
Accelerating Reinforcement Learning with
Suboptimal Guidance ?

Eivind Bøhn ∗ Signe Moe ∗,∗∗ Tor Arne Johansen ∗∗

∗ SINTEF Digital, Oslo, Norway
(e-mail: {eivind.bohn, signe.moe}@sintef.no).

∗∗ Centre for Autonomous Marine Operations and Systems,
Department of Engineering Cybernetics, Norwegian University of
Science and Technology, Trondheim, Norway (email: {signe.moe,

tor.arne.johansen}@ntnu.no)

Abstract: Reinforcement learning in domains with sparse rewards is a difficult problem, and
a large part of the training process is often spent searching the state space in a more or less
random fashion for learning signals. For control problems, we often have some controller readily
available which might be suboptimal but nevertheless solves the problem to some degree. This
controller can be used to guide the initial exploration phase of the learning controller towards
reward yielding states, reducing the time before refinement of a viable policy can be initiated. To
achieve such an exploration guidance while also allowing the learning controller to outperform
the demonstrations provided to it, Nair et al. (2017) proposes to use a ”Q-filter” to select states
where the agent should clone the behaviour of the demonstrations. The Q-filter selects states
where the critic deems the demonstrations to be superior to the agent, providing a natural way
to adjust the guidance in a manner that is adaptive to the proficiency of the demonstrator. The
contribution of this paper lies in adapting the Q-filter concept from pre-recorded demonstrations
to an online guiding controller, and further in identifying shortcomings in the formulation of
the Q-filter and suggesting some ways these issues can be mitigated — notably by replacing
the value comparison baseline with the guiding controller’s own value function — reducing the
effects of stochasticity in the neural network value estimator. These modifications are tested on
the OpenAI Gym Fetch environments, showing clear improvements in adaptivity and yielding
increased performance in all robotics environments tested.

Keywords: Deep Reinforcement Learning, Non-Linear Control Systems, Robotics

1. INTRODUCTION

Reinforcement learning (RL) (Sutton and Barto, 2018)
is a field of machine learning concerned with sequential
decision making problems. The theory and methods in RL
has produced some impressive results the last few years,
ranging from high-level reasoning tasks such as game-
playing (Silver et al., 2016; OpenAI et al., 2019) to control
of fast dynamics such as actuation in robotics (Gu et al.,
2016). RL has received much attention and interest due to
its framework being very general, in principle capable of
discovering a strategy for nearly any problem as long as
one can define some notion of utility of different states of
the system.

This utility measure, called the reward function in the
RL framework, is central to both the definition of the
problem and the performance of the algorithm. Often, a
sparse reward function 1 is preferable, as they are easier
to formulate, easier to estimate, and importantly, there is
? The first author is financed by ”PhD Scholarships at SINTEF”
from the Research Council of Norway (grant no. 272402). The third
author was supported by the Research Council of Norway (grant no.
223254 NTNU AMOS).
1 A sparse reward function is one that only yield signals in some
subset of the state space, e.g. in the subset defined as the set of goal
states, and is typically constant elsewhere.

less room for ambiguity and misinterpreting the objective
of the task. The obvious downside is however that only a
small region of the problem space actually gives a learning
signal to the agent, and a significant portion of the training
time is spent exploring the state space (often in a random
manner) until a minimally viable strategy (i.e. one that
consistently is able to reach reward-yielding states) is
found, from which further progress can be made.

Often in robotics and other control applications one al-
ready has a controller, which due to e.g. nonlinearities in
the dynamics, uncertainties in model parameters, or strict
computational requirements might be suboptimal. This
controller could be used to guide the learning controller
towards a minimally viable strategy, thereby reducing the
long initial exploration phase. Further, guiding in this
manner can offer more explainable behaviour from the
learning controller, in the sense that its behaviour is close
to that of the guiding controller. In turn, this approach
may also lead to worse asymptotic performance, as the
learning controller is searching for an optimum of the pol-
icy space in the vicinity of the guiding controller, while the
global optimum might lie somewhere else. Getting to the
global optimum might entail climbing several unattractive
regions of less optimal policies, which might not be achiev-

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 8188



able with the usual reinforcement learning optimization
instruments.

The most naive implementation of imitation learning (IL),
that is, trying to directly copy the pre-existing controller
is seldom successful, mainly due to a data distribution
mismatch (Ross et al., 2011). Furthermore, the potential
performance of the learning controller is bounded by the
performance of the existing controller. The data distribu-
tion problem arises as the data collected by the demon-
strator will only consist of a subset of the state space, and
will offer no guidance on how to course correct back into
this subset when the learning controller inevitably makes
a small deviation from the controller it is imitating. Small
errors therefore tend to accumulate into trajectories that
stray far from those produced by the demonstrator. Ad-
ditionally, when combining IL with RL there needs to be
some mechanism in place to allow the learning controller
to make different choices than the original controller when
appropriate, in order to exceed the performance of the
existing controller.

In this paper, we tackle the problem of automatically
deciding when the learning controller should imitate the
pre-existing controller, and when it should develop its
own behaviour. We base our method in the concept of
the Q-filter (Nair et al., 2017), which makes the learning
controller imitate the pre-existing controller only when the
pre-existing controller is deemed to yield a higher reward
than what the learning controller would achieve in that
situation. The contribution of this work lies in identifying
some key issues with the original formulation of the Q-
filter and proposing modifications to mitigate these issues,
resulting in improved adaptivity to the difficulty of the
task and to the proficiency of the pre-existing controller,
and thus also improved performance.

The rest of the paper is organized as follows. First, related
work is presented and discussed in Section 2, then the
requisite background theory for RL and the algorithms
used in this paper is presented in Section 3. Our method is
outlined in Section 4, and the experiments used to evaluate
the methods are outlined in Section 5. The results of the
experiments are shown in Section 6, which also discusses
the strengths and weaknesses of the proposed method.
Finally, Section 7 concludes with our thoughts on the
matter and suggestions for further work.

2. RELATED WORK

The DAGGER algorithm (Ross et al., 2011) is an approach
to mitigating the data distribution mismatch problem. A
learning controller is trained to mimic the behaviour of
some expert controller from a demonstration dataset, and
then this learning controller is used in the environment to
collect more data. The newly collected data is appended
to the training set, and the expert demonstrator is asked
to label the new data with its action choices. Our method
builds upon the DAGGER framework in the sense that we
assume access to an online demonstrator, and iteratively
expand the dataset with the demonstrators knowledge.
However, we account for suboptimality in the demonstra-
tor, consequently our learning controller is only made to
mimic the demonstrator in some selected states and this
is only one of its optimization objectives. Deeply Aggre-
VaTeD (Sun et al., 2017) is a further extension of DAG-

GER to continuous state and action spaces and nonlinear
function approximation with neural networks (NNs). Both
these approaches are pure IL methods and thus do not
allow for the agent to surpass the demonstrator.

Another approach to extract knowledge from demonstra-
tion data is inverse reinforcement learning (IRL) (Ng and
Russell, 2000), in which the aim is to recover the reward
function that the agent that generated the dataset was
trying to optimize, rather than directly learning how to
act from the data. Armed with the reward function, the
learning agent can reason on how the expert would act
even in situations that are not covered in the dataset,
or otherwise develop its own behaviour that is different
but also in some sense optimal with respect to the reward
function.

Deep deterministic policy gradients from demonstrations
(DDPGfD) (Vecerik et al., 2018) is a method for leveraging
demonstration data for RL algorithms in domains with
continuous state and action spaces. In this work, human
generated demonstrations are included in the replay buffer
for which a prioritized sampling technique is used to
ensure a suitable mix of demonstration data and self
collected data in each training batch. They further use
a mix of 1-step and n-step return losses for training the
Q-networks. They show increased performance over the
demonstrations, as well as over regular deep deterministic
policy gradients (DDPG), even when the latter uses hand-
crafted shaped rewards and DDPGfD uses sparse rewards.

Nair et al. (2017) propose to address the problem of
choosing when the learning controller should emulate the
demonstrator with the use of the Q-filter. The Q-filter is an
indicator function used to select when to apply a behaviour
cloning loss on the action chosen by the demonstrator. The
filter evaluates to true when the estimated value from the
Q-function is higher for the demonstrator action than it
is for the action chosen by the learning controller. This
provides a natural way to anneal behaviour cloning loss
during the training process that is adaptive to the task
at hand. Their demonstrations come in the form of a
fixed set of trajectories collected by a human demonstrator
in a virtual reality version of the environment. In each
training batch, a portion of the data is sampled from
the regular replay buffer and a portion is sampled from
the demonstration buffer, on which behaviour cloning
(BC) is applied for the actions selected by the Q-filter.
Our method borrows the concept of the Q-filter from
this work, suggesting some important adjustments to the
concept. Further, their source of demonstrations consists of
a fixed dataset, while we assume online access to a guiding
controller.

In assisted deterministic policy gradients (AsDDPG) Xie
et al. (2018) propose a novel architecture for incorporating
a simple controller to guide the initial exploration phase.
In their architecture, the critic module has an additional
branch that estimates the Q-values of the pre-existing
controllers action and the actors action for the state in
question. Based on these estimates the method greedily
chooses the one with the highest Q-value, and applies this
action as the exploration action during training. In this
way, the guiding controller is used to show the actor some
primitives it can use to aid exploration. As in our method,
online access to the guiding controller is assumed, but the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8189



Q-filter is applied to select actions for exploration instead
of to shape the gradients of the optimization procedure.

3. BACKGROUND

3.1 Reinforcement Learning

We consider the RL problem in a Markov decision process
(MDP) framework. The MDP is defined by the tuple
〈S,A, R, T , γ〉, where S is the set of states, A is the set
of actions, R(s, a) is the reward function, T is the state
transition function describing the evolution of the states as
a function of time and actions, and γ ∈ [0, 1] is the discount
factor, weighing the relative importance of immediate and
future rewards. We denote a trajectory τ as a sequence
of state and actions, e.g. one episode of the problem
task, and the return as R(τ) =

∑
(st,at)∼τ γ

tR(st, at),

where ∼ signifies that the left hand side is sampled
from the distribution on the right hand side. The RL
objective is to find a policy π, i.e. a function that generates
actions from states, which maximizes the sum of expected
future rewards weighed by the discount factor γ, i.e. the
expected return in an episodic setting. We denote this
objective as maxθ J(θ) = Eτ∼πθ [R(τ)], where we use
subscript to indicate θ is the parameterization of the
policy. Central to many RL algorithm is the concept of
the value of a state, given by the value function V π(s) =
Eτ∼π [R(τ) | s0 = s]. The value function measures the
expected return of being in a given state and from there
always acting according to the policy π. If we further
leave the first action in the trajectory free, we get the
state-action value function, often called the Q-function
Qπ(s, a) = Eτ∼π [R(τ) | s0 = s, a0 = a]. We consider in
this work a further extension to the MDP framework in the
form of a specified goal state, from a set of possible goals G.
Schaul et al. (2015) show that value functions conditioned
on this additional goal parameter can successfully be
trained to generalize to unseen goals.

3.2 Deep Deterministic Policy Gradient

To address the challenges posed by tasks with continu-
ous state and action spaces, Lillicrap et al. (2015) intro-
duced DDPG. DDPG is an off-policy, model-free, policy-
gradient, actor-critic algorithm which concurrently esti-
mates the Q-function Qπθ and an actor that aims at solv-
ing for the actions which maximize the Q-function. These
actor and critic functions are implemented as NNs, and are
trained off-policy from experience collected by the actor
interacting with the environment. This experience is stored
in a replay buffer D, from which we sample minibatches
B to train the actor and the critic. More concretely, the
critic is trained in a supervised manner to regress on 1-step
returns according to the Bellman optimality equation:

yt = Rt + γQθQ(st+1, πθ(st+1)) (1)

L(θQ) = E(st,at,Rt,st+1)∼B
[
(yt −QθQ(st, at))

2
]

(2)

where θQ is the parameterization of the Q-function. The
actor attempts to find the optimal policy according to the
critic through the relationship (3). Since this actor is de-
terministic, a stochastic behaviour policy πb (4) is used to
collect experience in order to improve exploration, which is
obtained by adding noise that is normally distributed with

moments that are hyperparameters of the optimization
problem. Finally, the actor is trained by optimizing the
objective (5).

π(s) = arg max
a

Qπ(s, a) (3)

πb(s) = π(s) +N (µ, σ) (4)

L(θ) = max
θ

Es∼D [QθQ(s, πθ(s))] (5)

3.3 Twin Delayed Deep Deterministic Policy Gradients

Twin delayed DDPG (TD3) (Fujimoto et al., 2018) im-
proves upon DDPG in several ways, notably by alleviating
sources of overestimation in the critic network, and intro-
duces more robustness towards hyperparameters. It does
this by maintaining two separate networks estimating the
critic Q-function, and using the lesser of these two as the
target for regression (1). Further they suggest updating the
policy networks less frequently to allow the value functions
more time to converge before they are used to update the
policy.

3.4 Hindsight Experience Replay

The environments considered in this paper have sparse
rewards, requiring a directed effort over several actions
to reach regions of the state space where any learning
signal is received at all. To reach learning signals in
such scenarios more quickly, Andrychowicz et al. (2017)
proposed hindsight experience replay (HER), in which the
experience contained in the replay buffer is retroactively
fitted with a new goal state that was actually achieved
sometime during the episode. In this way, by pretending
that some state the actor was successful in achieving
was the goal state, the algorithm receives more frequent
learning signals and convergence is accelerated.

4. METHOD

4.1 Problem Description

In our setup we assume online access to a pre-existing sub-
optimal controller which is capable of reaching goal states
from a nonempty set of initial states. We also assume
that we have access to the Q-function of this controller,
denoted by QG. However, we do not assume prior access
to demonstration trajectories from this controller.

4.2 Proposed Method

We modify the actor objective function of DDPG style
algorithms (5) by adding a BC loss term (6) weighted by
λBC , and as in Nair et al. (2017) we selectively apply this
loss with the indicator function conditioned on the Q-filter:

LBC(θ) =

Nb∑
i=1

‖ai − πθ(si)‖2 1QG(si,ai)>Q
πθ (si,πθ(si)) (6)

L(θ) = max
θ

Es∼B [QθQ(s, πθ(s))− λBCLBC ] (7)

where 1A>B =

{
1 if A > B

0 otherwise
(8)

Qπθ0 ← QG (9)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8190



Here Nb is the number of samples in each training batch,
i.e. we use the online availability of the pre-existing con-
troller to apply this term to all samples in the batch. This
does not add considerable overhead, as the pre-existing
controller’s action can be evaluated once and then saved to
the replay buffer alongside the other data. 2 In this work
we suggest to modify the original formulation of the Q-
filter by replacing the left hand side of the condition with
the pre-existing controller’s own estimated Q-function,
which is kept static throughout the training process. As
the TD3 algorithm has two separate Q-networks, one can
look at different ways of combining these to make up the
Q-filter. In this work we have chosen to only use the Q-
network that is used in the optimization objective (5) as
a basis for the comparison.

The motivation behind this modification is based on two
key insights about the formulation of the original Q-filter
in Nair et al. (2017):

First, the quantities compared are very similar, especially
for problems with a sparse reward function and problems
with low sampling time as is common in control applica-
tions. Each side of the inequality consists of the immediate
reward of the state resulting from applying the given
action in the current state, and the total value of the tra-
jectory produced by the agent from this new state. With
low sampling time each action is applied only for a short
time, and each state in a sequence is similar to the previous
even for very different actions. The immediate rewards
for the two controllers actions are therefore also similar,
especially for sparse rewards where they will in most cases
be identical. The difference in the total reward of the two
trajectories which are produced by the same controller
from a similar starting state should also in most cases
be minute. Great accuracy is therefore needed to correctly
assess the superior action. By using the guiding controllers
own Q-function on the other side of the inequality we
compare the total value of two trajectories produced by
different controllers, thus the difference should be greatly
increased, allowing for easier discrimination.

Second, as explained the Q-function needs to be highly
accurate to properly assess the values of the actions. The
comparison will therefore be greatly impacted by the ran-
domness inherent in an unconverged neural network. Since
the actors objective (5) in the DDPG algorithm is precisely
to find the maximization of actions over the Q-function, it
will quickly learn to optimize the unconverged Q-network,
and therefore seemingly (most times erroneously) offering
better options than the guiding controller. The action com-
parison performed in the Q-filter is consequently highly
stochastic for much of the learning process. Nair et al.’s
implementation will henceforth be referred to as the naive
method.

In practice, the naive Q-filter therefore tends to prefer the
guiding controllers actions infrequently in the beginning,
and converges to select the guiding controller as superior
with a non-zero frequency. We want the learning controller
to aim to emulate the pre-existing controller to a large
degree in the beginning, and then have the BC loss taper
off to allow the learning controller to surpass the pre-

2 Training with a guiding controller increases the wall clock time of
the training process by about 5% compared with normal training in
our experiments.

existing controller. With the original formulation of the Q-
filter however, the BC loss does not seem to be strategically
applied.

We obtain QG by running the TD3 algorithm with the
guiding controller as the actor, until the objective (5)
stabilizes. Since the actor in this case is static, all data
is on-policy and n-step updates can be used to learn the
Q-function for faster and more accurate convergence. 3 See
Section 6 for a discussion on other ways of obtaining QG.
In order for the actor’s and the guiding controller’s Q-
functions to have comparable magnitudes, the actor’s Q-
network is initialized to that of the guiding controller (9).
This also provides a starting point that should be closer
to optimal than a random initialization.

5. EXPERIMENTS

We train and evaluate our method on the OpenAI Gym
Fetch environments (Plappert et al., 2018), which are
based on the MuJoCo physics simulator (Todorov et al.,
2012). The FetchReach environment is easy to solve for the
RL algorithms even without the use of a guiding controller,
and as such has been excluded from the experiments. For
each environment a test set consisting of 100 random initial
states and goal states has been constructed, and the agents
are evaluated on this set every 20k time steps. We evaluate
our method against the original formulation of the Q-filter,
against an approach where the weight of the BC loss is
linearly decayed with time steps, as well as an unguided
approach using TD3 + HER. We run each experiment with
five different random seeds and show mean results with one
standard deviation confidence bounds.

5.1 Guiding Controllers

The guiding controllers are handcrafted proportional con-
trollers with some conditional logic, e.g. move over block,
then lower hand and grip block etc. The controllers exhibit
varying proficiency levels, from a controller capable of
achieving any goal in the test set for the pick-and-place
environment, to a controller achieving merely 21% of the
goals in the slide task.

5.2 Configuration

Due to limited computational resources we employed the
TD3 algorithm instead of DDPG, as convergence of the
latter is often dependent on running several actors in
parallel. To increase sample efficiency we use HER with
the future goal selection strategy, generating four imag-
ined goals for every real experience sample. We use the
Stable-Baselines (Hill et al., 2018) implementation of the
algorithms, running on an I7-9700k 8-core CPU and an
RTX 2070 GPU.

Following the original paper introducing the Fetch envi-
ronments (Andrychowicz et al., 2017), we use a decay
factor of 0.98 and clip the regression Q-targets (1) to
the ranges possible in the given environment, and also
bootstrap on environment termination due to time limit.
We use the hyperparameters from TD3, with an actor and
critic consisting of two fully-connected hidden layers of
3 Convergence was achieved after less than 100k time steps in our
experiments for all environments.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8191



400 and 300 nodes respectively, a learning rate of 0.001
for both actor and critic, and a replay buffer size of 106.
Training is run every 1000 time steps of the environment
for 1000 gradient steps, with a batch size of 100. We
apply an L2 regularization term with strength 0.01 to the
pre-activation values of the actors output layer, in order
to mitigate vanishing gradients issues. The BC loss term
weighting factor λBC (7) is set to 2.

The linear schedule is set to be fully decayed after 500k
time steps, with an initial value equal to that of the other
methods. This schedule is not optimal for all environments,
but a static schedule was chosen to highlight some of the
issues with this approach.

5.3 Ablation Studies

It is conceivable that the improvements of the our method
stem mainly from the knowledge encoded into QG and
the initialization of Qπθ to this. A pretrained QG already
contains information about which action would maximize
the rewards when further following the same action choices
as the pre-existing controller at each state, and the opti-
mization procedure implemented by the actor could take
advantage of this information to achieve some of the same
benefits that the BC loss offers. To test this hypothesis, we
ran one version of our method without the BC loss term,
and one version of the naive method which was initialized
to QG as in (9).

6. RESULTS AND DISCUSSION

6.1 Results of Experiments

Figure 1 illustrates the unwanted behaviours of the naive
Q-filter as described in section 4: it typically starts low
and converges to some value in the range of 0.3 - 0.5.
Our method on the other hand delivers on its promises of
adaptivity: it copies a large portion of the actions produced
by the optimal guiding controller in the pick-and-place
environment, selects only some of the actions produced
by the pre-existing controllers in the slide and push en-
vironments, and decreases the frequency of imitation as
the agent improves. The two Q-filter approaches have
the same asymptotic performance for the push and slide
environments, but our Q-filter method has considerable
more success in the pick-and-place environment. The linear
method matches the performance of the adaptive methods
for the push environment, but falls a bit short in the pick-
and-place environment, and is only able to find any success
for a single seed in the most difficult slide task. The linear
scheduling method seems to be in general the method
with the quickest initial learning, due to indiscriminately
imitating all actions from the guiding controller at the
start, while the two Q-filter approaches seem to share a
similar time at which improvements begin.

Note that the unguided baseline agent using only TD3 +
HER is unable to achieve any success at all in the time
frame considered here, except for a single seed for the
FetchSlide environment. By comparing with the guided
methods in Figure 1, one can clearly see how much one can
accelerate the learning curve and get better consistency
by incorporating knowledge from existing solutions to the
task in the training process of RL agents. Our results for

the unguided TD3 + HER method are considerably worse
than the DDPG + HER results reported in Andrychow-
icz et al. (2017) and Plappert et al. (2018), in which
they show that these methods are able to find working
approaches without guidance in the Fetch environments,
albeit at a much slower pace than the guided approaches in
this paper. This discrepancy might stem from their work
leveraging extensive computational resources to run many
data-collecting agents in parallel, which generates more
uncorrelated and diverse exploration data, and that these
methods are reliant on this trick. We also did not perform
specific hyperparameter optimization for the unguided
approach, but rather used hyperparameters reported in
previous work as described in Section 5.

The results of the ablation experiments are shown in
Figure 2. These experiments show that initializing to QG

is not enough in and of itself to explain the performance
differences shown in Figure 1, as our method is signifi-
cantly degraded by the removal of the BC loss term, while
the naive method is largely unaffected by the addition of
the initialization procedure. These results suggests that
the observed performance gains from our method stem in
large part from an improved comparison in the Q-filter.
However, since the model without the BC term in the
ablation experiments and the unguided model in Figure
1 differ only in initialization, it is clear that the algorithm
is capable of utilizing the information contained in QG in
some way to achieve more success.

6.2 Evaluation of Results

While our implementation of the Q-filter does lead to more
deliberate application of the BC loss, it does introduce a
credit assignment problem: Since the two Q-functions that
are compared correspond to two different controllers, it is
unclear which actions in the action sequences generated by
the controllers are responsible for the observed difference
in value. Imitating only the initial action is therefore a
potential source of error, but introducing some randomness
and perturbation to the training process in RL is a known
measure to avoid local minima, and therefore this might
not be a significant issue.

Even though the linear scheduling method is less complex
than the other methods it can sometimes achieve simi-
lar or better performance in terms of takeoff time and
asymptotic performance. The slide environment clearly
illustrates that this approach require careful tuning, as
the method is in this case unable to represent a policy
capable of achieving any goals for most seeds. The Q-filters
on the other hand are adaptive and provide reasonable
performance for any task with little tuning, and in par-
ticular our method will imitate a good guiding controller
to a larger degree than a bad guiding controller, unlike
the linear scheduling method. Our version of the Q-filter
does however require additional information in the form of
QG, and the linear method might therefore be preferable
in some scenarios despite its limitations.

The Q-function of the pre-existing controller need not be
obtained in a complicated manner such as Q-learning.
Often, one has some historical data of usage of this con-
troller, which one could use to estimate the expected sum
of rewards in an entirely offline manner. Furthermore, one
might not need a function approximator as complicated

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8192



0 200 k 400 k 600 k 800 k 1 M
Step

0.0

0.2

0.4

0.6

0.8

1.0

Success

Ours
Naive
Linear
Baseline
Guide

0 200 k 400 k 600 k 800 k 1 M
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

BC-loss
Ours
Naive
Linear

0 200 k 400 k 600 k 800 k 1 M
Step

0.2

0.4

0.6

0.8

1.0

Q-filter
Ours
Naive

FetchPickAndPlace-v1

0 200 k 400 k 600 k 800 k 1 M
Step

0.0

0.2

0.4

0.6

0.8

1.0
Success

Ours
Naive
Linear
Baseline
Guide

0 200 k 400 k 600 k 800 k 1 M
Step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
BC-loss

Ours
Naive
Linear

0 200 k 400 k 600 k 800 k 1 M
Step

0.1

0.2

0.3

0.4

0.5
Q-filter

Ours
Naive

FetchPush-v1

0 500 k 1 M 1.5 M 2 M 2.5 M 3 M
Step

0.0

0.2

0.4

0.6

Success
Ours
Naive
Linear
Baseline
Guide

0 500 k 1 M 1.5 M 2 M 2.5 M 3 M
Step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

BC-loss
Ours
Naive
Linear

0 500 k 1 M 1.5 M 2 M 2.5 M 3 M
Step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Q-filter

Ours
Naive

FetchSlide-v1

Fig. 1. Results of experiments: The graphs show for each environment the success rate on the test set, the BC loss, and
the fraction of actions for which the indicator function evaluates to true in each minibatch.

as a NN for this purpose, and some simpler methods such
as linear regression might be sufficient. This would remove
the possibility of directly initializing the Q-function of the
actor to that of the pre-existing controller, but one could
simply pretrain the Q-network in a supervised manner on
outputs from the pre-existing controller’s Q-function to
achieve much of the same effect.

7. CONCLUSION

We have shown that our method is capable of accelerating
learning using guiding controllers with a wide spread of
proficiency levels. An important further work is looking
into how the optimality of the guiding controller affects
the rate of convergence and asymptotic performance of
the learning controller.

Having a pre-existing controller available online opens up
many possibilities. If one knowns the stability properties
of this controller, one can have the agent explore freely

while still in the region of attraction (RoA) of the guiding
controller, and then have the guiding controller assume
control and stabilize the system when necessary. In this
way one can achieve a form of safe training, in the sense
that only safe regions of the state space are visited, and
risk of damage to the system is minimized. An interesting
further work is a study on what fraction of actions the
agent needs to control itself for learning to be successful
in such a scenario.

REFERENCES

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J.,
Fong, R., Welinder, P., McGrew, B., Tobin, J., Abbeel,
P., and Zaremba, W. (2017). Hindsight Experience
Replay. In 31st Conference on Neural Information
Processing Systems (NIPS 2017).

Fujimoto, S., van Hoof, H., and Meger, D. (2018). Ad-
dressing Function Approximation Error in Actor-Critic

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8193



0 200 k 400 k 600 k 800 k 1 M
Step

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Di
ffe

re
nc

e

Success
Naive-Init
Ours-No-BC

Ablation FetchPickAndPlace-v1

0 200 k 400 k 600 k 800 k 1 M
Step

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Di
ffe

re
nc

e

Success
Naive-Init
Ours-No-BC

Ablation FetchPush-v1

0 500 k 1 M 1.5 M 2 M 2.5 M 3 M
Step

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Di
ffe

re
nc

e

Success
Naive-Init
Ours-No-BC

Ablation FetchSlide-v1

Fig. 2. The difference in performance when including ini-
tialization to QG in the naive method and when re-
moving the BC loss term from our method, compared
to its counterpart in Figure 1 as a baseline.

Methods. In Proceedings of the 35th International Con-
ference on Machine Learning.

Gu, S., Holly, E., Lillicrap, T., and Levine, S. (2016).
Deep Reinforcement Learning for Robotic Manipulation
with Asynchronous Off-Policy Updates. In 2017 IEEE
International Conference on Robotics and Automation
(ICRA).

Hill, A., Raffin, A., Ernestus, M., Traore, R.,
Dhariwal, P., Hesse, C., Klimov, O., Nichol,
A., Plappert, M., Radford, A., Schulman, J.,
Sidor, S., and Wu, Y. (2018). Stable baselines.
https://github.com/hill-a/stable-baselines.

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. (2015). Contin-
uous control with deep reinforcement learning. In 4th
International Conference on Learning Representations,
ICLR 2016.

Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W.,
and Abbeel, P. (2017). Overcoming Exploration in Rein-
forcement Learning with Demonstrations. In 2018 IEEE
International Conference on Robotics and Automation
(ICRA).

Ng, A.Y. and Russell, S.J. (2000). Algorithms for Inverse
Reinforcement Learning. In Proceedings of the Seven-
teenth International Conference on Machine Learning,
ICML ’00, 663–670. San Francisco, CA, USA.

OpenAI, Berner, C., Brockman, G., Chan, B., Cheung,
V., Debiak, P., Dennison, C., Farhi, D., Fischer, Q.,
Hashme, S., Hesse, C., Józefowicz, R., Gray, S., Olsson,
C., Pachocki, J., Petrov, M., de Oliveira Pinto, H.P.,
Raiman, J., Salimans, T., Schlatter, J., Schneider, J.,
Sidor, S., Sutskever, I., Tang, J., Wolski, F., and Zhang,
S. (2019). Dota 2 with large scale deep reinforcement
learning. arXiv:1912.06680.

Plappert, M., Andrychowicz, M., Ray, A., McGrew,
B., Baker, B., Powell, G., Schneider, J., Tobin, J.,
Chociej, M., Welinder, P., Kumar, V., and Zaremba, W.
(2018). Multi-Goal Reinforcement Learning: Challeng-

ing Robotics Environments and Request for Research.
arXiv preprint arXiv:1802.09464.

Ross, S., Gordon, G.J., and Bagnell, J.A. (2011). A Reduc-
tion of Imitation Learning and Structured Prediction to
No-Regret Online Learning. In Proceedings of the 14th
International Conference on Artificial Intelligence and
Statistics (AISTATS) 2011.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. (2015).
Universal Value Function Approximators. In Proceed-
ings of the 32nd International Conference on Machine
Learning.

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L.,
Driessche, G.v.d., Schrittwieser, J., Antonoglou, I., Pan-
neershelvam, V., Lanctot, M., Dieleman, S., Grewe, D.,
Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T.,
Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis,
D. (2016). Mastering the game of Go with deep neural
networks and tree search. Nature, 529(7587), 484–489.

Sun, W., Venkatraman, A., Gordon, G.J., Boots, B., and
Bagnell, J.A. (2017). Deeply AggreVaTeD: Differen-
tiable Imitation Learning for Sequential Prediction. In
Proceedings of the 34th International Conference on Ma-
chine Learning.

Sutton, R.S. and Barto, A.G. (2018). Reinforcement
Learning: An Introduction. MIT Press.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mu-
joco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 5026–5033.

Vecerik, M., Hester, T., Scholz, J., Wang, F., Pietquin,
O., Piot, B., Heess, N., Rothörl, T., Lampe, T., and
Riedmiller, M. (2018). Leveraging Demonstrations for
Deep Reinforcement Learning on Robotics Problems
with Sparse Rewards. arXiv:1707.08817 [cs].

Xie, L., Wang, S., Rosa, S., Markham, A., and Trigoni,
N. (2018). Learning with Training Wheels: Speeding up
Training with a Simple Controller for Deep Reinforce-
ment Learning. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), 6276–6283.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8194


