
Robust Global Tracking Control for a Quadrotor
Based on Uncertainty and Disturbance Estimator

Qi Lu ∗

∗ Department of Mechanical Engineering, Sichuan University-Pittsburgh
Institute, Sichuan University, Chengdu, Sichuan, 610207 China

(e-mail: qi.lu@scu.edu.cn).

Abstract: In this paper, an uncertainty and disturbance estimator (UDE)-based robust global tracking
control strategy for a quadrotor is presented. Utilizing the quaternion framework, the attitude and posi-
tion controllers are developed to achieve the global singularity-free and computational efficient quadrotor
control while the UDE is adopted to deal with model uncertainties and external disturbances. In order
to handle the highly nonlinear quaternion-based quadrotor dynamics, the backstepping technique is
utilized for the attitude controller derivation. The thrust-vectoring approach is employed for the position
controller derivation. The effectiveness of the proposed approach is demonstrated using the attitude
recovery experiment with large angle initial conditions.
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1. INTRODUCTION

The level of quadrotor’s maneuverability is closely related to
the flight control algorithms, whereas the controllers devel-
oped from linearization around hovering conditions have lim-
ited achievable flight envelopes. To achieve the agile flight
of quadrotor, there are several challenges need to be handled.
Firstly, the Euler angles exhibit kinematic singularities due to
the fact that the attitude dynamics evolves on a nonlinear man-
ifold, SO (3) (Lee (2013)). Secondly, the quadrotor rigid body
dynamics is naturally unstable, nonlinear with coupled states
(Naldi et al. (2017)). Thirdly, the incomprehensive modeling
process of the quadrotor dynamics leads to model uncertainties.
The fourth challenge comes from the external disturbances,
such as wind. For practical applications, the control algorithm
complexity is also restricted by the limited memory and pro-
cessing power of the embedded processors.

Over the past years, various flight control algorithms have
been investigated. Based on the commonly used attitude rep-
resentation methods, which are Euler angle, rotation matrix
and quaternion, the existing control algorithms can be roughly
grouped into three categories. The controllers developed with
the Euler angle attitude representation method have the merits
of simple and easy implementation. Therefore, the fusion of
the Euler angles with different control strategies are widely
studied, such as the PID control (Moreno-Valenzuela et al.
(2018)), the adaptive control (Zhao et al. (2015)) and the robust
control algorithms which are derived with the sliding mode
technique (Chen et al. (2016)), the active disturbance rejection
control technique (Yang et al. (2018)), and the uncertainty and
disturbance estimator (UDE) (Lu et al. (2017, 2018); Sanz et al.
(2016)). However, the kinematic singularities prevent the Euler
angle-based control strategies for achieving large angle ma-
neuvers. To deal with the singularities, Goodarzi et al. (2015);
Lee (2013); Shi et al. (2017); D.H.S. Maithripala and Jordan
M. Berg (2015) derived the geometric controllers. Using the
exponential coordinates, Shi et al. (2017) developed the geo-
metric controllers. Nevertheless, the external disturbances and

model uncertainties are not considered in the derivation pro-
cess. D.H.S. Maithripala and Jordan M. Berg (2015) proposed
an intrinsic PID controller to handle the bounded paramet-
ric uncertainties and disturbances by introducing the integral
action. To handle the disturbance term, the adaptive geomet-
ric controller development is investigated in Lee (2013) and
Goodarzi et al. (2015). However, the bound information of
the disturbance term is needed in Lee (2013). With the same
singularity free property, compared to the rotation matrix, the
computational complexity of the quaternion is relatively less.
Tayebi and McGilvray (2006) developed a PD2 controller with
quaternion to achieve the attitude stabilization. A nonlinear
quaternion-based control algorithm for a variable pitch quadro-
tor is proposed in Cutler and How (2015). However, in real ap-
plications, the model uncertainties and external disturbances are
inevitable. Liu et al. (2015) and Naldi et al. (2017) respectively
proposed robust quaternion-based attitude controller and robust
hybrid full degrees-of-freedom (DOFs) control strategy to deal
with the model uncertainties and external disturbances. The ex-
perimental demonstration of large angle maneuvers using only
onboard sensing and computation still remains as a challenging
task (Liu et al. (2015)).

In this paper, in response to the singularities for Euler angles,
and the computational complexities for matrix manipulations,
the UDE-based full DOFs quadrotor controllers with the quater-
nion framework are developed. The performance of the devel-
oped control strategies is demonstrated through the implemen-
tation on a quadrotor to achieve large angle maneuvers with
only onboard sensing and computation. The UDE-based control
algorithm, which is proposed in Zhong and Rees (2004), has
drawn considerable amount of attention in both theoretical (Ren
et al. (2017); Dai et al. (2018)) and application (Lu et al. (2017,
2018); Sanz et al. (2016)) perspectives due to the advantages of
simple structure and easy tuning. The main contributions of this
paper include:

1) Using the quaternion attitude representation method, the
UDE-based attitude controllers have been developed to achieve
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the global non-singular attitude tracking while dealing with
the effects of model uncertainties and external disturbances.
The backstepping technique is applied to handle the nonlinear
quaternion dynamics.

2) With the cascade control architecture and the thrust-
vectoring approach, the UDE-based position controllers have
been derived to solve the underactuation problem and to achieve
the accurate position control.

3) The proposed approach is validated with quadrotor flight
experiments using only onboard sensing and computation. The
advantages of the developed quaternion-based controllers are
demonstrated with attitude recovery from large undesirable
initial angles. Compared with our previously published works
(Lu et al. (2017, 2018)), which are developed based on Euler
angle attitude representation, the capabilities and the operation
ranges of the proposed controllers are further improved with the
demonstration of more challenging flight maneuvers.

The rest of this paper is organized as follows. The quadrotor
system modeling and the problem formulation are presented
in Section 2. Section 3 introduces the UDE-based attitude and
position controllers.The flight experimental results are shown
in Section 4. The conclusions are drawn in Section 5.
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Fig. 1. Quadrotor coordinate systems.

2. SYSTEM MODELING AND PROBLEM
FORMULATION

2.1 Quadrotor Mathematical Model

Fig. 1 shows the coordinate systems used for developing the
quadrotor dynamic models. Let I = { i1 i2 i3 } represent the
right-hand inertia reference frame with i3 pointing downwards.
The body-fixed frame is denoted by B = { b1 b2 b3 } with
the origin attached to the center of gravity of the quadrotor.
The quadrotor attitude is represented using a unit quaternion,
which is defined as q = [q0 q1 q2 q3]

ᵀ
= [q0 qv]

ᵀ ∈ S3

where ᵀ is the transpose operator, S3 =
{
q ∈ R4|qᵀq = 1

}
denotes the three-dimensional unit sphere space, q0 and qv =
[q1 q2 q3]

ᵀ represent the scalar and vector parts of the quater-
nion, respectively. The angular velocities are defined by ω =
[ω1 ω2 ω3]

ᵀ ∈ R3. Let ξ = [ξ1 ξ2 ξ3]
ᵀ ∈ R3 and v =

[v1 v2 v3]
ᵀ ∈ R3 represent the positions and velocities of the

quadrotor, respectively. The collective thrust along the negative
b3 direction is denoted by F and the torques along the three
body axes are defined as τ1, τ2 and τ3. Considering a quadrotor
with the mass of m and the inertia matrix of J ∈ R3×3,

the dynamics can be modeled with quaternion formulation as
(Naldi et al. (2017); Cutler and How (2015))

ξ̇= v (1)[
0
v̇

]
=− 1

m
q⊗

[
0
F

]
⊗ q∗ +

[
0
g

]
+

1

m

[
0
dξ

]
(2)

q̇=
1

2
q⊗

[
0
ω

]
=

1

2

[
−qᵀ

vω
q0ω + qv × ω

]
(3)

ω̇ =−J−1 (ω × Jω) + J−1 (τ + dq) (4)

where⊗ is the quaternion multiplication,× is the cross product,
F = [0 0 F ]

ᵀ ∈ R3 represents the thrust force vector in
B, g = [0 0 g]

ᵀ ∈ R3 is the gravity vector in I, τ =

[τ1 τ2 τ3]
ᵀ ∈ R3 is the torque vector, dξ ∈ R3 and dq ∈ R3

are the bounded external disturbances acting on the position and
attitude subsystems, respectively.

2.2 Problem Formulation

The control problems are two folded in this work. The first ob-
jective is to develop the UDE-based global attitude control al-
gorithms to regulate the quadrotor orientation q (t) to track the
orientation reference qr (t) = [qr0 (t) qr1 (t) qr2 (t) qr3 (t)]

ᵀ ∈
S3 for all possible initial conditions q (0). The second goal
is developing the UDE-based position control algorithm to
drive the quadrotor position ξ (t) to track the position refer-
ence ξr (t) = [ξr1 (t) ξr2 (t) ξr3 (t)]

ᵀ ∈ R3. The reference
trajectories, qr (t) and ξr (t) are bounded and continuously
differentiable up to their second order time derivatives for all
t ≥ 0.
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Fig. 2. Cascade control scheme for a quadrotor.

3. CONTROL DESIGN

In this section, the detailed derivations of the UDE-based atti-
tude and position control algorithms are presented. The overall
control scheme is shown in Fig. 2, where ψr is the yaw angle
reference.

3.1 Quaternion-Based Attitude Controller Design

The tracking errors for attitude subsystems are defined as

qe = q∗r ⊗ q =

[
qe0
qev

]
(5)

ωe =ωr − ω (6)

where ωr denotes the reference angular velocity vector, qe0
and qev are the scalar and vector parts of qe, respectively.
The relationship between the desired attitude and the desired
angular velocities is described with the following differential
equation q̇r =

1
2qr⊗ [0 ωr]

ᵀ. Taking the time derivative of (5)
results in (Tayebi (2008))
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q̇e =−
1

2

[
0
ωr

]
⊗ qe +

1

2
qe ⊗

[
0
ω

]
=

1

2

[
−qᵀ

ev (ω − ωr)
qe0 (ω − ωr) + qev × (ω + ωr)

]
(7)

The objective is to design the effective attitude controllers
which are capable of driving the quaternion attitude tracking er-
rors qe to [±1 0 0 0]

> and the angular velocity tracking errors
ωe to zero. It should be noted that the two equilibrium points
qe = [±1 0 0 0]

> are in reality one physical equilibrium point
(Tayebi and McGilvray (2006)). With the unit property of qe,
as qev converging to zero, qe0 will be ±1. From (4), (6) and
(7), the tracking error dynamics for attitude subsystems can be
written in the form of

q̇ev =−
1

2
qe0ωe +

1

2
qev × (ω + ωr) (8)

ω̇e = ω̇r + J−1 (ω × Jω)− J−1 (τ + dq) (9)

To deal with the structure constraint in the UDE-based con-
trollers, the backstepping technique is adopted. The virtual con-
trol for (8) is designed as (Mahony et al. (2008))

α= 2C1qe0qev (10)

where C1 ∈ R3×3 is a constant matrix. Then the coordinate
transformation is introduced as

z1 = qev

z2 =−ωe +α (11)

Taking the time derivative of (11) results in

ż1 =−
1

2
qe0ωe +

1

2
z1 × (ω + ωr) +

1

2
qe0α−

1

2
qe0α

=−q2e0C1z1 +
1

2
qe0z2 +

1

2
z1 × (ω + ωr) (12)

ż2 =−ω̇e + α̇
=−ω̇r − J−1 (ω × Jω) + J−1 (τ + dq) + α̇ (13)

The Lyapunov function candidate is chosen as

Vq =
1

2
zᵀ1z1 +

1

2
zᵀ2z2 (14)

Taking the time derivative of (14) results in

V̇q = zᵀ1 ż1 + zᵀ2 ż2

= zᵀ1

[
−q2e0C1z1 +

1

2
qe0z2

+
1

2
z1 × (ω + ωr)

]
+ zᵀ2 ż2

=−zᵀ1q2e0C1z1 +
1

2
zᵀ1z1 × (ω + ωr)

+zᵀ2

(
1

2
qe0z1 + ż2

)
(15)

Expanding the cross product term 1
2z

ᵀ
1z1 × (ω + ωr) leads

to zero. In order to ensure (15) is negative, the desired error
dynamics is designed as

1

2
qe0z1 + ż2 =−C2z2 (16)

where C2 ∈ R3×3 is a positive gain matrix. Combine (13) and
(16) and design the control action term as

J−1τ =−C2z2 −
1

2
qe0z1 + ω̇r + J−1 (ω × Jω)− ud

(17)

where ud = J−1dq+α̇ represents the lumped uncertainty term,
which can be solved from (13) as

ud = ż2 + ω̇r + J−1 (ω × Jω)− J−1τ (18)

Following the UDE techniques described in Zhong and Rees
(2004), the lumped uncertainty term estimation is constructed
by adopting strictly low-pass filters with unity steady-state
gains as

ûd =L−1 {Gfq (s)} ∗
{
ż2 + ω̇r + J−1 (ω × Jω)− J−1τ

}
(19)

where L−1 denotes the inverse Laplace operator, ∗ represents
the convolution operator, ûd is the estimation of lumped uncer-
tainty term ud, Gfq (s) ∈ R3×3 is a 3 by 3 filter matrix in the
form of Gfq (s) = diag (Gfq1 (s) , Gfq2 (s) , Gfq3 (s)) and
diag(·) represents the diagonal matrix operator. Substituting
(19) into (17) and solving for τ , the UDE-based attitude control
laws are derived as

τ =ω × Jω + Jω̇r

−JL−1
{
(I3 −Gfq (s))

−1
}
∗
[
C2z2 +

1

2
qe0z1

]
−JL−1

{
(I3 −Gfq (s))

−1
Gfq (s) s

}
∗ z2 (20)

3.2 Position Controller Design

The tracking errors for the quadrotor position subsystems are
defined as

ξe = ξr − ξ
ve = vr − v (21)

Define eξ = [ξe ve]
ᵀ as the error vector for the position

subsystems. Hence, the objective is designing the effective
position controllers to drive eξ to zero. Let Fξ represent the

thrust forces vector in I, where
[
0
Fξ

]
= q ⊗

[
0
F

]
⊗ q∗.

Using the vector representation, the position dynamics (2) can
be rewritten as

v̇ = − 1

m
Fξ + g +

1

m
dξ (22)

The virtual control inputs are designed as

uξ = −
1

m
Fξ + g (23)

Taking the time derivative of eξ along with (1), (21) and (22)
leads to

ėξ = hξ (ve, vr)−Bξ

(
uξ +

1

m
dξ

)
(24)

where Bξ = [03×3 I3]
ᵀ ∈ R6×3, hξ (ve, vr) = [ve v̇r]

ᵀ ∈
R6×3, 0m×n ∈ Rm×n represents the m by n zero matrix, and
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In ∈ Rn×n is the n-dimensional identity matrix. Specify the
desired error dynamics as

ėξ = −Kξeξ (25)

where Kξ ∈ R6×6 denotes the error feedback gain matrix.
Combining (24) and (25) results in

hξ (ve, vr)−Bξ

(
uξ +

1

m
dξ

)
= −Kξeξ (26)

Hence, according to (26), design the control action term as

Bξuξ = hξ (ve, vr) +Kξeξ −
1

m
Bξdξ (27)

The disturbance term can be solved from the position tracking
error dynamics (24) as

1

m
Bξdξ = hξ (ve, vr)−Bξuξ − ėξ

Following the UDE techniques in Zhong and Rees (2004), the
disturbance term can be estimated as

1

m
Bξd̂ξ = L−1 {Gfξ (s)} ∗ [hξ −Bξuξ − ėξ] (28)

where

Gfξ (s) =

[
03×3 03×3
03×3 [Gfξ1 (s) Gfξ2 (s) Gfξ3 (s)] I3

]
Replacing the disturbance term in (27) with (28) and solving
for uξ leads to the UDE-based position control algorithms

uξ =B+
ξ

{
L−1

{
(I6 −Gfξ (s))

−1
}
∗ (Kξeξ) + hξ

+L−1
{
(I6 −Gfξ (s))

−1
Gfξ (s) s

}
∗ eξ

}
(29)

where B+
ξ =

(
Bᵀ
ξBξ

)−1
Bᵀ
ξ represents the pseudo-inverse of

Bξ.
Remark 1. It should be noted that for the implementation of
the UDE-based position controller, (29) is used, where the
measurement regarding the state derivative of the error vector,
ėξ, is avoided. For attitude controller implementation, (20) is
used.

The commanded control forces in I can be solved from (23)
as Fξ = m (g − uξ). The thrust command can be calculated
by taking the Euclidean norm of the commanded control forces
as F = ‖Fξ‖. Let the direction vector rF denote the direction
of commanded forces in I, which is calculated as rF =

−Fξ

‖Fξ‖ .
Due to the fact that the thrust direction is fixed in B, which is the
−b3 axis, the vector transformation from B to I is represented

as
[
0
rF

]
= qb1b2r ⊗

[
0
−b3

]
⊗
(
qb1b2r

)∗
, where qb1b2r is the

desired quadrotor orientation excluding the rotation about the
b3 axis. The unit quaternion qb1b2r which rotates −b3 into rF
can be solved as (Markley (2002); Cutler and How (2015))

qb1b2r =
1√

2 [1 + (−b3)ᵀ rF ]

[
1 + (−b3)ᵀ rF
(−b3)× rF

]
(30)

Since the rotation about the b3 axis is not crucial regarding the
thrust pointing direction, the desired rotations about b1 and b2
axes are firstly considered. Let ψr denote the desired heading
angle, the desired orientation is fully specified as

qr = qb1b2r ⊗
[
cos

(
ψr
2

)
0 0 sin

(
ψr
2

)]ᵀ

Fig. 3. Experimental platform

4. EXPERIMENTS

4.1 Experimental Platform

Fig. 3 shows the experimental platform, which is a Parrot
Mambo quadrotor 1 . The onboard three-axis accelerometer and
three-axis gyroscope are used for orientation estimation. The
position localization is achieved with an ultrasonic sensor, an
air pressure sensor and a downward-facing camera. The update
rate for the control loop is 200 Hz.

Table 1. Controller Parameters

Tqi c1i c2i Tξi k1i k2i am1i am2i

1 1/60 1 2 1/40 1 2 100 20
2 1/50 1 2 1/40 1 2 100 20
3 1/20 1 2 1/20 1 2 25 10

4.2 Filter and Controller Parameter Selection

The filter matrices in (20) and (29) are chosen as (Zhong and
Rees (2004))

Gfq (s) = diag
(

1

Tq1s+ 1
,

1

Tq2s+ 1
,

1

Tq3s+ 1

)

Gfξ (s) =

03×3 03×3

03×3 diag
(

1

Tξ1s+ 1
,

1

Tξ2s+ 1
,

1

Tξ3s+ 1

)
with general first order filters for practical implementation.
Choose C1 and C2 in (20) as following diagonal matrices

C1 = diag (c11, c12, c13) , C2 = diag (c21, c22, c23)

The matrix Kξ in (29) are designed as
[
03×3 I3
K1 K2

]
with K1 ∈

R3×3 and K2 ∈ R3×3 being the diagonal matrices in the forms
of

K1 = diag (k11, k12, k13) , K2 = diag (k21, k22, k23)
The control parameter selections are listed in Table 1.

4.3 Results and Discussion

The attitude recovery flight experiment is carried out to validate
the effectiveness of the developed UDE-based robust global
control strategies. The objective of this experiment is to achieve
the attitude recovery and position hover with the random initial
conditions generated by hand tossing. The test is performed
1 https://www.mathworks.com/hardware-support/parrot-minidrones
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Fig. 4. Experimental results: (a) positions, (b) Euler angles, with five stages: 1: launch detection, 2: attitude control enabled, 3:
height control enabled, 4: horizontal velocity control enabled, 5: full DOF control enabled.
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Fig. 5. Quadrotor attitude in quaternion.
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Fig. 6. Quadrotor trajectory in 3D view.

by throwing the quadrotor by hand in an indoor environment,
then the launch detection, attitude recovery and position hover
are achieved autonomously. Only onboard sensing and compu-
tation are used during this experiment. The similar recovery
processes which are described in Faessler et al. (2015) are
adopted. After the quadrotor is tossed by hand, the first stage
is the launch detection. The quadrotor free falling will render
the norm of the accelerometer data approaching zero. Once the
average of the norm of the accelerometer data within last 20
ms is less than the threshold of 3 m/s2, the attitude recovery
process will be initiated, which is the second stage. The atti-
tude controllers are enabled in the second stage. The quadrotor
attitude references are set as qr = [1 0 0 0]

ᵀ. The quadrotor
thrust is set as F = mg based on the nominal weight. After
the roll and pitch angles are within the range of ±10 degrees
and the roll and pitch angular velocities are within the range of
±1 rad/s, the third stage will start. In the third stage, the height
controller is enabled with the reference set as −1 m. Since i3
axis is pointing downwards, the negative value in z direction
actually means the quadrotor is above the ground. After the
vertical velocity is less than 0.5 m/s, the fourth stage is enabled
to reduce the horizontal velocities. The horizontal position con-
trollers are activated with only velocity measurements feeding
to the controllers while the horizontal velocity references are
set as zero. As soon as the horizontal velocities are less than
0.2 m/s, the full DOF control of the quadrotor is enabled with
the horizontal position references set as current positions.

The experimental results are shown in Fig. 4. The different
stages are marked with numbers. For reader-friendly presenta-
tion, the positions are plotted as x, y, z and the orientations are
shown as Euler angles. Since the onboard sensing is utilized,
where the position measurements are conducted with respect
to ground, only the position measurements after stage 2 are
shown. Fig. 5 shows the evolution of the quaternion. The three-
dimensional view of the quadrotor trajectories are shown in Fig.
6. The quadrotor is launched by hand at around t = 2.4 s,
where the Euler angles are -159.556 degrees in roll direction,
-62.748 degrees in pitch direction and -169.603 degrees in yaw
direction. It should be noted the pitch angle has already passed
the mathematical and mechanical singularity point, which is -90
degrees at t = 1.62 s as shown in Fig. 4 (b). In terms of rotation
about the b2 axis, the angle is actually −117.252 degrees at
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t = 2.4 s. From q2 in Fig. 5, it can also be observed that the
quadrotor is rotating in one direction before launched by hand.
The length of the whole experiment is about 35 s. For a better
view of the recovery processes, only the results from 0 s to 20 s
are shown. The steady state root-mean-square errors from 15 s
to 35 s when the quadrotor is stably hovering are calculated as
0.257 degree, 0.148 degree and 0.093 degree for roll, pitch and
yaw directions, respectively and 0.005 m, 0.013 m, 0.013 m
for x, y and z directions, respectively. The experimental results
have successfully validated the effectiveness of the proposed
approach. The singularity-free property and stability of the
developed control system is demonstrated by accomplishing a
large angle maneuver under undesirable initial conditions.

5. CONCLUSION

Utilizing the quaternion attitude representation, the UDE-based
attitude and position controllers have been developed for a
quadrotor to achieve the robust global control while dealing
with model uncertainties and external disturbances. Flight ex-
periments were performed to demonstrate the capabilities of
the developed controllers for recovering from undesirable large
initial angles. More experimental cases, which consider the
effects of the external disturbances, such as wind, and the model
uncertainties, such as mass and inertia variations and the per-
formance comparison with available control methods will be
investigated in the journal version of this article.
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