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Abstract: The paper presents data-driven algorithms to estimate in a distributed manner
the eigenvalues, right and left eigenvectors of an unknown linear (or linearized) interconnected
dynamic system. In particular, the proposed algorithms do not require the identification of
the system model in advance before performing the estimation. As a first step, we consider
interconnected dynamical system with distinct eigenvalues. The proposed strategy first estimates
the eigenvalues using the well-known Prony method. The right and left eigenvectors are
then estimated by solving distributively a set of linear equations. One important feature of
the proposed algorithms is that the topology of communication network used to perform
the distributed estimation can be chosen arbitrarily, given that it is connected, and is also
independent of the structure or sparsity of the system (state) matrix. The proposed distributed
algorithms are demonstrated via a numerical example.
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1. INTRODUCTION

Eigenvalues and the corresponding eigenvectors of an in-
terconnected dynamical system play an important role
in analyzing and controlling the dynamical system. Let
us take power system as an example. One of the most
critical wide-area monitoring applications in power system
is the low-frequency inter-area oscillation involving two
coherent generator groups swinging against each other
which may lead to a small-signal stability concern for
modern inter-connected power systems and thus needs
to be constantly monitored and controlled (Chow, 2012).
Small signal stability analysis (i.e., the behavior of the
system linearized around an operating point) using modal
techniques is a widely used method to study and con-
trol inter-area oscillation. In particular, the eigenvalues of
the linearized dynamical model show the frequency and
damping of the oscillations. Moreover, the right and left
eigenvectors provide information about the observability
and controllability of the oscillations respectively while
their combination indicates the location of the controllers
to damp the undesired oscillations (Martins and Lima,
1990; Rouco, 1998). In addition to power system, the left
eigenvector of a Laplacian matrix also plays an impor-
tant role in designing cooperative control algorithm for a
network of heterogeneous nonlinear systems as discussed
in (Qu and Simaan, 2014).

In practice, the global topology or overall dynamics of
a network (interconnected system) is typically not avail-
able (for example due to privacy issue (McDaniel and
McLaughlin, 2009)) and as a result, the eigenvalues and

eigenvectors cannot be computed directly. To overcome
this issue, various distributed algorithms have been pro-
posed in the literature to estimate the eigenvalues and/or
eigenvectors of a matrix using only local information
available to individual subsystems (Gusrialdi and Qu,
2017; Franceschelli et al., 2013; Kibangou and Commault,
2012; Tran and Kibangou, 2015; Yang and Tang, 2015;
Charalambous et al., 2016). Even though the proposed
algorithms allow distributed estimation, those work still
assume that the (local) system model is available for per-
forming the distributed estimation. However, the system
model (i.e., system (state) matrix in dynamical system)
is often unknown or not available due to geographical
constraint, it may change due to perturbation or simply
because it is too complicated to obtain as observed in
power system (Gusrialdi et al., 2019). This motivates the
development of data-driven (distributed) algorithm to es-
timate the eigenvalues and eigenvectors of unknown (linear
or linearized) dynamical systems. Data-driven centralized
algorithms using principal components and maximum like-
lihood methods to estimate dominant eigenvalues of a
dynamical system are proposed in (Petrie and Zhao, 2012)
under assumption that only a few of eigenvalues are dom-
inant. Data-driven distributed algorithms based on Prony
method are proposed in (Nabavi et al., 2015; Khazaei
et al., 2016) to estimate the eigenvalues of power system
model. However, the proposed algorithms are geared to-
wards estimating eigenvalues only; they cannot estimate
eigenvectors. Power iteration allows distributed estimation
of the greatest eigenvalue (in absolute value) of a dynam-
ical system together with the associated right eigenvector
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using only available measurements or data under certain
conditions (Golub and Van Loan, 1996; Gusrialdi et al.,
2019). However, it is not clear if the method can be
extended to estimate the left eigenvectors and to deal with
complex eigenvalues and eigenvectors using only available
data. Recently, the work (Gusrialdi et al., 2018) proposed a
distributed algorithm to estimate the eigenvalues together
with the right eigenvectors of a power system model. The
idea is by first learning in a distributed manner the system
model and compute the eigenvalues together the right
eigenvectors using the learned system model. However, the
approach heavily depends on the accuracy of the learned
dynamical model and the eigenvalues and eigenvectors
estimation are sensitive to the identification error.

The paper proposes data-driven algorithms to estimate in
a distributed manner the eigenvalues, right and left eigen-
vectors of an unknown linear (or linearized) interconnected
dynamical system. In contrast to the related work (Gus-
rialdi et al., 2018), the eigenvalues and corresponding
eigenvectors are estimated directly from data and without
requiring identification of the system model in advance.
As a first step, in the paper we consider interconnected
dynamical system with distinct eigenvalues. To this end,
the eigenvalues are first estimated using the well-known
Prony method. The right and left eigenvectors are then es-
timated by solving distributively a set of linear equations.
One important feature of the proposed algorithms is that
the communication network topology used to perform the
distributed estimation can be chosen arbitrarily, given that
it is connected. Furthermore, the structure of the commu-
nication network is also independent of the structure or
sparsity of the system (state) matrix.

The paper is organized as follows. Data-driven distributed
eigenvalue and eigenvector estimation problem is formu-
lated in Section 2. The proposed algorithms to estimate
distributively the eigenvalues together with both the left
and right eigenvectors of linear (or linearized) dynamical
system with unknown system (state) matrix are described
in Section 3. The proposed distributed algorithms are
demonstrated using a numerical example in Section 4.
Concluding remarks and future work are presented in
Section 5.

2. PROBLEM FORMULATION

In this section, we first introduce notations used in the
paper followed by a brief overview of graph theory and
the problem formulation.

2.1 Notation and Preliminary

For a complex number a, let <{a} and ={a} denote its
real and imaginary parts respectively. The identity matrix
of size n is denoted by In. For a matrix A ∈ Rn×n,
let [A]i∗ ∈ Rn and [A]∗i ∈ Rn represent vectors whose
elements are equal to the i-th row and column of A
respectively. Let λi(A) denote the eigenvalues of matrix A.
Furthermore, let νi and wi respectively denote the left and
right eigenvectors of A associated with the eigenvalues
λi(A). Let G = (V, E) be a graph with a set of nodes
V = {1, 2, · · · , n} and a set of edges E ⊂ V × V. An
edge (i, j) ∈ E denotes that node i can obtain information
from node j. The set of neighbors of node i is denoted by

Ni = {j|(i, j) ∈ E}. A graph is undirected if the edges
are bidirectional, that is, i ∈ Nj ⇔ j ∈ Ni. An undirected
graph is connected if there is no isolated nodes (Qu, 2009).

2.2 Problem Statement

Consider a network of n (physically) interconnected nodes
or subsystems whose overall dynamics is given by

ẋ = Ax, (1)

where x = [x1, · · · , xn]T denotes the state of the overall
dynamical system with xi ∈ R represents the state of the
i-th node. Even though we assume that xi is scalar, the
results of the paper can be extended in a straightforward
manner to the case where state xi is a vector. It is assumed
that matrix A in (1) is unknown and its eigenvalues
are distinct. Furthermore, we also assume that matrix
A is Lyapunov stable and thus x is bounded. The i-th
node has access only to its own sampled state xi(k) ,
xi(t)|t=kT , (k = 0, 1, · · · ) where T denotes the sampling
time, corresponding to discrete-time model of (1) given by

x(k + 1) = Adx(k) (2)

where Ad = eAT . It is also assumed that the subsystems
can communicate (i.e., exchange information) with some
other nodes in the network, denoted by Ni, via the
communication network G = (V, E) whose topology is
given by a connected undirected graph. It should be
noted that the communication network topology G is
independent of the sparsity or structure of matrix A in (1).
Our objective is to solve the following problem.

Problem 1. Assume that matrix A is unknown and given
xi(k) for k = {0, 1, · · · } available to the i-th subsystem
together with a communication network whose topology
is associated with a connected undirected graph, estimate
in a distributed manner all the eigenvalues of A together
with the corresponding left and right eigenvectors.

3. MAIN RESULT

First, observe that the relationship between the eigenval-
ues of matrices A and Ad is given by

λi(A) =
ln(λi(Ad))

T
(3)

and dynamics (1) and (2) share the same left and right
eigenvectors. Since matrix A has distinct eigenvalues, we
can write the solution to (1) as

x(t) =

n∑
i=1

νTi x(0)eλi(A)twi. (4)

In addition, let us define matrices W and V as

W =

w1,1 · · · wn,1
...

...
...

w1,n · · · wn,n

 , V =

ν1,1 · · · ν1,n

...
...

...
νn,1 · · · νn,n

 (5)

where wi,j (resp. νi,j) denotes the j-th element of the
vector wi (resp. νi). From Awi = λiwi and AT νi = λiνi
we have the following relationship

V = W−1. (6)

The proposed distributed algorithms to solve Problem 1
are summarized as follows:
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(1) Each node estimates distributively (i.e., coopera-
tively) the eigenvalues λi(A) for i = 1, · · · , n using
Prony method

(2) Each node then estimates the right eigenvector wi
by solving (4) in a distributed fashion, given the
estimated eigenvalues λi(A)

(3) Each node finally estimates distributively the left
eigenvector νi from (6)

Details of each step will be described in the following
subsections. For the sake of simplicity and clarity, in the
remaining of the paper we assume that all the eigenvalues
are real. However, the proposed strategy can also be
extended in a straightforward manner to the case of
complex eigenvalues as will be demonstrated in Section 4.

3.1 Distributed Eigenvalue Estimation

Each node first distributively estimates all the eigenvalues
λi(A) using distributed Prony method proposed in the
literature, e.g. (Fan, 2017). For the sake of completeness, in
this subsection we provide a summary of distributed Prony
method to estimate λi(A) from the data series xi(k). First,
the solution (4) can be written as

x(t) =

n∑
i=1

Rix(0)eλi(A)t

where Ri = wiν
T
i is a residue matrix. Considering the

sampled state x(k), the above equation can be recasted in
the following form

x(k) =

n∑
i=1

Rix(0)zki , k = 1, · · · , N (7)

where N is the number of samples. Moreover, zi =
eλi(A)T = λi(Ad) are eigenvalues of discrete-time model
and thus the roots of the following characteristic polyno-
mial function of the system

zn − (a1z
n−1 + a2z

n−2 + · · ·+ anz
0) = 0. (8)

Hence, if the coefficients ai in (8) can be computed from
the sampled state x(k), the values zi can then be computed
by finding the roots of (8) and as a result the eigenvalues
λi(A) can be computed from (3). Substituting (8) into (7)
for k = n results in the following linear prediction model

x(n) = a1x(n− 1) + a2x(n− 2) + · · ·+ anx(0). (9)

Furthermore, from (9) and by enumerating the signal
samples from steps n to N yieldx(n− 1) · · · x(0)

...
...

...
x(N − 1) · · · x(N − n)


︸ ︷︷ ︸

H

a1

...
an


︸ ︷︷ ︸
a

=

x(n)
...

x(N)


︸ ︷︷ ︸

Y

. (10)

Hence, the vector a can be computed from (10) by solving
the following least square (LS) problem:

min
a

1

2
‖Ha− Y ‖2. (11)

In order to solve (11) in a distributed manner, the set of
equations (10) can be rewritten asH1

...
Hn

 a =

Y1

...
Yn



where

Hi =

xi(n− 1) · · · xi(0)
...

...
...

xi(N − 1) · · · xi(N − n)

 , Yi =

xi(n)
...

xi(N)


are locally known to the i-th node. Hence, LS problem can
be reformulated as the following distributed optimization

minimize
a1,··· ,an

n∑
i=1

1

2
‖Hiai − Yi‖2

subject to a1 = · · · = an

(12)

with ai ∈ Rn denotes the estimation of a at the i-th sub-
system. Given that the communication network topology
is connected, optimization (12) can be solved distributively
using the standard distributed optimization algorithms
developed in the literature, for example the one combining
the gradient and consensus algorithms (Khazaei et al.,
2016; Yang et al., 2019) or the one based on distributed
alternating direction method of multipliers (Nabavi et al.,
2015). After solving (12) distributively, each node knows a
and thus it can compute all the eigenvalues λi(A) from (8)
and (3).

3.2 Distributed Right Eigenvector Estimation

After each node distributively estimates λi(A), it then es-
timates the right eigenvectors wi. Note that since (νTi x(0))
is scalar, vector (νTi x(0))wi is also the right eigenvector of
matrix A w.r.t. λi(A) and for simplicity is also denoted by
wi. Hence, (4) can be written as

x(t) =

n∑
i=1

eλi(A)twi

or similarly for discrete time system from (7) we can write
the sampled state as

x(k) =

n∑
i=1

wiz
k
i , zi = eλi(A)T . (13)

Given n number of samples, from (13) we can write for the
i-th node (i.e., the i-th linear equation in (13))

z
ki1
1 z

ki1
2 · · · zk

i
1
n

z
ki2
1 z

ki2
2 · · · zk

i
2
n

...
...

. . .
...

z
kin
1 z

kin
2 · · · zk

i
n
n


︸ ︷︷ ︸

Ωi


w1,i

w2,i

...
wn,i


︸ ︷︷ ︸

w̃i

=


xi(k

i
1)

xi(k
i
2)

...
xi(k

i
n)


︸ ︷︷ ︸

x̃i

. (14)

Hence, if each node can find sampled time ki1, k
i
2, · · · kin

such that the matrix Ωi in (14) is non-singular, it can
then compute the vector w̃i = [w1,i, · · · , wn,i]T according
to

w̃i = Ω−1
i x̃i. (15)

Note that since each node knows all the estimated eigen-
values of matrix A (see Section 3.1), no communication is
required between the nodes (subsystems) to compute (15)
as can be observed from (14). Furthermore, from (15) each
node will be able to estimate the i-th element of the right
eigenvectors wj for j = 1, · · · , n.

The previously described algorithm (15) requires the exis-
tence of non-singular matrix Ωi. Conditions that guarantee
the existence of such matrix is an ongoing work. In case
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Table 1. Comparison between algorithms (15)
and (16) for estimating right eigenvectors wi

Algorithm (15) Algorithm (16)

communication not required required

number of samples n larger than n

samples independent for similar for
selection k1, · · · , kN each node all nodes

estimated wi w1,i, · · · , wn,i entire wj

at node i for j = 1, · · · , n

that the nodes cannot construct non-singular matrix Ωi,
the right eigenvectors wi can be alternatively estimated
by solving distributively an LS problem. To this end, for
a number of samples N > n we can write (13) as

Φ

w1

...
wn

 =

x̃
N
1
...
x̃Nn


where Φ ∈ RNn×n2

is a sparse matrix whose non-zero
elements are zki for with k = k1, · · · , kN . Furthermore, the
vector x̃Ni is given by x̃Ni = [xi(k1), · · · , xi(kN )]T . Hence,
the right eigenvectors wi can be estimated by solving the
following LS problem.

min
[wT

1 ,··· ,wT
n ]T

1

2

∥∥∥∥∥∥∥Φ

w1

...
wn

−
x̃

N
1
...
x̃Nn


∥∥∥∥∥∥∥

2

. (16)

Furthermore, using only local information available to each
node, that is x̃Ni , optimization (16) can be solved in a
distributed manner by reformulating it as in (12) and
applying the standard distributed optimization algorithm
proposed in the literature, for example (Wang et al., 2019).

In contrast to (15), the nodes need to communicate via a
connected undirected communication network in order to
solve optimization problem (16). In addition, after solv-
ing (16) each node will know the entire right eigenvectors
of matrix A, that is wi for i = 1, · · · , n. Detailed compari-
son between the two approaches is summarized in Table 1.

3.3 Distributed Left Eigenvector Estimation

After estimating the eigenvalues and corresponding right
eigenvectors, the final step is to estimate in a distributed
manner the left eigenvectors νi. As mentioned in the
previous subsection, when the nodes cannot construct the
non-singular matrix Ωi in (14) they then estimate the right
eigenvectors wi by solving optimization problem (16) in
a distributed manner. As a result, each node will know
all the right eigenvectors wj for j = 1, · · · , n. Since each
node knows the entire right eigenvectors, it can then
compute the left eigenvectors from (6) without requiring
communication with other nodes in the network.

On the other hand, if there exists a non-singular matrix
Ωi in (14), the i-th node can then estimate independently
parts of the right eigenvectors given by w1,i, · · · , wn,i
from (15). The next step is to estimate the left eigenvectors
νi. To this end, from (6) we have

WV = In. (17)

with matrices W and V are defined in (5). Note that
from (15) each node knows the i-th row of matrix W ,

Algorithm 1 Distributed estimation algorithms (there
exists a non-singular matrix Ωi)

Require: Communication network topology is bidirec-
tional and connected

1: each node collects xi(k)
2: each node cooperatively estimates all the eigenvalues

by solving optimization (12)
3: node i independently (i.e., requires no communi-

cation) computes the right eigenvector w1,i, · · · , wn,i
from (15) using n sampled data

4: each node cooperatively estimates the left eigenvec-
tor ν1,l, · · · , νn,l for l = 1, · · · , n using update rule (19)

Algorithm 2 Distributed estimation algorithms (the node
cannot construct a non-singular matrix Ωi)

Require: Communication network topology is bidirec-
tional and connected

1: each node collects xi(k)
2: each node cooperatively estimates all the eigenvalues

by solving optimization (12)
3: each node cooperatively computes all the right

eigenvectors w1, · · · , wn by solving optimization (16)
using N > n sampled data

4: node i independently (i.e., requires no communi-
cation) estimates all the left eigenvector ν1, · · · , νn
from (6)

that is [W ]Ti∗. Each node can then estimate νi by solving
distributively a set of linear equations given in (17) as
proposed in (Gusrialdi and Qu, 2017), originally developed
for directed graph. Specifically, from (17) each node can
estimate the left eigenvector ν1,l, · · · , νn,l, that is vector
[V ]∗l by solving the following linear equation

W [V ]∗l = [In]∗l. (18)

In order to solve (18) in a distributed manner, node i
maintains a local estimate of [V ]∗l denoted by ν̂il and
updates its estimate according to the following update rule

ν̂il (m+ 1) = ν̂il (m)− Pi

ν̂il (m)− 1

|Ni|
∑
j∈Ni

ν̂jl (m)


− [W ]i∗([W ]Ti∗[W ]i∗)

−1
(
[W ]Ti∗ν̂

i
l − ci

)
,

m = 0, 1, · · ·
(19)

where ν̂il (0) is chosen to be an arbitrary vector, ci = 1 if
i = l and zero otherwise. Furthermore, matrix Pi is defined
as

Pi = In − [W ]i∗([W ]Ti∗[W ]i∗)
−1[W ]Ti∗.

In order to execute update rule (19), the i-th node needs
to communicate with its neighbors given by the set Ni.
It is shown in (Wang et al., 2017) that for a connected
(undirected) graph, update rule (19) exponentially con-
verges to the left eigenvector [V ]∗l. Therefore, each node
can cooperatively estimate all the left eigenvectors by
solving a set of linear equations (18) using update rule
(19) for l = 1, · · · , n. The complete distributed algorithms
for estimating the eigenvalues together with both the left
and right eigenvectors of matrix A are summarized in
Algorithms 1 and 2.

Note that after distributively estimating λi(A) together
with the eigenvectors wi, νi using Algorithm 1, node i
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can then also estimate in a distributed manner the local
dynamics, that is the i-th row of matrix A denoted by
[A]i∗. To this end, we can write

A = WΛV (20)

where Λ is a diagonal matrix whose diagonal elements
correspond to the eigenvalues of matrix A. Hence, since
the i-th node knows [W ]i∗, λi(A) for all i and [V ]∗l for all
l, it can then compute [A]i∗ from (20).

4. NUMERICAL EXAMPLE

In order to illustrate the proposed distributed algorithms,
we consider an interconnected system consisting of four
subsystems as illustrated in Fig. 1 whose overall dynamics
is given by

A =

−4 1 3 2
1 −3 −7 −2
1 2 −4 1
−2 2 1 −5

 . (21)

Each node first estimates all the eigenvalues of matrix A
using the Prony method described in Section 3.1, i.e, by
solving distributively optimization problem (12) using the
combination of gradient and consensus algorithms pro-
posed in the literature. The number of sampled data used
for estimating the eigenvalues is equal to 40 with sampling
time T = 0.02s and the communication network topology
G for the distributed estimation is shown in Fig. 1. As
can be observed from the figure, the communication net-
work topology can be chosen to be sparse (given that it
is connected) even though matrix A is dense. Moreover,
the communication network topology is independent of
the structure of matrix A (or the structure of physical
interconnection of the dynamical system). By solving dis-
tributively optimization (12), each node is able to estimate
all the complex eigenvalues of A given by

λ1(A) = −4.8091 + 0.9646i, λ2(A) = −4.8091− 0.9646i

λ3(A) = −3.1909 + 4.0471i, λ4(A) = −3.1909− 4.0471i.

Next, each node distributively estimates the right eigen-
vectors associated with λi(A) using the method described
in Section 3.2. Since the eigenvalues are complex number,
the complex right eigenvectors will have the following form

w1 = wr1 + wm1 i, w3 = wr3 + wm3 i,

w2 = wr1 − wm1 i, w4 = wr3 − wm3 i,
where wr1, w

m
1 , w

r
3, w

m
3 ∈ R4. Using these expressions

together with the values of λi(A) estimated previously and
after some manipulations, linear equations (14) can then
be written as

g1(ki1) −b1(ki1) g3(ki1) −b3(ki1)
g1(ki2) −b1(ki2) g3(ki2) −b3(ki2)
g1(ki3) −b1(ki3) g3(ki3) −b3(ki3)
g1(ki4) −b1(ki4) g3(ki4) −b3(ki4)


︸ ︷︷ ︸

Ωi


wr1,i
wm1,i
wr3,i
wm3,i

 =


xi(k

i
1)

xi(k
i
2)

xi(k
i
3)

xi(k
i
4)


where

g1(kij) = 2<{eλ1(A)kijT }, b1(kij) = 2={eλ1(A)kijT }

g3(kij) = 2<{eλ3(A)kijT }, b3(kij) = 2={eλ3(A)kijT }.

Each node then finds time samples ki1, k
i
2, k

i
3, k

i
4 which

makes matrix Ωi non-singular. In this case, node i can

Physical layer

Communication network

Fig. 1. Interconnected system and the corresponding com-
munication network topology used for distributed es-
timation

choose ki1 = 1, ki2 = 10, ki3 = 20, ki4 = 30 resulting in non-
singular matrix

Ωi =

1.8163 −0.0350 1.8702 −0.1517
0.7502 −0.1465 0.7289 −0.7648
0.2707 −0.1099 −0.0268 −0.5575
0.0935 −0.0611 −0.2229 −0.1929

 .
Using this matrix and from (15), the i-th node can then
estimate wr1,i, w

m
1,i, w

r
3,i, w

m
3,i. All the estimated right eigen-

vectors are given by

w1 =

−3.2548 + 1.3018i
0.0284 + 0.8194i
−0.9406 + 1.9423i
2.0857− 5.4195i

 , w3 =

 3.7548− 7.8041i
2.4716 + 12.2771i
5.4406− 3.0170i
7.9143 + 2.8276i


and w2 (resp. w4) is equal to the complex conjugate of w1

(reps. w3).

Finally, each node estimates all the left eigenvectors by
solving a set of linear equations (17) in a distributed man-
ner as described in Section 3.3. Since the right eigenvectors
are complex numbers, we first define

Wr = <{W}, Wm = ={W},
that is, matrix W can be written as W = Wr + Wmi.
Similarly, we also define for matrix V (to be estimated)

Vr = <{V }, Vm = ={V }.
From (17), we then have the following relationships

WrVr −WmVm = In,

WrVm +WmVr = 0.
(22)

Each node can estimate the complex left eigenvector
ν1,j , · · · , νn,j , that is vector [V ]∗j by solving (22) in a
distributed fashion. For example, to estimate [V ]∗l, each
node needs to cooperatively solve the following linear
equations

Wr[Vr]∗l −Wm[Vm]∗l = [In]∗l,

Wr[Vm]∗l +Wm[Vr]∗l = [0]∗l

which can also be written as[
Wr −Wm

Wm Wr

]
︸ ︷︷ ︸

W

[
[Vr]∗l
[Vm]∗l

]
=

[
[In]∗l
[0]∗l

]
. (23)

In comparison to (18), in (23) each node knows two rows
of the matrix W corresponding to both the real and imag-
inary parts of the right eigenvectors w1,i, w2,i, w3,i, w4,i.
Nevertheless, each node can still execute update law (19)
to estimate the vectors [Vr]∗l, [Vm]∗l by incorporating the
fact that [W ]i∗ ∈ R2n×2 and ci ∈ R2. All the estimated
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left eigenvectors are given by (note that node i has the
estimates of ν1,j , · · · , νn,j)

ν1 = −

 0.2049 + 0.0802i
−0.0868 + 0.0018i
0.1785− 0.1438i
0.0016 + 0.0603i

 , ν3 =

−0.0032− 0.0065i
0.0075− 0.0395i
0.0593 + 0.0219i
0.0216 + 0.0003i


and ν2 (resp. ν4) is equal to the complex conjugate of ν1

(reps. ν3).

5. CONCLUSION AND FUTURE WORK

We propose data-driven distributed algorithms to esti-
mate (learn) the eigenmodes of an unknown (linear or
linearized) dynamical system. An important feature is
that topology of the communication network used for
the distributed estimation can be chosen arbitrarily and
is independent of the sparsity of system (state) matrix
as long as it is connected. The proposed framework can
also be extended to the case of directed communication
network topology given that the least square solutions
can be computed distributively under strongly connected
graph. Ongoing and several possible future work are listed
as follows.

(1) We are currently investigating the conditions which
guarantee the existence of non-singular matrix Ωi in
(14) for estimating the right eigenvector.

(2) In this paper, as a first step we assume that the
system matrix has distinct eigenvalues. The next step
is to extend the proposed strategies to deal with
system matrix which has repeated eigenvalues.

(3) It is also of importance to extend the proposed
strategies to deal with noisy data

(4) Finally, we will also extend the method by taking into
account the non-ideal communication network, i.e.,
by introducing time delay.
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