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Abstract: This paper addresses parameter estimation problem of Continuous-/Discrete-
Time (CT/DT) Linear Time-Invariant (LTI) systems, whose gain properties should satisfy given
constraints in a priori specified frequencies, using measured data. The following are supposed
in our problem: i) only input matrix has parameters to be estimated; ii) the state and the input
are both measured, and the derivative of the state is also measured in CT case, and iii) the
gain constraints in specified frequency ranges are given beforehand. Under these suppositions, a
formulation to minimize the difference between the measured state derivative and the expected
state derivative (in CT case) or the difference between the measured one-step-ahead state and
the expected one-step-ahead state (in DT case) in Euclidean norm with the supposed gain
constraints satisfied is given in terms of Linear Matrix Inequality (LMI). The effectiveness of
the proposed method is demonstrated by an academic example in DT case as well as flight data
obtained by JAXA’s airplane in CT case.
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1. INTRODUCTION

Identification of plant systems is the fundamental first step
to control practical systems, and there are many reports
and publications on “system identification”, e.g. (Ljung,
1998). Though, in many mechanical systems, the modeling
is not usually conducted in “black-box modeling” (the
systems’ structure is completely unknown and thus the
systems’ degrees are first to be identified), but mostly
conducted in “gray-box modeling” (the systems’ structure
is known and some parameters in systems are known but
the values of some other parameters are unknown and they
must be identified). In the latter case, the problem to be
tackled is referred to parameter estimation problem.

However, it is often said that there is no systematic ap-
proach to parameter estimation problem, and heuristic
approaches are often taken. One of the simplest methods is
to use the least square method (Ljung, 1998; Jategaonkar,
2006) in which the difference between the measured state
derivative and the expected state derivative (Continuous-
Time case; CT case) or the difference between the mea-
sured one-step-ahead state and the expected one-step-
ahead state (Discrete-Time case; DT case) is minimized in
Euclidean norm. In this way, it is possible to estimate sys-
tems’ parameters which match the supposed systems’ time
responses with the models’ time responses. This approach
is simple and effective; however, it sometimes occurs that
some frequency-domain constraints should be satisfied. For
example, if we would like to focus only on some specific
frequency properties due to the unavoidable noise effect,
it is necessary to apply appropriate filters to the measured
signals in order to pick up the specific frequency prop-

erties; however, the filtered data cannot escape from the
adopted filter characteristics. Rather than using filters,
it is preferable to estimate systems’ parameters directly
without using any filters.

Based on the research background above, we tackle param-
eter estimation problem in Linear Time-Invariant (LIT)
systems which minimizes the difference between the mea-
sured state derivative and the expected state derivative
(CT) or the difference between the measured one-step-
ahead state and the expected one-step-ahead state (DT)
in Euclidean norm under some gain constraints in a pri-
ori specified frequency ranges. We will use Generalized
KYP (GKYP) lemma (Iwasaki and Hara, 2003, 2005,
2007) to impose some gain constraints in a priori specified
frequency ranges.

As a first step of our approach to parameter estimation
problem under gain constraints, we suppose that parame-
ters to be estimated are included only in input matrix in
this paper. This restriction limits the applicability of our
proposed method; however, we will show a practical appli-
cation of our method, i.e. engine torque effect estimation
for asymmetric torque input to twin-turbo-prop airplane
MuPAL-α (Masui and Tsukano, 2000).

This paper is organized as follows: Section 2 defines our
problem after the introduction of our supposed LTI plant,
measured data and gain constraints, and briefly reviews
GKYP lemma to impose gain constraints in specified
frequency ranges; then Section 3 shows our proposed
method, and two applications of our method are shown;
Finally, Section 4 gives concluding remarks.
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Notations: ei denotes a column vector with its i-th ele-
ment being set as 1 and others being set as 0, i.e. ei =

[0 . . . 0 1 0 . . . 0]
T
, 0 and I respectively denote a zero ma-

trix and an identity matrix with appropriate dimensions
(if necessary, the dimension is denoted by the subscript),
Rn, Rn×m, Cn×m and Hn respectively denote the set of n-
dimensional real vectors, the set of n×m-dimensional real
matrices, the set of n × m-dimensional complex matrices
and the set of n× n-dimensional Hermitian matrices, and
He {X} for a square matrix X denotes a short-hand nota-
tion of X+XT . For a state vector x, δ[x] denotes ẋ := d

dtx
and x+ := x(k + 1) in CT and DT cases respectively. For
system P , its transfer function is represented by P (λ) with
its frequency variable λ. σ(G,Θ) denotes [G∗ I] Θ [G∗ I]

∗

for appropriately defined matrices G and Θ.

2. PRELIMINARIES

2.1 System Definition

This note considers an LTI system with the following state-
space representation.

G(θ) :

{
δ[x] = Ax+B(θ)u
y = Inx

, (1)

where x ∈ Rn and u ∈ Rnu respectively denote the
state and the input, and matrices A ∈ Rn×n and B(θ) ∈
Rn×nu are state-space matrices. It is supposed that A is
completely known and that its eigenvalues do not exist
on the imaginary axis (CT) or on the unit circle (DT);
however, B(θ) has a priori known structural constraints

and contains unknown parameters θ = [θ1 · · · θr]
T
which

should be estimated using experimental data.

The following is supposed in this note.

Assumption 1. The vectors δ[x], x and u are all mea-
surable, and they are obtained with a sufficiently small
sampling period for a sufficiently long duration. 2

This assumption seems to be restrictive from the viewpoint
of applicability, particularly in the CT case. However, in
mechanical systems, up-to-date measurement equipment
can be used to measure the derivative of the state. Fur-
thermore, it may be possible to use numerical derivatives.
Therefore, in this note, we made Assumption 1.

The transfer function of G(θ) is denoted byG(λ; θ) with its
frequency variable λ. Similarly, the transfer function of G

with the estimated θ̂ is denoted by G(λ; θ̂); that is, G(λ; θ̂)

denotes G(λ; θ̂) = [λIn −A]
−1

B(θ̂). The (i, j) entries of

G(λ; θ) and G(λ; θ̂) are respectively denoted by Gi,j(λ; θ)

and Gi,j(λ; θ̂).

2.2 Measured Data

It is supposed that lq-step data (q = 1, . . . , q̄) for δ[x], x
and u are given as follows.

Xq =
[
x(0)T x(1)T · · · x(lq − 1)T

]T ∈ Rnlq (2)

δ[X ]q =
[
δ[x(0)]T δ[x(2)]T · · · δ[x(lq − 1)]T

]T ∈ Rnlq (3)

Uq =
[
u(0)T u(1)T · · · u(lq − 1)T

]T ∈ Rnulq (4)

That is, q̄-sets of (X , δ[X ],U) are given.

2.3 Gain Constraints

In this note, the following gain constraints are a priori
given.

Assumption 2. For each Gi,j(λ; θ), we have l̄i,j sets of
(λlmin

, λlmax
, ḡl) (l = 1, . . . , l̄i,j) indicating its gain upper

bound constraints with a priori given positive scalars ḡl,
and mi,j sets of (λmmin

, λmmax
, gm, εm) (m = 1, . . . , m̄i,j)

indicating its gain interval constraints with a priori given
positive scalars gm and εm.

|Gi,j(λ; θ)| < ḡl, ∀λ ∈ [λlmin
, λlmax

], (5)

|Gi,j(λ; θ)− gm| < εm, ∀λ ∈ [λmmin , λmmax ], (6)

where frequency bounds λlmin
, λlmax

and λmmin
, λmmax

are
supposed to satisfy the following.{

0 ≤ λlmin
< λlmax

∈ R+ ∪∞ (CT)
0 ≤ λlmin

< λlmax
≤ π (DT){

0 ≤ λmmin < λmmax ∈ R+ ∪∞ (CT)
0 ≤ λmmin < λmmax ≤ π (DT)

2

This assumption means that we have l̄i,j sets which
specify the admissible gain upper bounds and m̄i,j sets
which specify the admissible gain intervals for the (i, j)
entry of G(λ; θ), i.e. |Gi,j(λ; θ)| < ḡl for a priori des-
ignated frequency ranges [λlmin , λlmax ], and gm − εm <
|Gi,j(λ; θ)| < gm + εm, for a priori designated frequency
ranges [λmmin , λmmax ].

2.4 Problem Definition

Under assumptions 1 and 2, we address the following
problem.

Problem 1. With given constraint sets of (λlmin
, λlmax

, ḡl)
(l = 1, . . . , l̄i,j) and constraint sets of (λmmin , λmmax , gm, εm)
(m = 1, . . . , m̄i,j), and q̄ measured data set (Xq, δ[X ]q,Uq)
(q = 1, . . . , q̄), find θ satisfying the following:

min
η=[η1 ... ηq̄ ]

T ,θ

q̄∑
q=1

ηq s.t. a, b, and c (7)

a:

{
ηq > ∥δ[X ]q − [(Il ⊗A)Xq + (Il ⊗B(θ))Uq]∥ ,

q = {1, . . . , q̄}

b:

{
|Gi,j(λ; θ)| < ḡl, ∀λ ∈ [λlmin , λlmax ],
i = {1, . . . , n}, j = {1, . . . , nu}, l = {1, . . . , l̄i,j}

c:

{
|Gi,j(λ; θ)− gm| < εm, ∀λ ∈ [λmmin , λmmax ],
i = {1, . . . , n}, j = {1, . . . , nu}, m = {1, . . . , m̄i,j}

This problem means that we look for θ which minimizes
the sum of the errors between δ[X ]q and (Il ⊗A)Xq +
(Il ⊗B(θ))Uq under the gain constraints in Assumption 2.

Remark 1. As is obvious, it is also possible to exchange the
imposed constraints and the cost function each other, viz.,
if the upper bounds ηq for the errors between δ[X ]q and
(Il ⊗A)Xq+(Il ⊗B(θ))Uq are given, then it is possible to
minimize the linear combination of the gain upper bounds
ḡl and the errors εm using the to-be-estimated parameter
θ. In this note, we focus on Problem 1; however, similar
discussions hold for the above problem setup as well. 2
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Table 1. Setting of Φσ and Ψσ in CT

Φσ
Ψσ

low frequency (λ = jω, |ω| ≤ ϖl) middle frequency (λ = jω,ϖ1 ≤ ω ≤ ϖ2) high frequency (λ = jω, |ω| ≥ ϖh)[
0 1
1 0

] [
−1 0
0 ϖ2

l

] [
−1 jϖ1+ϖ2

2

−jϖ1+ϖ2
2

−ϖ1ϖ2

] [
1 0
0 −ϖ2

h

]
Table 2. Setting of Φσ and Ψσ in DT

Φσ
Ψσ

low frequency (λ = ejθ, |θ| ≤ ϑl) middle frequency (λ = ejθ, ϑ1 ≤ θ ≤ ϑ2) high frequency (λ = ejθ, |θ| ≥ ϑh)[
−1 0
0 1

] [
0 1
1 −2 cosϑl

] [
0 exp

(
j ϑ1+ϑ2

2

)
exp

(
−j ϑ1+ϑ2

2

)
−2 cos ϑ2−ϑ1

2

] [
0 −1
−1 2 cosϑh

]
2.5 GKYP Lemma

The gain constraints in Assumption 2 are handled by
the dual form of GKYP lemma (Iwasaki and Hara, 2003,
2007), because GKYP lemma (Iwasaki and Hara, 2005)
has an ability to specify the maximum gains for a priori
specified frequency ranges. Thus, we briefly review GKYP
lemma and its dual form below.

In this subsection, the following LTI system G is consid-
ered.

G :

{
δ[x] = Ax+ Bu
y = Cx+ Du

, (8)

where x ∈ Cn, u ∈ Cnu and y ∈ Cny are respectively
the state, the input and the output, and matrices in (8)
are supposed to be complex matrices with compatible
dimensions.

Matrix Πσ is defined as Πσ = diag
(
Iny ,−γ2Inu

)
with

a positive real scalar γ. The target frequency range for
frequency variable λ is defined as follows:

Λσ(Φσ,Ψσ) = {λ ∈ C : σ(λ,Φσ) = 0, σ(λ,Ψσ) ≥ 0}, (9)

where matrices Φσ,Ψσ ∈ H2 are defined in Table 1 in CT
case and Table2 in DT case at the top of this page.

With these preliminaries, GKYP lemma for the gain
bound is given below.

Lemma 1. (Iwasaki and Hara, 2005) Suppose that Λσ rep-
resents curves 1 on the complex plane, and that det(λI−
A) ̸= 0, ∀λ ∈ Λσ(Φσ,Ψσ) holds. Then, the following two
statements are equivalent.

• G(λ) = C(λI − A)−1B + D satisfies σ (G(λ),Πσ) ≺
0, ∀λ ∈ Λσ(Φσ,Ψσ), viz., the following holds:

G(λ)∗G(λ) ≺ γ2Inu , ∀λ ∈ Λσ(Φσ,Ψσ). (10)

• There exist matrices P ∈ Hn and 0 ≺ Q ∈ Hn

satisfying the following inequality.A B
I 0
C D
0 Inu


∗ (

Φσ ⊗ P
+Ψσ ⊗Q

)
0

0 Πσ


A B
I 0
C D
0 Inu

 ≺ 0 (11)

The dual formulation of GKYP lemma is given by using
the following relation with Πd

σ = diag
(
Inu

,−γ2Iny

)
G(λ∗)G(λ∗)∗ ≺ γ2Iny

, ∀λ ∈ Λσ (Φσ,Ψσ)

⇔G(λ∗)G(λ∗)∗ ≺ γ2Iny , ∀λ∗ ∈ Λσ

(
ΦT

σ ,Ψ
T
σ

)
⇔ σ

(
G(λ∗)∗,Πd

σ

)
≺ 0, ∀λ∗ ∈ Λσ

(
ΦT

σ ,Ψ
T
σ

)
1 For its definition, please see the reference.

Lemma 2. (Iwasaki and Hara, 2003) Suppose that Λσ

represents curves on the complex plane, and that det(λI−
A∗) ̸= 0, ∀λ ∈ Λσ(Φσ,Ψσ) holds. Then, the following two
statements are equivalent.

• G(λ∗)∗ = B∗(λI−A∗)−1C∗+D∗ satisfies the following
inequality.

G(λ∗)G(λ∗)∗ ≺ γ2Iny
, ∀λ ∈ Λσ(Φσ,Ψσ) (12)

• There exist matrices P ∈ Hn and 0 ≺ Q ∈ Hn

satisfying the following inequality.A∗ C∗

I 0
B∗ D∗

0 Iny


∗ (

ΦT
σ ⊗ P

+ΨT
σ ⊗Q

)
0

0 Πd
σ


A∗ C∗

I 0
B∗ D∗

0 Iny

 ≺ 0.

(13)

The structural constraint of Πd
σ equivalently makes (13)

transformed to the following inequality:

[
A I
C 0

](
ΦT

σ ⊗ P
+ΨT

σ ⊗Q

)[
A∗ C∗

I 0

]
+

[
0 0
0 −γ2Iny

]
 [

B
D

]
[B∗ D∗ ] −Inu

 ≺ 0. (14)

Matrix B has no multiplications with decision matrices P
and Q, which is exploited in addressing Problem 1.

3. MAIN RESULT

3.1 Proposed Method

Using the formulation in (14), i.e. the dual formulation
of GKYP lemma, we characterize the gain constraints
in Assumption 2. Then, the following is proposed for
Problem 1.

Theorem 1. Solve the following problem.

min
η, θ, Pijl,Pijm∈Hn,
0≺Qijl,Qijm∈Hn

q̄∑
q=1

η2q s.t. (16), (17), and (18) (15)

[
η2q ∗

δ[X ]q − [(Il ⊗A)Xq + (Il ⊗B(θ))Uq] Inlq

]
≻ 0,

q = {1, . . . , q̄}
(16)


[
A I
eTi 0

](
ΦT

σ ⊗ Pijl

+ΨT
σ ⊗Qijl

)[
AT ei
I 0

]
+

[
0 0
0 −ḡ2l

]
 [

B(θ)ej
0

]
[
eTj B(θ)T 0

]
−1

 ≺ 0,

i = {1, . . . , n}, j = {1, . . . , nu}, l = {1, . . . , l̄i,j}
(17)
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[
A I
eTi 0

](
ΦT

σ ⊗ Pijm

+ΨT
σ ⊗Qijm

)[
AT ei
I 0

]
+

[
0 0
0 −ε2m

]
 [

B(θ)ej
−gm

]
[
eTj B(θ)T −gm

]
−1

 ≺ 0,

i = {1, . . . , n}, j = {1, . . . , nu}, m = {1, . . . , m̄i,j}
(18)

If the problem is feasible and the optimal η and θ are given

as ηmin = [η1min
, . . . , ηq̄min

]
T
and θ̂ respectively, then θ̂ sat-

isfies ηqmin
>

∥∥∥δ[X ]q −
[
(Il ⊗A)Xq +

(
Il ⊗B(θ̂)

)
Uq

]∥∥∥ ,
(q = 1, . . . , q̄) and the constraints in Assumption 2.

Proof. The cost function in Problem 1 is directly trans-
formed to (16). The gain constraints in Assumption 2 are
also directly described as (17) and (18) using Lemma 2
and the formulation (14). 2

Remark 2. As to-be-estimated parameter θ exists in B(θ)
without multiplications with other decision variables, the
bounds of each element in B(θ) can be also imposed; that
is, bij ≤ eTi B(θ)ej ≤ bij (i = 1, . . . , n, j = 1, . . . , nu) can

be imposed with appropriate scalars bij and bij . 2

3.2 Application Examples

An Academic Example in DT Case An unstable LTI
system G(θ) in (1) with the following state-space matrices
is considered as an example of DT case.

[A B ] =

0.95 −0.002 0.2 0 0.5 0
0.95 1.1 0 0.1 0 0.5
0 −0.1 0.3 −0.4 0.2 −0.3

0.05 −0.05 0.5 0.6 −0.5 0.2

 (19)

In this example, we do not suppose any structural con-
straints on B matrix; that is, all elements in B matrix can
have non-zero elements in parameter estimation problem.
The sampling period is set as 0.05 [s].

For this example, we first conducted simulations to obtain
measured data in an ideal situation, i.e. noise-free for
measured data, and they are shown as dotted lines in
Fig. 1. The input matrix B(θ) is estimated as (20) via

the least square method, viz.min
η,θ

3∑
q=1

η2q s.t. (16), using the

noise-free data.

B(θ̂) =

 0.5 −5.3× 10−10

−5.6× 10−10 0.5
0.2 −0.3
−0.5 0.2

 (20)

As is obvious, the estimation is almost perfect, and the er-

rors ηq between δ[X ]q and
[
(Il ⊗A)Xq +

(
Il ⊗B(θ̂)

)
Uq

]
are given as 1.355 × 10−6 (1st data), 1.354 × 10−6 (2nd
data), and 1.354×10−6 (3rd data). Due to space problem,
we omit to show the Bode plots with the real parameters
and the estimated ones. Though, it is confirmed that the
frequency properties of the system using the estimated

input matrix, i.e. G(z, θ̂), are almost identical to those of
the actual system, i.e. G(z, θ).

We next consider the situation that all the measured
data are corrupted by the uniform noise; the 1st and
2nd input data are both corrupted by the uniform noise

time [s]
0 1 2 3 4 5 6 7 8 9 10

1s
t s

ta
te

2n
d 

st
at

e
3r

d 
st

at
e

4t
h 

st
at

e
1s

t i
np

ut
2n

d 
in

pu
t

60

-60

0

500

-500

0

30

0
10

-10

100

-100

0

50

2.0

1.0

0

-2.0

1.0
2.0

0
-1.0

-2.0

1st data
2nd data
3rd data

-40
-20

20
40

20

-20

-50

-1.0

Fig. 1. Simulation data (dotted lines represent noise-free
data, solid lines represent noise corrupted data)

ranging [−0.5, 0.5]; the 1st, 2nd, 3rd and 4th state data
are corrupted by the uniform noise ranging [−2.5, 2.5],
[−50, 50], [−1, 1] and [−5, 5] respectively. They are shown
as solid lines in Fig. 1.

Firstly, the input matrix is estimated via the least square
method using the noisy data, and the following is obtained.

B(θ̂) =

 0.490 −0.006
0.071 −0.025
−0.147 −0.383
−0.603 0.177

 (21)

The corresponding Bode plots are depicted in Fig. 2. It
is confirmed that the peak gains for the 2nd input are
estimated higher than actual.

Then, we impose the following gain constraints.
|G12(e

jθ, θ̂)| < 12, 0 ≤ θ ≤ 10

|G22(e
jθ, θ̂)| < 110, 0 ≤ θ ≤ 10

|G32(e
jθ, θ̂)| < 5, 0 ≤ θ ≤ 10

|G42(e
jθ, θ̂)| < 20, 0 ≤ θ ≤ 10

(22)

The input matrix is then estimated as follows by using
Theorem 1.

B(θ̂) =

 0.505 0.025
0.072 −0.024
−0.144 −0.377
−0.606 0.172

 (23)

The corresponding Bode plots are depicted in Fig. 3. The

values of B(θ̂) in (23) are similar to those of B(θ̂) in (21);

however, the peak gains of G(z, θ̂) become lower than in
Fig. 2 to satisfy the constraints in (22). Thus, it has been
demonstrated that our method has an ability to impose
gain constraints in parameter estimation problem.

Torque Effect Parameter Estimation in CT Case We
consider the parameter estimation problem for torque
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G(z, θ)
G(z, θ)^

Fig. 2. Bode plots of G(z, θ) with actual B (black lines)

and G(z, θ̂) with the estimated B(θ̂) in (21) (red lines)

G(z, θ)
G(z, θ)^

Fig. 3. Bode plots of G(z, θ) with actual B (black lines)

and G(z, θ̂) with the estimated B(θ̂) in (23) (red lines)

effect in asymmetric power lever deviations for MuPAL-
α based on Do228-202 (Masui and Tsukano, 2000).

In the standard linearized lateral-directional motions as
in (Stevens and Lewis, 1992; Stengel, 2004), roll angle is
almost identical to the integral of roll rate, and the roll

angle equation can thus be removed in modeling problem.
Then, the following state-space model is considered here
with the gravity constant g, the initial pitch angle Θ0 and
the initial forward speed U0:[

v̇ − gϕ cosΘ0

ṗ
ṙ

]
−

 Yδa Yδr
L′
δa

L′
δr

N ′
δa

N ′
δr

[
δa
δr

]

=

 Yv Yp +W Yr − U0

L′
v L′

p L′
r

N ′
v N ′

p N ′
r

[
v
p
r

]
+

[
Y∆τ

L∆τ

N∆τ

]
∆τ,

(24)

where v [m/s], p [rad/s], r [rad/s], ϕ [rad], δa [rad], δr [rad]
and ∆τ [%] respectively denote lateral airspeed, roll rate,
yaw rate, roll angle, aileron deflection angle, rudder de-
flection angle and the differential torque, i.e. τl − τr with
left torque τl and right torque τr. The roles of the coeffi-
cients in the state-space matrices, i.e. Yv, Yp, etc., are well
established and given in many books, e.g. (Stevens and
Lewis, 1992; Stengel, 2004), thus the detailed descriptions
are omitted here. On the other hand, the coefficients Y∆τ ,
L∆τ and N∆τ respectively denote the differential torque
effects on lateral direction, roll rate and yaw rate, and they
are all to be estimated. Theorem 1 can be applied after the
left-hand side of (24) is set as δ[x].

We have two flight data shown as black lines in Figs. 4
and 5. Using the two sets of flight data, we first estimate

the input matrix, i.e. [Y∆τ L∆τ N∆τ ]
T
, via the least square

method. They are estimated as follows:

Y∆τ = −0.04825, L∆τ = 0.00440, N∆τ = 0.00189. (25)

The optimal ηq’s are given as 61.192 for the first data and
68.033 for the second data. The simulation results with
B(θ̂) in (25) using the input measured in flight data are
shown as red lines in Figs. 4 and 5. The Bode plots using
the above values are shown as red lines in Fig. 6.

Next, it is artificially supposed that the following gain
constraints should be satisfied.

|G11(jω, θ̂)| < 0.05, 0 ≤ ω ≤ 0.1

|G21(jω, θ̂)| < 2× 10−3, 0 ≤ ω ≤ 0.1

|G31(jω, θ̂)| < 0.5× 10−3, 0 ≤ ω ≤ 0.1

(26)

We then apply Theorem 1, and the following are obtained.

Y∆τ = −0.04824, L∆τ = 0.00435, N∆τ = 0.00112. (27)

The optimal ηq’s are given as 61.192 for the first data and
68.034 for the second data, which means that the values
of the cost functions are almost the same as those via the
least square method. The simulation results with B(θ̂) in
(27) using the input measured in flight data are shown as
blue lines in Figs. 4 and 5. The Bode plots using the above
values are shown as blue lines in Fig. 6. It is verified that
the artificially imposed constraints are satisfied.

It is also confirmed that the peak gains in the latter case
are reduced compared to the former case, and this property
consequently reduces amplitudes in simulations shown in
Figs. 4 and 5.

4. CONCLUSIONS

We consider parameter estimation problem for input ma-
trix in Linear Time-Invariant (LTI) systems. In contrast
to the methods in literature, it is supposed that some gain
constraints for some frequency ranges, which should be
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Fig. 4. Flight data #1 for asymmetric torque input (black

lines), and simulation results with estimated B(θ̂) in

(25) (red lines) and estimated B(θ̂) in (27) (blue lines)

δ a
 [d

eg
]

δ r
 [d

eg
]

v a
 [m

/s
]

p 
[d

eg
/s

]
r [

de
g/

s]
∆τ

 [%
] 10

5
0

-5
-10

0 5
time [s]

10 15 20 25 30 35 40 45

0.3

0.2

0.1

0
0.3

0.2

0.1

0

1

0

-1

-2

1
0

-1
-2

2

2

0

-2

-4

flight data

simulation results using (25)
simulation results using (27)

Fig. 5. Flight data #2 for asymmetric torque input (black

lines), and simulation results with estimated B(θ̂) in

(25) (red lines) and estimated B(θ̂) in (27) (blue lines)

satisfied, are given beforehand, and an estimation method
based on the least square method with consideration of the
supposed gain constraints is proposed by using General-
ized KYP (GKYP) lemma. Our method has the limitation
for the applicability; that is, the state transition matrix
is supposed to be completely known and only the input
matrix has parameters to be estimated. However, we show
a practical application example, i.e. asymmetric torque
effect estimation problem, and also show the effectiveness
of the proposed method using the actual flight data.

Fig. 6. Bode plots of G(z, θ̂) using B(θ̂) in (25) (red lines)

and B(θ̂) in (27) (blue lines)
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