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Abstract: The article is devoted to the analysis of optimal control problems with infinite time
horizon. These problems arise in economic growth models and in stabilization problems for
dynamic systems. The problem peculiarity is a quality functional with an unbounded integrand
which is discounted by an exponential index. The problem is reduced to an equivalent optimal
control problem with the stationary value function. It is shown that the value function is the
generalized minimax solution of the corresponding Hamilton–Jacobi equation. The boundary
condition for the stationary value function is replaced by the property of the Hölder continuity
and the sublinear growth condition. A backward procedure on infinite time horizon is proposed
for construction of the value function. This procedure approximates the value function as the
generalized minimax solution of the stationary Hamilton–Jacobi equation. Its convergence is
based on the contraction mapping method defined on the family of uniformly bounded and
Hölder continuous functions. After the special change of variables the procedure is realized
in numerical finite difference schemes on strongly invariant compact sets for optimal control
problems and differential games.
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1. INTRODUCTION

In the analysis of optimal control problems on infinite hori-
zon one should deal with the stationary Hamilton–Jacobi
equations of the special type. Such kind of problems arise
in economic growth models and in stabilization problems
for dynamic systems. In this research, we deal with the
case when a quality functional contains an unbounded
integrand which is discounted by an exponential index.
The boundary condition for the stationary value function
is substituted by the property of the Hölder continuity
and the sublinear growth condition. We study the problem
of numerical construction of the value function for the
optimal control problem as a generalized solution of the
Hamilton-Jacobi equation. For this purpose we use the
backward procedure of the dynamic programming prin-
ciple and demonstrate that it can be interpreted as a
contraction mapping method for the stationary Hamilton-
Jacobi equation. Convergence of this method is proved for
the family of uniformly bounded and Hölder continuous
functions.

The backward procedures were originated in the dynamic
programming principle in Bellman (1957) and were ad-
justed to construction of stable bridges in differential
games in Krasovskii and Subbotin (1974). The practical
implementation of backward procedures for construction
of stable bridges was realized in Tarasyev, Ushakov and

Khripunov (1987) basing on the concept of the stable
absorption operator.

In this paper, based on backward procedures we develop
the numerical methods for construction of value functions
in optimal control problems with an unbounded integrand
on infinite horizon by generalizing the approach proposed
in Dolcetta (1983) for problems with a bounded integral
functional. Let us note that this scheme was expanded
later on for solution of differential games with bounded
functionals on infinite horizon in Adiatulina and Tarasyev
(1987). The existence result for the value function for
problems with unbounded integrands was obtained in
Nikolskii (2002). In parallel, optimal control problems with
infinite time horizon are analyzed within modifications
of transversality conditions for the Pontryagin maximum
principle (see Aseev and Veliov (2015)).

In our analysis, we are based on the concept of generalized
(nonsmooth) solutions of Hamilton-Jacobi equations (see
Crandall and Lions (1983), Subbotin (1991)). Particu-
larly, we use elements approximation schemes proposed in
Souganidis (1985) and constructions of conjugate deriva-
tives Subbotin and Tarasyev (1985). Also we apply results
on properties and infinitesimal stability constructions for
value functions in optimal control problems with infinite
horizon Bagno and Tarasyev (2019).
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The special change of variables provides the possibility
to realize the backward procedure on strongly invariant
compact sets Aubin (1991) and, thus, to reduce calcula-
tions of approximation schemes similarly to tree-structure
algorithms Alla, Falcone and Saluzzi (2019).

The paper has the next structure. Section 2 gives no-
tations, definitions and statements that are necessary
for describe results. Section 3 presents the conversion to
equivalent optimal control problem with stationary value
function and provides the description of the backward
procedure. Section 4 introduces the change of variables
that allows to reduce calculations to a compact strongly
invariant set.

2. PROBLEM STATEMENT AND BASIC
DEFINITIONS

We consider the optimal control problem with the dynam-
ics

ẋ(t) = f(x(t), u(t)), t ∈ [t0,+∞), x(t0) = x0. (1)

Here t ∈ [t0,+∞], x ∈ Rn is phase vector, u ∈ P ⊂ Rp is
control parameter, P is a compact set.

The quality functional is determined as

J(x(·), u(·)) =

∫ +∞

t0

e−λτg(x(τ), u(τ)) dτ, (2)

λ > 0, t0 > 0.

We suppose that the following conditions are valid for the
problem (1)–(2).

(1) Functions f and g are continuous on Rn × P .
(2) The Lipschitz condition in argument x takes place for

all x1, x2 ∈ Rn and for all u ∈ P :

‖f(x1, u)− f(x2, u)‖ ≤ L‖x1 − x2‖, (3)

|g(x1, u)− g(x2, u)| ≤ L‖x1 − x2‖,
where L is a Lipschitz constant.

(3) The sublinear growth condition in argument x is true
for all x ∈ Rn, u ∈ P :

‖f(x, u)‖ ≤ κ(1 + ‖x‖), (4)

|g(x, u)| ≤ κ(1 + ‖x‖), (5)

where κ > 0 is a constant.

The problem is to maximize the functional (2) on trajec-
tories of the system (1) generated by measurable controls
from the set U with values in the compact set U .

The value function in problem with infinity horizon is
the function that matches each initial position (t0, z0),

t0 ∈ (0, T ), z0 =

(
x0

y0

)
x0 ∈ Rn, y0 ∈ R, x0 = x(t0),

the largest value of the quality functional

ω(t0, z0) = lim sup
T→+∞

(
y0 +

∫ T

t0

e−λτg(x(τ), u(τ)) dτ

)
.

The value function has the following important properties
under the condition λ > κ. It is continuous in the Hölder
sense, and it satisfies the sublinear growth condition.

Claim 1. If λ > κ then the next estimate for the value
function is valid

|ω(t, z)| ≤ A+B‖x‖,

z =

(
x
y

)
, t ≥ t0, x ∈ Rn, y ∈ R, (6)

where

A = |y|+ κ

λ
e−λt, B =

1

λ− κ
e−λt.

Claim 2. The Hölder continuous condition is true: for all
x1 and x2

|ω(0, z1)− ω(0, z2)| ≤ C‖x1 − x2‖γ + |y1 − y2|, (7)

where C > 0, γ > 0, zi =

(
xi
yi

)
, xi ∈ Rn, yi ∈ R, i = 1, 2.

Let us introduce the Hamiltonian function for the optimal
control problem

H(x, s) =
1

λ
min
u∈P

(〈s, f(x, u)〉+ g(x, u)). (8)

Here x ∈ Rn, s ∈ Rn.

For the value function ϕ : Rn → R we consider the
Hamilton–Jacobi equation

−ϕ(x) +H(x,∇ϕ(x)) = 0, x ∈ Rn. (9)

Here ∇ϕ(x) is vector of partial derivatives of function
ϕ(x). Let us note that commonly the Hamilton–Jacobi
equation may not have smooth solutions. In order to give
the definition of the generalized minimax solution (which
is nonsmooth, generally speaking) Subbotin (1991) of
equation (9), we introduce the definition of Dini derivatives

The lower (upper) Dini derivative of a continuous func-
tion ω(x) is determined by the relation

∂−ω(x)|(d) = inf
ε(·)∈∆

limδ→0

ω(x+ δd+ ε(δ))− ω(x)

δ(
∂−ω(x)|(d) = sup

ε(·)∈∆

lim
δ→0

ω(x+ δd+ ε(δ))− ω(x)

δ

)
,

where x ∈ Rn, d ∈ Rn, ∆ — functions class ε(·) :

[0,+∞)→ Rn, and lim
δ→0

‖ε(δ)‖
δ = 0.

Let us consider the auxiliary Hamiltonian

H(t, x, s,m) =

e
−t|m|H(x,

s

e−t|m|
), m 6= 0,

lim
m→0

e−tmH(x,
s

e−tm
), m = 0,

where t ≥ 0, x ∈ Rn, s ∈ Rn, m ∈ R.

Denote by the symbol S the ball of the unit radius

S = {s = (s1, s2) ∈ Rn ×R : ‖s‖ = 1}.

Let us introduce sets that determine dynamic possibilities
of the system

A(x) = {f = (f1, f2) ∈ Rn ×R : ‖f‖ ≤
√

2κ(1 + ‖x‖)},

Consider the Hamiltonian for the zero time t = 0
Aup(x, q1, q2) =

= {f ∈ A(x) : 〈f1, q1〉+ 〈f2, q2〉 ≥ H(0, x, q1, q2)}
Adown(x, p1, p2) =

= {f ∈ A(x) : 〈f1, p1〉+ 〈f2, p2〉 ≤ H(0, x, p1, p2)},
where q1, p1 ∈ Rn, q2, p2 ∈ R.
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Now we can provide the definition of the generalized min-
imax solution in terms of directional derivatives Subbotin
(1991).

The generalized minimax solution of equation Hamilton–
Jacobi (9) is the function ϕ : Rn → R which meets
the Hölder continuity continuity (6), the sublinear growth
condition (7) and satisfies differential inequalities

min
(d1,d2)∈Aup(x,q1,q2)

{d2 + ∂−ϕ(x)|(d1)} − ϕ(x) ≤ 0,

∀x ∈ Rn, q = (q1, q2) ∈ S,

max
(d1,d2)∈Adown(x,p1,p2)

{d2 + ∂+ϕ(x)|(d1)} − ϕ(x) ≥ 0,

∀x ∈ Rn, p = (p1, p2) ∈ S,
or differential inequalities in terms of conjugate derivatives
Subbotin and Tarasyev (1985)

sup
d∈Rn

{〈s, d〉 − ∂−ϕ(x)|(d)} ≥ −ϕ(x) +H(x, s),

∀s ∈ Rn, x ∈ Rn,

inf
d∈Rn

{〈s, d〉 − ∂+ϕ(x)|(d)} ≤ −ϕ(x) +H(x, s),

∀s ∈ Rn, x ∈ Rn.

Let us remind that the notion of the generalized minimax
solution is equivalent to the viscosity solution Crandall
and Lions (1983). One can prove that function ϕ(x) is the
value function of the optimal control problem (1)–(2) if
and only if it is the unique minimax solution of equation
(9).

3. BACKWARD PROCEDURE

In order to introduce the backward procedure in the class
of bounded functions we make the change of variables

ψ(x) =
ϕ(x)

M +N‖x‖
, (10)

where M > 0 and N > 0 is some constants. Let us note

that function
ϕ(x)

M +N‖x‖
is not smooth at point x = 0.

But it can be smoothed out in ε-neighborhood of zero,
ε > 0. To do this, we substitute the nonsmooth function
‖x‖ with its smooth approximation

rε(x) =

{
‖x‖, if‖x‖ > ε,

‖x‖2/(2ε) + ε/2, if‖x‖ ≤ ε. (11)

We set M = N = κ and substitute the change of variables
in terms of function ψ(x) to the Hamilton–Jacobi equation
(9)

−ψ(x)(κ(1 + rε(x)))+

+
1

λ
min
u∈P

(
〈∇ψ(x)(κ(1 + rε(x)))+

+ψ(x)∇rε(x), f(x, u)〉+ g(x, u)

)
= 0.

It can be rewritten in the form

min
u∈P

(
− λψ(x) + 〈∇ψ(x), f(x, u)〉+ (12)

+κψ(x)

〈
∇rε(x),

f(x, u)

κ(1 + rε(x))

〉
+

g(x, u)

κ(1 + rε(x))

)
= 0,

that contains the Hamiltonian

Ĥ(x, ψ(x),∇ψ(x)) = min
u∈P

(
〈∇ψ(x), f(x, u)〉+

+κψ(x)

〈
∇rε(x),

f(x, u)

κ(1 + rε(x))

〉
+

g(x, u)

κ(1 + rε(x))

)
.

The equation (12) can be presented as

−λψ(x) + Ĥ(x, ψ(x),∇ψ(x)) = 0. (13)

Function ψ(x) can be approximated by function ψh(x) in
the Taylor expansion

ψh(x+ hf(x, u))− ψh(x) ≈ h〈∇ψ(x), f(x, u)〉.
Substituting this expression into equation (12) and multi-
plying it by h we obtain

min
u∈P

(
− λhψh(x+ hf(x, u)) + ψh(x+ hf(x, u))−

−ψh(x) + κhψh(x+ hf(x, u))

〈
∇rε(x),

f(x, u)

κ(1 + rε(x))

〉
+

+
hg(x, u)

κ(1 + rε(x))

)
= 0,

or equivalently

min
u∈P

(
− ψh(x)+

+

(
1− λh+ κh

〈
∇rε(x),

f(x, u)

κ(1 + rε(x))

〉)
· (14)

·ψh(x+ hf(x, u))
hg(x, u)

κ(1 + rε(x))

)
= 0,

here x ∈ Rn, h > 0.

Let us introduce notations

p(x, u, h, λ, κ) = 1− λh+ κh

〈
∇rε(x),

f(x, u)

κ(1 + rε(x))

〉
,

q(x, u, h, κ) =
hg(x, u)

κ(1 + rε(x))

and substitute it in expression (14)

min
u∈P

(−ψh(x)+

+p(x, u, h, λ, κ)ψh(x+ hf(x, u)) + q(x, u, h, κ)) = 0.

Let us introduce the operator

Qψ(x) =

= min
u∈P

(
p(x, u, h, λ, κ)ψ(x+ hf(x, u)) + q(x, u, h, κ)

)
.
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Consider the time interval [t0, tn], where t0 is initial mo-
ment, tn is some sufficiently large moment, and determine
its partition {∆(ti)}. Let us describe the method of calcu-
lation of values of the function ψ∆ that approximates the
value function ψ in the following backward procedure

ψ∆(xn−1) = Qψ∆(xn), ψ∆(xn) = ψ(x(tn)). (15)

(Souganidis, 1985, theorem 2.1) proved that such back-
ward procedure approximates the generalized viscosity
solution of equation (13) with accuracy

‖ψ∆ − ψ‖ ≤ Ch1/2;

where C is a positive constant. In the mentioned paper,
more general case of the Hamiltonian is considered and it
contains the Hamiltonian of equation (13). Let us give the
formulation of this result.

Claim 3. Denote by the symbol C(X) the space of
bounded real valued Lipschitz continuous functions de-
fined on set X. Let ψ ∈ C(Rn × [0, T ]) is the unique
viscosity solution of (13) on C(Rn × [0, T ]) for boundary
condition ψ0 = ψ(x, 0) ∈ C(Rn) and function H : [0, T ]×
Rn ×R×Rn → R, satisfies the following conditions:

(1) the Hamiltonian H is uniformly continuous on [0, T ]×
Rn × [−R,R] × Bn(0, R), where Bn(x0, R) = {x ∈
Rn : |x− x0| ≤ R},

(2) there is a constant C > 0 such that

C = sup
(x,t)∈QT

|H(t, x, 0, 0)| <∞,

where QT = Rn × [0, T ],
(3) for R ≥ 0 there is a CR > 0 such that

|H(t, x, r, p)−H(t, y, r, p)| ≤ CR(1 + |p|)|x− y|
for t ∈ [0, T ], |r| ≤ R, x, y, p ∈ Rn,

(4) for R > 0 there is a constant LR > 0, depending on
R such that

|H(t, x, r, p)−H(t, x, s, p)| ≤ LR(r − s)
for x ∈ Rn, −R ≤ s ≤ r ≤ R, 0 ≤ t ≤ T , p ∈ Rn,

(5) for R ≥ 0 there is a NR > 0 such that

|H(t, x, r, p)−H(t, x, r, p)| ≤ NR(1 + |p|)|t− t|
for t, t ∈ [0, T ], |r| ≤ R, x, p ∈ Rn,

(6) for R ≥ 0 there is a MR > 0 such that

|H(t, x, r, p)−H(t, x, r, q)| ≤MR|p− q|
for t ∈ [0, T ], x ∈ Rn, |r|, |p|, |q| ≤ R, p, q ∈ Rn.

For the pair (t, ρ) ∈ {[0, T ] × [0, ρ0] : 0 ≤ ρ ≤ t}, where
ρ0 = ρ0(‖ψ0‖) > 0, let function F (t, ρ, ·, ·) : C(Rn) ×
C(Rn)→ C(Rn) be such that for every ψ, ψ, ξ, ξ ∈ C(Rn)

(1) F (t, 0, ψ, ξ) = ξ,
(2) the mapping (t, ρ)→ F (t, ρ, ψ, ψ) is continuous,
(3) F (t, ρ, ψ, ξ + k) = F (t, ρ, ψ, ξ) + k for every k ∈ R,
(4) ‖F (t, ρ, ψ, ψ) − ψ‖ ≤ C1, where a constant C1 =

C1(‖ψ‖, ‖Dψ‖) ≥ 0,
(5) there exists an r > 0 and L1 > 0 such that if

ξ(x) ≤ ξ(x) for every x ∈ Rn, then for any y ∈ Rn

such that

|ξ(y+w)−ξ(y+w)|, |ξ(y+w)−ξ(y+w)| ≤ L|w−w|
for every w, w ∈ {x ∈ Rn : ‖x‖ ≤ ρr}

F (t, ρ, ψ, ξ)(y) ≤ F (t, ρ, ψ, ξ)(y),

where L = sup
0≤τ≤T

‖Dψ(·, τ)‖ and L = max(L1, L)+1,

(6) there exists a constant C2 such that

‖F (t, ρ, ψ, ψ)‖ ≤ eρC2(‖ψ‖+ ρC2),

provided that ‖Dψ‖ ≤ L,
(7) there exist constants C3, C4 > 0 such that

eT (C3+C4)(‖Dψ0‖+ TC4) ≤ L
and

‖DF (t, ρ, ψ, ψ)‖ ≤ eρ(C3+C4)(‖Dψ‖+ ρC4),

provided that ‖ψ‖ ≤ eTC2(‖ψ0‖+ TC2) and ‖Dψ‖ ≤
L,

(8) for each ϕ in the space of twice differentiable on Rn

functions with bounded partial derivatives of the first
and second order such that |Dϕ(x)| < L+ 1, and for
every x ∈ Rn the following relations take place∣∣∣∣F (t, ρ, ψ, ϕ)(x)− ϕ(x)

ρ
+H(t, x, ψ(x), Dϕ(x))

∣∣∣∣ ≤
≤ C5(1 + ‖Dϕ‖+ ‖D2ϕ‖)ρ,

where a constant L = sup
0≤τ≤T

‖Dψ(·, τ)‖ and a con-

stant C5 = C5(‖ψ‖, ‖Dψ‖, L).

For a partition ∆ = {0 = t0 < t1 < · · · < tn(∆) = T} of
[0, T ] let ψ∆ : Rn × [0, T ]→ R be defined by

ψ∆(x, 0) = ψ0(x),

ψ∆(x, t) = F (t, t− ti−1, ψ∆(·, ti−1), ψ∆(·, ti−1))(x)

t ∈ (ti−1, ti], i = 1, . . . , n(∆).

Then there exists a constant C > 0, depending only on
‖ψ0‖ and ‖Dψ0‖ such that

‖ψ∆ − ψ‖ ≤ C|h|1/2

for |h| sufficiently small.

Basing on this result one can obtain the estimate of
convergence for the backward procedure for approximation
of the value function in optimal control problem with
infinite horizon. Namely, one can prove the following
theorem.

Theorem 4. Let λ > κ, C(T ) = AeκT , where A is a
positive constant, A > 0. Then the backward procedure
(15) approximates function ψ on interval [t0,+∞) with
the estimate

|h|
λ

2(κ+λ)

(
1

κ
+

1

λ

)(
Aκ
) λ
κ+λ .

Proof. We have∫ +∞

T

ψ(x(τ)) dτ =

∫ +∞

T

e−λτg(x(τ), u(τ))

κ(1 + ‖x(τ))‖
dτ

by definition of the value function 2 and according to
substitution (10). Since function g(x, u) satisfies inequality
(5) then∫ +∞

T

‖ψ(x(τ))‖ dτ ≤
∫ +∞

T

e−λτ dτ =
1

λ
e−λT . (16)

The backward procedure approximates function ψ on
interval [t0, T ] with the accuracy

‖ψ∆ − ψ‖ ≤ C(T )|h|1/2

according to statement 3.
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Let us add to this expression the estimate for the ”tail”
(16) of function ψ. We show that the next relation is true
on the half axis [t0,+∞)

‖ψ∆ − ψ‖ ≤ C(T )|h|1/2 +
1

λ
e−λT = AeκT |h|1/2 +

1

λ
e−λT .

(17)

The relation depends on the time moment which is the
terminal time of the backward procedure. We can improve
the relation if we find the time moment where the relation
reaches the lowest value. For this, let us calculate the
derivative of the sum on the right hand side (17) and
equate it to zero

(C(T )|h|1/2 +
1

λ
e−λT )′ = (AeκT |h|1/2 +

1

λ
e−λT )′ =

= AκeκT |h|1/2 − e−λT = 0.

The solution of this equation can be presented as follows

T∗ =
− ln(Aκ|h|1/2)

κ+ λ
.

This value delivers the minimum value for the right hand
side (17) according to sufficient conditions of minimum.
Let us check this. Really, the second derivative of the right
hand side equals

(C|h|1/2 +
1

λ
e−λT )′′ = (AeκT |h|1/2 +

1

λ
e−λT )′′ =

= Aκ2eκT |h|1/2 + λe−λT .

This expression is positive.

Let us substitute point T∗ into relation (17), which is valid
for all T and, specifically, it holds for the minimum point
T∗

‖ψ∆ − ψ‖ ≤ A|h|1/2eκT∗ +
1

λ
e−λT∗ =

≤ A|h|1/2e
−κ ln(Aκ|h|1/2)

κ+ λ +
e

λ ln(Aκ|h|1/2)

κ+ λ

λ
=

=
Aκ|h|1/2

(
Aκ|h|1/2

) −κ
κ+λ

κ
+

(
Aκ|h|1/2

) λ
κ+λ

λ
=

=

(
Aκ|h|1/2

) λ
κ+λ

κ
+

(
Aκ|h|1/2

) λ
κ+λ

λ
.

Theorem is proved.

4. REDUCTION OF THE BACKWARD
PROCEDURE TO A COMPACT STRONGLY

INVARIANT SET

Let us note that the backward procedure is determined on
the whole phase space, x ∈ Rn. To reduce calculations, we
make the following change of variables

y(t) = e−κ(t−t0)x(t). (18)

After change of variables we get the following system of
differential equations

ẏ(t) = −κy(t) + e−κ(t−t0)f(eκ(t−t0)y(t), u(t)),

J(y(·), u(·)) =

∫ +∞

t0

e−λτg(eκ(τ−t0)y(τ), u(τ)) dτ,

t ∈ [t0,+∞), y(t0) = y0 = x0, t0 > 0, λ > 0.

One can see that values of variable y = y(t) are contained
in a compact set due to conditions (3), (4) and according
to results for strongly invariant sets Aubin (1991).

To convert the problem to the stationary one, let us
introduce the auxiliary variable ξ(t) = e−κ(t−t0), which
allows to consider the stationary dynamic system

ẏ =−κy + ξf(
y

ξ
, u), (19)

ξ̇ =−κξ,

J(y, u) =

∫ +∞

t0

e−λτg(
y

ξ
, u) dτ,

y(t0) = x0, ξ(t0) = 1, λ > 0.

Finally, let us note that the dynamic system (19) has the
stationary form and its trajectories survive in compact
convex sets (i.e. balls, rectangular parallelepipeds) with
the center at the origin. Hence, the proposed backward
procedure can be implemented in these compacts convex
sets instead of the whole space Rn, and this fact can sig-
nificantly reduce calculations of approximation schemes.

5. CONCLUSIONS AND FUTURE WORK

The paper deals with approximation schemes for con-
struction of value functions as generalized solutions of
stationary Hamilton–Jacobi equations in optimal control
problems with infinite time horizon. One of basic elements
of the considered optimal control problem is a quality func-
tional with an unbounded integrand which is discounted by
an exponential index. Such statements arise in models of
economic growth and problems of stabilization of dynamic
systems.

The value function for such statement of the optimal
control problem is the generalized minimax solution of the
corresponding stationary Hamilton–Jacobi equation. The
boundary condition for the stationary value function is
replaced by the property of the Hölder continuity and the
sublinear growth condition. Basing on these properties, we
develop a backward approximation procedure on infinite
time horizon for construction of the value function. The
convergence of this backward approximation procedure
is based on the contraction mapping method defined on
the family of uniformly bounded and Hölder continuous
functions.

In this paper, we provide the accuracy estimate for the
proposed approximation procedure and calculate precisely
parameters for this estimate, which ensures the conver-
gence of approximations to the value function at a rate of
the same order as the exponent of the Hölder condition.

We introduce also the special change of variables in the
optimal control problem with infinite time horizon, which
reduces the backward approximation procedure for con-
struction of the value function to a compact strongly
invariant set.
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In the future research, it is planned to apply the proposed
approach for construction of value functions in economic
growth models with exhaustible resources.
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