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Abstract: A new high gain control law is proposed for stably invertible linear systems. The
continuous-time case is first studied to set ideas. The extension to the sampled-data case is made
difficult by the presence of sampling zeros. For continuous-time systems having relative degree
greater than or equal to two, these zeros converge, as the sampling rate approaches zero, to either
marginally stable or unstable locations. A methodology which specifically addresses the sampling
zero issue is developed. The methodology uses an approximate model which includes, when
appropriate, the asymptotic sampling zeros. The core idea is supported by simulation studies.
Also, a preliminary theoretical analysis is provided for degree two, showing that the design based
on the approximate model stabilizes the true system for the continuous and sampled-data cases.
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1. INTRODUCTION

The heuristic idea underlying the current paper is that,
at high frequencies, a continuous-time system of relative
degree r behaves similarly to an r-th order pure integrator.
The latter approximation has been applied, for example, in
Gayaka et al. (2012); Zhou and Duan (2008); Sánchez and
Yuz (2019). The idea is also central to the development of
the theory of sampling zeros (see Åström et al. (1984)).
This heuristic principle implies that one should be able to
design a wide-bandwidth control law for stably invertible
linear system by knowing only the relative degree and high
frequency gain.

The extension of the above idea to the discrete-time
domain faces an extra difficulty, namely the existence of
sampling zeros. In Åström et al. (1984) and Weller et al.
(2001) it is shown that, for fast sampling rate, these zeros
can be asymptotically characterized in terms of the roots
of the Euler-Frobenius polynomials. Moreover, substantial
literature exists regarding the asymptotic location of those
sampling zeros, which depends, inter-alia, on the sampling
period and the nature of the hold device that generates
the input signal.

? This work was supported by ANID through scholarship ANID-
PFCHA/2018-21180825 and ANID-Basal Project FB0008, FONDE-
CYT grant 1181090, UTFSM research scholarship and visiting stu-
dent scholarship from the Priority Research Centre for Complex
Dynamic Systems and Control, UoN, Australia.

For the purpose of the current paper, the input is consid-
ered to be piecewise constant, i.e., generated by a zero-
order hold (ZOH). Related results on the asymptotic loca-
tion of the sampling zeros are available for cases when the
input is generated by a first-order hold (Hagiwara et al.,
1993), by a fractional-order hold (Bárcena et al., 2000;
Ishitobi and Kunimatsu, 2016) or by B-spline functions
(Sánchez and Yuz, 2019). Sampling zeros are known to be
relevant to cases when a more accurate model is needed
for higher frequencies, in particular near the Nyquist rate
(Yucra and Yuz, 2011; Goodwin et al., 2013).

For continuous-time systems having relative degree two,
the asymptotic sampling zero is on the stability boundary
and for relative degree larger than two, the asymptotic
zeros lie outside the stability region. The existence of these
non-minimum phase zeros in the model represents a major
stumbling block, in particular for wide-bandwidth control
when the closed loop bandwidth approaches the Nyquist
rate for the given sampling period (Middleton, 1991).

The current paper explores the above ideas for SISO
systems. We first analyse the continuous-time case. Some
motivating examples are presented supporting the claim
that wide-bandwidth control laws can be designed based
only on the relative degree and high frequency gain. Next
the sampled-data version of the problem is examined when
the sampling period is small. Two approximate models are
studied: the first model covers the case where the closed
loop bandwidth is chosen to be significantly less than the
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Nyquist frequency. The second model covers the case when
the closed loop bandwidth is near the Nyquist frequency.
In the latter case, the sampling zeros are included in the
approximate model. The robustness properties of these two
models differ due to the presence of sampling zeros.

2. CONTINUOUS-TIME SYSTEMS

In this section we explore the design of a control law for
continuous-time systems having relative degree r.

2.1 System Having No Zeros

Consider an r-th order continuous-time system having
transfer function

Gc(s) =
B(s)

A(s)
=

b

sr + a1sr−1 + . . . ar
. (1)

We note that the high frequency gain is b, with associated
roll-off of 20r dB per decade. Our goal is to carry out
a continuous-time design based on the following approxi-
mate model

G0(s) =
B0(s)

A0(s)
=

b

sr
. (2)

A multitude of continuous-time designs are possible. By
way of illustration, we will use pole-assignment (see, for
example, Goodwin et al. (2001)). A biproper controller of
order r − 1 can be used

C(s) =
P (s)

L(s)
=
p0s

r−1 + . . .+ pr−1

sr−1 + . . .+ lr−1
, (3)

with a target closed loop polynomial of the form

A∗cl(s)
.
= A0(s)L(s) +B0(s)P (s) = (s+ α∗)2r−1. (4)

By equating coefficients, the controller parameters can be
obtained as follows:

l1 = (2r − 1)α∗ (5a)

...

pr−1 =
(α∗)2r−1

b
. (5b)

Our core hypothesis is that for α∗ > 0 and sufficiently
large, a control law based on the model (2) will stabilize
all systems of the form (1) provided the open loop poles,
i.e., the roots of the polynomial A(s), lie in a restricted
region. Moreover, for α∗ large enough, the closed loop
performance of the ‘true’ and approximate models will be
essentially indistinguishable. We introduce the following
assumption on the location of the open loop poles of the
‘true’ system.

Assumption 1. We assume that the poles, αi, i = 1, . . . , r
of G(s), i.e., the roots of the polynomial A(s) in (1),
belong to a bounded region in the complex plane, such
that |αi| < M.

We study the second order case in detail. Thus, we consider
the system

Gc(s) =
b

(s+ α1)(s+ α2)
, (6)

which leads to the model (2), with r = 2, i.e.,

G0(s) =
b

s2
. (7)

Considering (3), a suitable proper controller is given by

C(s) =
p0s+ p1

s+ l1
. (8)

The pole assignment equations (5), particularized to this
case, yield the controller parameters

p1 =
(α∗)3

b
, p0 =

3(α∗)2

b
, l1 = 3α∗. (9)

2.2 Numerical Example (Continuous-time)

As a specific numerical example, we consider b = 1,
α1 = 1, α2 = −1. Based on the above discussion and
Assumption 1, we consider several values of α∗ satisfying
α∗ > M > |α1,2|. Figure 1(a) shows the resulting normal-
ized step responses of the closed loop transfer function

T0(s) =
G0(s)C(s)

1 +G0(s)C(s)
, (10)

achieved when using the ‘nominal’ model (7). On the other
hand, Figure 1(b) shows the normalized step responses of
the closed loop system T (s)/T (0) = Gc(s)C(s)/(T (0)(1 +
Gc(s)C(s))) when the same controller is applied to the
‘true’ plant (6).
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(a) Nominal Closed Loop
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(b) True Closed Loop

Fig. 1. Step response for nominal and true closed loop.

It can be seen in Figure 1(b) that the ‘true’ closed loop
responses are very similar to the nominal responses in
Figure 1(a) except for the case α∗ = 2. An important
question to be studied in the remainder of the paper
is to derive a relationship between the bound M in
Assumption 1 and the target closed loop pole location
α∗, which is sufficient for the controller (8)–(9), designed
for the approximate system (7), to also stabilize the true
system (6).

3. A FIRST APPROACH USING THE ROBUST
STABILITY THEOREM

An initial attempt to develop a suitable theory was to
use the well-known sufficient condition for robust stability
(see, for example, Goodwin et al. (2001)), namely

|T0(s)G∆(s)| < 1; ∀ s = jw, (11)

where T0(s) is the nominal closed loop complementary
sensitivity function, defined in (10), and G∆(s) is the
relative model error, i.e.,

G∆(s) =

∣∣∣∣G(s)−G0(s)

G0(s)

∣∣∣∣ . (12)

Particularizing to the above problem, we have that
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T0(s) =
B0(s)P (s)

A∗cl(s)
, (13)

G∆(s) = − (α1 + α2)s+ α1α2

(s+ α1)(s+ α2)
(14)

Taking s = jw and considering w = 0, yields to

T0(j0) = 1, G∆(j0) = −1. (15)

Hence, condition (11) is not satisfied and robust stability
cannot be guaranteed using this approach.

4. OSTROWSKI’S THEOREM

A second approach is to study whether, under some
conditions, the roots of the ‘nominal’ and ‘true’ closed-
loop polynomials are close in some sense. This is one of
the core problems in perturbation theory. A useful result in
this context is the Ostrowski’s Theorem (Ostrowski, 1973,
page 276), stated below.

Theorem 2. Consider two polynomials

f(s) = a0s
n + a1s

n−1 + · · ·+ an =

n∏
i=1

(s− θfi ) (16)

g(s) = b0s
n + b1s

n−1 + · · ·+ bn =

n∏
i=1

(s− θgi ), (17)

where a0 = b0 = 1. Let

T = 2 max
1≤k≤n

(
|ak|1/k, |bk|1/k

)
. (18)

Then the roots θfi and θgi of f(s) and g(s) can be
enumerated in such a way that

max
i
|θfi − θ

g
i | ≤ (2n− 1)

{
n∑
k=1

|ak − bk|Tn−k
}1/n

. (19)

Proof. See Ostrowski (1973). 2

Remark 3. The above result provides a means of estimat-

ing the differences between the roots θfi and θgi in terms
of the coefficients ai and bi. The result was embellished by
Elsner (1982), who showed that the factor (2n− 1) can be
replaced by (n− 1) if n is even and by n when is odd.

We will use Theorem 2 to obtain a sufficient condition for
asymptotic stability of the closed-loop system formed by
the true system (6) when the controller (8)–(9), designed
for the approximate system (7), is deployed. Again, we
study the second order case for the model (6). However,
a similar strategy is anticipated to apply for the general
case (1).

Theorem 4. Subject to Assumption 1, a sufficient condi-
tion for closed loop stability of the true plant Gc(s), given
in (6), under controller (8)-(9), is α∗ ≥ κM , for some
sufficiently large positive real number κ.

Proof. The gain cancels in the controller, so without loss
of generality, we take b = 1. Thus, the system (6) can by
rewritten as follows

Gc(s) =
1

s2 + t1s+ t2
=
B(s)

A(s)
, (20)

where t1 = α1 + α2 and t2 = α1α2. Also, we notice that
the polynomials (16)-(17) for this particular problem are
given by

f(s) = s3 + 3(α∗)s2 + 3(α∗)2s+ (α∗)3 (21)

g(s) = A(s)L(s) +B(s)P (s)

= s3 + (l1 + t1)s2 + (t1l1 + t2 + p0)s+ (t2l1 + p1).
(22)

Replacing the parameters in (9), considering Assumption 1
and defining S = α∗/M , then bounds for the coefficients
in (21) and (22) are given by

|a1| ≤ 3SM, |b1| ≤ 2M + 3SM, (23a)

|a2| ≤ 3S2M2, |b2| ≤ 6SM2 +M2 + 3S2M2, (23b)

|a3| ≤ S3M3, |b3| ≤ 3SM3 + S3M3. (23c)

Then, based on Remark 3 and using (19), we have

max
i
|θfi − θ

g
i | ≤ 3

{
3∑
k=1

|ak − bk|Tn−k
}1/3

, (24)

where

T ≤2 max
(

3SM,
√

3SM,SM, 3SM + 2M,

(6SM2 +M2 + 3S2M2)1/2, (3SM3 + S3M3)1/3
)
.

The first 3 elements do not contribute to the maximization
since they are smaller than the fourth element, yielding:

T ≤ 2 max
(

(3S + 2)M, ((3S2 + 6S + 1)M2)1/2,

((S3 + 3S)M3)1/3
)

≤ 2(3S + 2)M. (25)

where the last inequality holds true for any S ≥ 0.
Replacing T in (24) and bounding each term |ak − bk|,
we obtain

max
i
|θfi − θ

g
i |

≤ 3
{

(2M)T 2 + (6SM2 +M2)T + (3SM3)
}1/3

≤ 3M
{

8(3S + 2)2 + 2(6S + 1)(3S + 2) + 3S
}1/3

≤ 3M
{

108S2 + 129S + 36
}1/3

(26)

Thus, closed loop stability is ensured if the right hand side
of the above inequality is less than |α∗| = SM . This yields

max
i
|θfi − θ

g
i | < |α

∗|

⇐⇒ 3M
(
108S2 + 129S + 36

)1/3
< SM

⇐⇒ S3 − 27(36 + 129S + 108S2) > 0 (27)

which holds true for S = κ ≥ 2918. 2

5. STABLY INVERTIBLE CONTINUOUS-TIME
SYSTEMS

We hypothesize that a similar idea holds for general
systems provided that the polynomial B(s) is Hurwitz.
We illustrate via a numerical study based on the following
third order system

Gc(s) =
b(s+ β1)

(s+ α1)(s+ α2)(s+ α3)
(28)

where β1 > 0. Note that the system has relative degree
r = 2. We consider again the approximate model (7) and
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design a control law to place all the closed loop poles at
s = −α∗. This leads to the same control law (8) with
parameters as in (9). As a specific case of the system (28)
we choose b = 2 β1 = 4, α1 = −2, α2 = 2, α3 = 3.
Simulations of the normalized true closed loop response
for different values of α∗ are shown in Figure 2. We notice
that, similarly to Example 2.2, as long as α∗ is sufficiently
large the true closed loop system is stable (see Figure 2(a)).
When α∗ is not sufficiently large, then the system can be
unstable Figure 2(b).
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(b) α∗ = 3

Fig. 2. Step response for normalized true closed loop.

6. DISCRETE-TIME SYSTEMS

We consider the same set of underlying continuous-time
systems as studied in Section 2. We express the time
discretization of these systems in the δ-domain, where
δ = q−1

h and q is the usual forward shift operator. In the
associated complex variable domain we use the variable
γ = z−1

h , where z is the complex variable in the Z-
transform domain Middleton and Goodwin (1990).

With sampling period h and assuming that the input is
generated by a ZOH, we obtain an exact discrete-time
model of the form

G(γ) =
b′ Pr(hγ)(γm + c′m−1γ

m−1 + · · ·+ c′0)

γn + d′n−1γ
n−1 + · · ·+ d′0

(29)

where Pr(hγ) is the sampling zeros polynomial. It is
well-known that for small h, Pr(hγ) converges to the
asymptotic sampling zeros polynomial, P̄r(hγ). The first
few of these are (Yuz and Goodwin, 2014, 2005):

P̄1(hγ) = 1 (30a)

P̄2(hγ) = 1 +
h

2
γ (30b)

P̄3(hγ) = 1 + hγ +
h2

6
γ2 (30c)

In order to design a discrete-time control law, we again
use pole assignment. As before, the proposed biproper
controller takes the form:

C(γ) =
P ′(γ)

L′(γ)
=
p′0γ

r−1 + . . .+ p′r−1

γr−1 + . . .+ l′r−1

. (31)

Let the poles and the zeros of the discrete-time system be
α1, . . . , αn and β1, . . . , βm, respectively. For the discrete-
time design, we place the closed loop poles at the roots
of (γ + α∗)2r−1 where r = n−m. We make the following
assumption which defines a region where the open loop
poles and zeros lie.

Assumption 5. The poles and zeros of the discretized
system belong to a bounded region in the complex plane,
such that |αi, βi| < R < 1

h .

For the control law design we consider two approximate
discrete-time models:

G1
d(γ) =

b′

γr
(32)

G2
d(γ) =

b′ P̄r(hγ)

γr
(33)

Note that the model (32) does not have any zeros whilst
the model (33) includes the asymptotic sampling zeros.
When carrying out pole assignment, for the model (32) we
choose α∗ � 1

h and for the model (33) α∗ ≤ 1
h .

6.1 The Case of Continuous-time Second Order Systems
with no Finite Zeros

Analogously to Section 2.1, we illustrate ideas by the
second order case. Thus, consider a true discrete-time
system given by

Gd(γ) =
b′ Pr(hγ)

γ2 + t′1γ + t′2
=

b′ (1 + ν h2γ)

γ2 + t′1γ + t′2
(34)

Note that ν tends to 1 as h approaches zero. For the system
(34), the proposed controller is given by

C(γ) =
p′0γ + p′1
γ + l′1

. (35)

Notice that, based on the approximate model G1
d(γ) in

(32), the parameters of the controller are as in (9) with
s replaced by γ. On the other hand, for the approximate
model (33), with P̄2(hγ) = (1 + γ h2 ), the parameters are

p′1 =
(α∗)3

b′
, p′0 =

3(α∗)2

b′
− h

2

(α∗)3

b′
, (36)

l′1 = 3α∗ − 3
h

2
(α∗)2 +

h2

4
(α∗)3. (37)

In what follows we often use the approximation ν ≈ 1,
which is valid as the sampling period approaches zero. We
have the following result:

Theorem 6. Consider the discrete-time model of the form
(34). Then, for the control law design based on G1

d(γ) in
(32) and subject to Assumption 5, a sufficient condition
for closed loop stability of the true closed loop is that
the nominal closed loop poles at γ = −α∗ satisfy 1

h �
α∗ � |α1,2|, i.e., 1

h � α∗ > κ′R for some sufficiently large
positive real number κ′.

Proof. As before, without loss of generality, we take
b′ = 1 and we consider a controller designed for the
approximate model given by

G1
d(γ) =

1

γ2
, (38)

and apply the controller to the true system (34). We use
again the Ostrowski’s Theorem, where the polynomials are

f(γ) = γ3 + 3(α∗)γ2 + 3(α∗)2γ + (α∗)3 (39)

g(γ) = γ3 + (l′1 + t′1 + p′0
νh

2
)γ2+

(t′1l
′
1 + t′2 + p′0 + p′1

νh

2
)γ + (t′2l

′
1 + p′1). (40)

Substituting parameters from (9), we consider Assumption
5 and define K = α∗/R. Then,
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|a1| ≤ 3KR, |b1| ≤ 2R+ 3KR+ 3νh2 K
2R2, (41a)

|a2| ≤ 3K2R2, |b2| ≤ 6KR2 +R2 + 3K2R2 + νh
2 K

3R3

(41b)

|a3| ≤ K3R3, |b3| ≤ 3KR3 +K3R3. (41c)

Then, proceeding as in the proof of Theorem 4, we have
that

T ≤ 2 max
(

3KR+ 2R+ 3νh2 (KR)2, (3KR3 +K3R3)1/3,

(6KR2 +R2 + 3K2R2 + νh
2 (KR)3)1/2

)
where, as mentioned before, the first 3 terms in the
maximization have been discarded. Moreover, we have that
ν ≈ 1, for small h, and hence νhKR ≈ hKR = hα∗ � 1.
Thus,

T ≤ 2 max
(

(4.5K + 2)R, (3K +K3)1/3R

(6K + 1 + 3K2 + 0.5K2)1/2R
)

≤ 2(4.5K + 2)R, (42)

where the last inequality holds true for any K ≥ 0.
Thus, the distance between the roots of the polynomials
is bounded as

max
i
|θfi − θ

g
i | ≤ 3

{
(2R+ 3νh2 K

2R2)T 2+

(6KR2 +R2 + νh
2 K

3R3)T + 3KR3
}1/3

≤ 3
{

(2R+ 3
2R)(9K + 4)2R2+

(6KR2 +R2 + 1
2KR

2)(9K + 4)R+ 3KR3
}1/3

≤ 3R
{

60 + 290K + 342K2
}1/3

. (43)

where we have used that, since 1
h � KR, then we have

that

hKR� 1 =⇒ hK2R < 1 =⇒ νhK2R < 1 (44)

since ν ≈ 1 as h → 0. Then, closed loop stability is
guaranteed if the right hand side is less than |α∗| = KR.
This yields

max
i
|θfi − θ

g
i | < |α

∗|

⇐⇒ 3R
(
60 + 290K + 342K2

)1/3
< KR

⇐⇒ K3 − 27(342K2 + 290K + 60) > 0 (45)

Thus, taking K = κ′ ≥ 9235 the theorem is proved. 2

Theorem 7. Consider the discrete-time model of the form
(34). Then, for a control law design based on (33) and
subject to Assumption 5, a sufficient condition for closed
loop stability of the corresponding sampled-data model is
that the closed loop poles satisfy 1

h ≥ α∗ > κ′R for some
sufficiently large positive real number κ′.

Proof. Again, without loss of generality, we take b′ = 1.
Our focus is to design a controller based on the approxi-
mate model that includes the asymptotic sampling zeros.
For the second order case we have

G2
d(γ) =

P̄2(hγ)

γ2
=

1 + γ h2
γ2

. (46)

We use Ostrowski’s Theorem, where the polynomials are
the same as shown in (39)-(40), but with the parameters
defined in (36)-(37). Then, considering Assumption 5,
defining K = α∗/R and using the triangle inequality, we

have that the bounds for ai; i = 1, 2, 3 are given by (41)
and

|b1| ≤ 2R+ 3KR+ 3
2h(KR)2|ν − 1|

+ h2

4 (KR)3|1− ν| (47a)

|b2| ≤ 6KR2 +R2 + h
2 (KR)3|1− ν|+ 3(KR)2

+ h2

2 K
3R4 + 3hK2R3 (47b)

|b3| ≤ 3KR3 + (KR)3 + 3
2hK

2R4 + h2

4 K
3R5. (47c)

As before, we find a bound on T defined in (18). We then
consider

T ≤ 2 max
(

3KR,
√

3KR,KR, |b1|, |b2|1/2, |b3|1/3
)
. (48)

In order to find the maximum, we consider that

KR < 1/h =⇒ hKR < 1 (49)

ν → 1 =⇒ |1− v|K < 1 (50)

Then, we have that

T ≤ 2 max
(
R(2 + 3K + 3

2 + 1
4 ),

R
(
6K + 1 + 1

2K + 3K2 + 1
2K + 3K

)1/2
,

R
(
3K +K3 + 3

2K + 1
4K
)1/3)

≤ 2(3K + 15
4 )R, (51)

where the last inequality holds true for any K ≥ 0.
Replacing T in (19) and using Remark 3, the distance
between the roots of the polynomials can be bounded as

max
i
|θfi − θ

g
i |

≤ 3
{(

2R+ 3
2hK

2R2|ν − 1|+ h2

4 K
3R3|1− ν|

)
T 2+(

R2 + 6KR2 + 3hK2R3 + h2

2 K
3R4 + h

2K
3R3|1− ν|

)
T

+
(

3KR3 + 3
2hK

2R4 + h2

4 K
3R5

)}1/3

≤ 3
{(

2R+ 3
2R+ 1

4R
)

4(3K + 15
4 )2R2+(

R2 + 6KR2 + 3KR2 + 1
2KR

2 + 1
2KR

2
)

2(3K + 15
4 )R

+
(
3KR3 + 3

2KR
3 + 1

4KR
3
)}1/3

≤ 3R

{
3495

16
+

1693

4
K + 195K2

}1/3

(52)

Thus, closed loop stability is guaranteed if the right hand
side is less than |α∗| = KR. This yields

max
i
|θfi − θ

g
i | < |α

∗|

⇐⇒ 3R

(
3495

16
+

1693

4
K + 195K2

)1/3

< KR

⇐⇒ K3 − 27

(
3495

16
+

1693

4
K + 195K2

)
> 0 (53)

Thus, taking K = κ′ ≥ 5268 the theorem is proved. 2

6.2 Numerical Example (Sampled-Data)

We consider a second-order plantGc(s) of the form (6). For
a specific numerical example we choose b = −6, α1 = 3,
α2 = −2. Then, its discrete-time model depends on the
sampling period chosen. When varying h and α∗, the
nature of the closed loop response of the true system with
the controller designed based on the approximation (32)
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Fig. 3. Illustration of instability for h = 0.5.

is shown in Table 1. Note that the blank entries are not
relevant since we consider only the case where α∗ ≤ 1/h.
The closed loop performance using the controller designed
based on the model (33) is shown in Table 2.

α∗
1/h

10 20 100 1, 000 10, 000

5 Stable Stable Stable Stable Stable
10 Unstable Stable Stable Stable Stable
16 Unstable Stable Stable Stable
20 Unstable Stable Stable Stable
50 Stable Stable Stable
70 Unstable Stable Stable
100 Unstable Stable Stable
500 Stable Stable
800 Unstable Stable
1000 Unstable Stable
5000 Stable
10000 Unstable

Table 1. Robustness of the discrete-time model
without considering sampling zeros

α∗
1/h

10 20 100 1, 000 10, 000

5 Stable Stable Stable Stable Stable
10 Stable Stable Stable Stable Stable
16 Stable Stable Stable Stable
20 Stable Stable Stable Stable
50 Stable Stable Stable
70 Stable Stable Stable
100 Stable Stable Stable
500 Stable Stable
800 Stable Stable
1000 Stable Stable
5000 Stable
10000 Stable

Table 2. Robustness of the discrete-time model
considering sampling zeros

We conclude that, for h sufficiently small and for α∗ > R
and much less than 1

h , then the design based on G1
d(γ)

stabilizes the true system. However, when α∗ approaches
1
h , then it becomes necessary to use the controller designed

using G2
d(γ) to achieve closed loop stability. Hence, the

results suggest that for a robust controller design when
α∗ approaches 1

h , the asymptotic sampling zeros must be
included in the approximate model to ensure stability of
the true closed loop system.

In addition, we notice that the results are only suitable for
h small enough. For example, if we consider h = 0.5 and for
different values of α∗, the closed loop response is unstable,
even when the asymptotic sampling zeros are added in
the control law. This is illustrated in Figure 3, where the
maximum distance from the closed-loop eigenvalues from
the point − 1

h is plotted as a function of α∗ ∈ (0, 1
h ). Note

that this distance is larger than 1
h = 2 in all cases, which

implies that the closed-loop system is unstable.

7. CONCLUSION

This paper has presented a design procedure for a
wide-bandwidth control law that depends only on the
continuous-time relative degree and high frequency gain.

Both continuous and sampled-data case have been anal-
ysed. We note that when the nominal closed loop poles
approach the inverse of the sampling period, then it is
necessary, for closed loop stability of the true system,
that the control design is based on an approximate model
which includes the asymptotic sampling zeros. Planned
future work considers to extend the theory to higher order
systems and systems having an unstable inverse.
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