flower within the cluster, high resolution images 

will be investigated for blossom density estimation in the 

future.  
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