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Abstract: Fault diagnosis is essential to ensure the operation security and economic efficiency of
the chemical system. Many fault diagnosis methods have been designed for the chemical process,
but most of them ignore the temporal correlation in the sequential observation signals of the
chemical process. A novel deep learning method based on Stacked Long Short-Term Memory
(LSTM) neural network is proposed, which can effectively model sequential data and detect the
abnormal values. The proposed method is also able to fully exploit the long-term dependencies
information in raw data and adaptively extract the representative features. The dataset of
Tennessee Eastman (TE) process is utilized to verify the practicability and superiority of the
proposed method. Extensive experimental results show that the fault detection and diagnosis
model we proposed has an excellent performance when compared with several state-of-the-art
baseline methods.
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1. INTRODUCTION

As the industrial process control systems are becoming
larger and more complicated, it may cause huge damage
if the control system fails. Fault diagnosis methods can
be applied to ensure the reliable and efficient operation of
the control system (Polverino et al. (2017)). Therefore, it
is significant to develop fault diagnosis methods which can
detect the fault status correctly and diagnose the type of
faults immediately in production processes.
The traditional data-driven fault detection methods are
mainly based on statistical methods, such as Principle
Component Analysis (PCA) (Nomikos and MacGregor
(1994)), Independent Component Analysis (ICA) (Lee
et al. (2004)), Dynamic Principal Component Analysis
(DPCA) (Chen and Liu (2002)), and Dynamic Indepen-
dent Component Analysis (DICA) (Stefatos and Hamza
(2010)). PCA, ICA, DPCA, and DICA are all linear di-
mension reduction methods while the monitoring of com-
plex chemical processes is usually a nonlinear issue (Xu
et al. (2018)). Therefore, applying these methods above
for fault detection in chemical process may lose useful in-
formation and will bring misleading fault detection results.
Machine learning methods, which have excellent perfor-
mance in nonlinear classification problems, are increas-
ingly applied to fault diagnosis systems. Traditional fault
diagnosis methods based on machine learning can be
mainly divided into two steps: feature extraction and fault
classification (Lei et al. (2019)). Fault classification meth-
ods mainly include Support Vector Machine (SVM) (Jing
et al. (2014)), Random Forests (RF) (Wang et al. (2017)),
Backpropagation neural networks (BP) (Yang and Wei

(2011)), etc. The fault diagnosis ability of these methods
depends on the quality of feature extraction. However,
traditional machine learning methods have limitations on
the feature representation of complex high dimensional
data because of human participation. These methods have
unsatisfactory performance on the fault diagnosis of indus-
trial processes (Lv et al. (2016)).
Deep learning methods, which can automatically extract
features from a large amount of data (Long et al. (2018))
and reduce the dependence of feature extraction compared
to traditional models, have been applied to fault diagnosis,
such as Stacked Sparse Auto Encoder (SSAE) (Lv et al.
(2016)) and Convolutional Neural Network (CNN) (Chen
et al. (2017)). As the observation signals in industrial
process should be treated as time series signals (Liu et al.
(2018)), Recurrent Neural Network (RNN) (de Bruin et al.
(2017)) has achieved better feature learning and classifi-
cation results in fault diagnosis. Long Short-Term Mem-
ory (LSTM) neural network (Hochreiter and Schmidhuber
(1996)), which could avoid the vanishing and exploding
gradient problem in RNNs, has been applied to sequen-
tial fault monitoring. Zhao et al. (2018) applied Vanilla
LSTM on the Tennessee Eastman (TE) process dataset
and achieved more promising fault diagnosis performance
compared with other methods. However, the neural net-
work they designed has limitations in learning deep hidden
information, because Vanilla LSTM only has one hidden
layer. Therefore, the fault diagnosis model has low diagno-
sis accuracy in some fault types when all of the 21 faults
data are taken together for fault diagnosis.
In order to improve the performance of fault diagnosis
model, a novel fault diagnosis method based on Stacked
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LSTM is proposed in this paper. By the deeper neural
network structure and the longer time series length, the
proposed method can not only extract features from chem-
ical process data automatically but also fully exploit the
relationship between the previous state and the current
state among sequences. Therefore, the proposed method
has a state-of-the-art performance in these faults which
have high false alarm rates in existing methods and tiny
differences in mean and variance. Experimental results
on the TE process indicated that the proposed method
based on Stacked LSTM could achieve better performance
compared with other method.
The remainder of this paper is divided into the following
parts: (1) In the second section, the basic knowledge of the
sequential model and the LSTM methods are illustrated.
(2) In the third section, the process of establishing a fault
diagnosis model based on Stacked LSTM are proposed.
(3) In the fourth section, in order to verify the validity
of the proposed method, the method is applied to the TE
process fault diagnosis and compared with the state of art
methods. (4) Finally, the conclusion is drawn.

2. PRELIMINARIES

2.1 Vanilla LSTM

Vanilla LSTM is an improved network structure based
on the standard RNN (Saleh et al. (2017)). Compared
with the standard RNN model, LSTM mainly adds three
control gating units: forget gate, input gate and output
gate. Therefore, Vanilla LSTM overcomes the problem of
gradient vanishing which occurs in RNN (Schmidhuber
(1997)).
As shown in Fig. 1, Vanilla LSTM model has one LSTM
layer and the LSTM layer is based on a set of connected
LSTM cells. The architecture of LSTM cell is shown in
Fig. 2. xt, Ht, Ct, C̃t, Ft, It, and Ot are respectively
the input vector, the hidden state, the present updating
memory, the new information after transformation, the
forget gate, the input gate and the output gate at time
t. Ht−1 is the hidden state at time t− 1 and Ct−1 is the
old memory of the historical information at time t− 1. σ
is the sigmoid function.
At each time step t, Ht is updated by xt, Ht−1, Ct−1,
C̃t, Ct, Ft, It, and Ot. The following updating equations
are given as follows:

Ft = σ (xtWxf +Ht−1Whf + bf ) (1)
It = σ (xtWxi +Ht−1Whi + bi) (2)
Ot = σ (xtWxo +Ht−1Who + bo) (3)

C̃t = tanh (xtWxc +Ht−1Whc + bc) (4)
Ct = Ft ⊙Ct−1 + It ⊙ C̃t (5)

Ht = Ot ⊙ tanh (Ct) (6)
where Wxi, Wxf , Wxo, Wxc, Whi, Whf , Who, and Whc

are the weight parameters, bf , bi, bo, and bc are the offset
parameters, these parameters are shared by all time steps
and learned during model training. ⊙ denotes the element-
wise product. Because of the special architecture, Vanilla
LSTM can cope with the gradient attenuation problem in
the recurrent neural network and better capture the long-
term dependence in the time series.
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2.2 Stacked LSTM

Deep network architectures have shown to be powerful
in complex nonlinear feature representation (Ajami and
Daneshvar (2012)). Stacked LSTM, which is a deep neural
network with multiple hidden layers, becomes a stable
technique for challenging sequence prediction problems
(Brownlee (2017)).
The structure of Stacked LSTM is shown as Fig. 3. Stacked
LSTM consists of multiple LSTM layers and each LSTM
layer contains multiple connected LSTM cells. The input
of LSTM layer-1 is the raw data and the input of other
LSTM layers is the hidden state of the previous LSTM
layer. Therefore, the hidden state in one LSTM layer is
both propagated through time and passed to the next layer
compared with Vanilla LSTM.
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Fig. 3. The architecture of Stacked LSTM

By the Stacked LSTM, the neural network become deeper,
the characteristic of input sequence can be learned better
at different time scales (Zhao et al. (2016)). In order
to learn the dynamic sequential information of process
monitoring well, we use the Stacked LSTM network as
the fault diagnosis model of the process monitoring in this
paper.

3. FAULT DIAGNOSIS BASED ON STACKED LSTM

In this section, the process of applying Stacked LSTM
method for fault diagnosis is described. This includes the
following three parts.
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3.1 Fault diagnosis model designing

The designed fault diagnosis model based on Stacked
LSTM is shown in Fig. 4. By combining Stacked LSTM
network and the Softmax multi-classifier, the diagnosis
model can directly diagnose faults in only one shot. This
Stacked LSTM-based diagnosis model can be divided into
three parts: data processing layer, feature extraction layer,
and fault diagnosis layer.
Data processing layer preprocesses the raw data to elimi-
nate the impact of variables’ measurement units and speed
up the convergence during model training. Feature extrac-
tion layer uses multi-layer LSTM to establish a complex
nonlinear mapping between the raw input sequence and
the hidden status recording the historical information and
implement feature extraction. Fault diagnosis layer applies
the Softmax function to classify the hidden status from the
last LSTM layer and outputs the fault diagnosis results.
Specifically, instead of all input time steps just have one
output, each step of input time has one output in our
model.

3.2 Offline Modeling

Offline modeling requires collecting normal and fault raw
process data for training offline fault diagnosis model.

Algorithm 1: Stacked LSTM offline modeling
1) Collect normal and fault condition raw data with time
order.
2) Normalize the raw data by the formula:

x∗
i = [x∗

i1, x
∗
i2, . . . , x

∗
iN ] , i = 1, 2, . . . ,M

x∗
ij =

xij −mean (xj)

std (xj)
, j = 1, 2, . . . , N

(7)

where x∗ is the normalized variable and i-th raw data,
xij and x∗

ij are respectively the original and normalized
result of the j-th feature in the i-th raw data, M and N
are the number and feature dimension of the raw data
respectively.
3) Construct sequential data of length T as training
data. Under the principle of adjacent sampling, use a
sliding window with length T to sample observation
sequences in the raw data with time order.
4) Train the fault diagnosis model based on Stacked
LSTM with Dropout (Srivastava et al. (2014)) and
Adam methods (Kingma and Ba (2014)).
5) Compute the loss J by the Cross Entropy Loss
Function:

J = −
N∑
i=1

yi log pi (8)

where yi and pi are respectively the true probability
and the predicting probability that the sample belongs
to class i, and N is the number of classes.
6) If J > τ or the number of iterations l < N , repeat
steps 4-6. τ is a positive number and N is the predefined
maximum number of iterations.
7) Save the parameters of the hidden layer and get a
stable fault diagnosis model based on Stacked LSTM.
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Fig. 4. Fault diagnosis model framework based on Stacked
LSTM.
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Fig. 5. Flow structure of TE process.
3.3 Online Monitoring

Online monitoring will collect new process data in real
time, and then use the offline trained diagnosis model to
monitor the operation status of the industrial process.

Algorithm 2: Stacked LSTM online monitoring
1) Collect new raw data with time order.
2) Normalize the raw data according to the equation (7).
3) Similar to step 3 in Algorithm 1, construct sequential
data of length T , xnew = [xnew

1 , xnew
2 , · · · , xnew

T ] from the
normalized raw data.
4) Classify the testing data xnew by offline trained fault
diagnosis model and obtain the online monitoring result.

4. EXPERIMENTS

To verify the efficiency of the proposed method, the TE
process is applied to demonstrate the advantages of this
method by comparing with other methods.
The TE process was firstly created by Down and Vogel of
the American chemical company Tennessee Eastman(Zhu
et al. (2017)). It has been widely used to evaluate the
effectiveness of some process diagnosis methods. The pro-
cess flow chart is shown in Fig. 5. This process has four
starting materials: A, C, D, and E, two products: G and H
as well as a by-product: F. The whole reaction process
contains an inert gas: B, it is used as the main cata-
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lyst for the reaction. TE process has five major operat-
ing units, they are respectively the Reactor, Condenser,
Compressor, Separator, and Stripper. The TE process
has 41 measurement variables and 12 operation variables.
We select 52 variables (41 measurement variables and
11 operation variables) for monitoring. Besides the TE
process includes 21 predefined perturbations (from fault
1 to fault 21). The experiment data can be downloaded
from http://web.mit.edu/braatzgroup/links.html.
Therefore, the dataset contains 22 working states: 1 nor-
mal state and 21 different fault states. For model construc-
tion, the data are divided into the training part and the
independent test part, which respectively has 480 samples
(fault samples) and 960 samples (160 samples are normal
state and 800 samples are fault state).
To verify the significant performance of proposed method,
this method is compared with others. And although our
Stacked LSTM diagnosis model can complete detection
task and classification in one shot, for fair comparison, the
fault detection rate and the fault diagnosis rate are used
to evaluate the performance of proposed Stacked LSTM-
based fault diagnosis method.
The fault detection and the fault diagnosis can be regarded
as a binary classification problem and a multi-classification
problem, respectively. And the fault detection rate and the
fault diagnosis rate are respectively the accuracy in fault
detection and fault diagnosis. The accuracy is defined as:

Accuracy =
TR

TO
(9)

where TR and TO are respectively the number of correctly
classified samples and the number of samples in the
dataset.

4.1 Performances Comparison with different key parameters

In order to analyze the influence of different key parame-
ters of LSTM network on fault diagnosis performance. We
experiment with different LSTM hidden layers parameters
and the length of input sequence of network. And the
result is shown in Fig. 6 and Fig. 7.
In the Fig. 6, we can find that when LSTM layer=1,
the network becomes a vanilla LSTM, the performance
of the method is worst. When the number of layer is
increased, the diagnosis rate of all faults has a significant
improvement especially in the fault 3, 9, and 15. When
LSTM layer=3, the diagnosis rate for all faults increases
to above 97%. And our experiments show that the more
than 3 layers LSTM network do not have significant effect,
but increase the complexity of the network. Therefore, we
stack 3 layers LSTM in the proposed model.
LSTM network is sensitive to time series data and can
classify the observation signals based on the long-term
dependencies information. From Fig. 7, we can find that
different sequential lengths have a great impact on fault
classification. Both of the fault detection rate and diagno-
sis rate will become higher when the input sequence length
increase, but there will be no significant improvement
after the sequence length is 100. Therefore, we choose the
network input sequence length is 100.
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4.2 Performance Comparison with other methods

Fault detection In this subsection, to show the superior-
ity of proposed method, Stacked LSTM detection precision
is compared with the traditional method and deep learning
method. The detection rate of 21 faults by several monitor-
ing methods is summarized in table 1. The average fault
detection rates of Stacked LSTM, Stacked Sparse Auto-
matic Encoder (SSAE), DICA:AO, DPCA:SPE, ICA:AO,
DICA:I2, ICA:I2, PCA:SPE, DPCA:T 2, and PCA:T 2 are
respectively 99.49%, 84.44%, 80.18%, 78.77%, 73.24%,
72.02%, 71.81%, 69.42%, 56.70%, and 51.21%.
It can be seen that the performance of SSAE and Stacked
LSTM is better than that of PCA and DPCA. This
shows that the deep learning method has better ability
of capturing the nonlinear and complex features than the
traditional method. In the traditional methods, DPCA:T 2

performs better than PCA:T 2 and DICA:AO can give
better results than ICA:AO; similarly, in the deep learning
algorithm, Stacked LSTM is more effective than SSAE.
From the above situation, it can be seen that fully min-
ing the temporal relationship between data has a great
impact on the result of fault detection, because the data
of TE process has correlative and temporal characteris-
tics. DPCA and DICA take into account the impact of
historical data information on fault detection, but do not
explicitly model the temporal relationship between data.
Besides, the Stacked LSTM method performs better than
other fault detection methods. And there are optimal per-
formance in fault 3, 9, and 15, which have worst detection
result in other methods.

Fault diagnosis The classification accuracies of different
algorithms are shown in Fig. 8, it is obvious to see that
SVM and SSAE perform poor than Batch Normalization-
based (BN-based) LSTM, Stacked RNN, Stacked GRU,
and Stacked LSTM. This shows that considering the
temporal relation is important to the fault diagnosis.
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Table 1. The fault detection rates of different methods(%).

Fault PCA:T 2 PCA:SPE DPCA:T 2 DPCA:SPE ICA:I2 ICA:AO DICA:I2 DICA:AO SSAE Stacked LSTM

1 99.25 99.75 99.63 99.75 99.75 99.50 99.63 99.75 99.80 100
2 98 98.88 98.12 99.25 97.13 97.75 97.37 99 98.79 99.99
3 0 15.12 5.75 21.63 0.38 15.25 0 4.50 44.83 98.47
4 3.50 100 16.88 100 76 56.63 48.50 76.62 85.96 100
5 22.13 38.75 29.62 49.50 100 100 100 100 88.81 99.83
6 98.88 100 99 100 100 100 100 100 99.81 100
7 91.25 100 66.50 100 99.88 99.50 99.25 99.75 96.45 99.99
8 96.50 98.25 97.38 98.37 93.25 93.75 96.75 98.13 99.08 99.91
9 0.13 15.13 6 20.88 0.37 14.63 0 4.37 38.59 98.64
10 29.50 64.62 49.13 75.62 79.87 75.88 79.75 89.13 88.56 99.45
11 23.12 79.38 31.63 91 45.38 44.25 46.88 64.88 86.44 99.68
12 98 98.75 99.38 99.25 99 98.62 99.87 99.88 98.85 99.96
13 93.88 95.87 94.62 95.88 95.12 94.50 95.38 95.62 96.61 99.65
14 92.12 100 93.88 100 99.38 100 99.75 100 97.58 100
15 1 18.38 10.62 24 1.87 4.38 0 19.25 34.29 97.89
16 13.13 57.87 31.13 67.37 80 75.25 77.75 86.38 87.06 99.28
17 72.87 95.38 80.87 97.50 86.38 86.25 94.38 95.87 94.12 99.86
18 88.50 92.37 89.50 92.75 89.50 89.63 92.75 91.13 90.24 99.66
19 0.25 44.25 2.88 82.25 47.63 63.75 60.50 85.62 82.63 99.24
20 25.75 24.88 48.63 76 79.62 69.88 83.75 88.25 85.08 98.66
21 27.63 20.12 39.62 63.13 37.50 58.70 40.12 85.60 79.59 99.23
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We can also find that the methods based on stacked
models outperform the BN-based LSTM, which shows
that the stacked models can utilize and learn the raw
data dynamic information better than BN-based one layer
LSTM. Besides, The red line in the figure is the fault
classification accuracy of Stacked LSTM. It is easy to find
that the proposed method give optimal performance for
all faults. The average classification accuracy of all faults
in proposed Stacked LSTM network is 99.14%, which is
8.39% and 1.72% higher than Stacked RNN and Stacked
GRU, respectively. Moreover, SVM, SSAE, and BN-based
LSTM perform poor in fault 3, 9, and 15 while in our
proposed method, the fault diagnosis rates of the three
faults both are more than 97%.
According to the results of Stacked LSTM, we can find
that the deeper of LSTM network has a strong represen-
tation capability. As shown in Fig. 9, we use t-distributed
Stochastic Neighbor Embedding (t-SNE) (Hinton (2008))
to visualize the distribution of features at the different
layer of the Stacked LSTM model. Because there are too
many faults, we only give a two-dimensional visualization
of t-SNE of fault 3, 9, and 15. In the figure different
faults are represented by different colors. In each t-SNE
figure, the more overlaps fault points have, the harder
it is to classify these faults. Fig. 9(a). shows the original
distribution of these three faults. From this figure, it can
be seen that these three faults group together. It is difficult

to classify if the features cannot be extracted efficiently.
Fig. 9(b)-(d), show that after the features are extracted
by each layer of the Stacked LSTM model, different types
of fault are gradually separated, and the same faults are
gradually gathered together. Therefore, the deeper LSTM
network is easier to distinguish different fault and has a
strong discriminant capability for fault diagnosis.

(a) (b)

(c) (d)

LSTM layer 1

LSTM layer 2 LSTM layer 3

Output layer Input layer 

t-SNE t-SNE

t-SNE t-SNE

...

...

... ... ...

Fig. 9. The t-SNE representation result of the faults 3, 9,
and 15. (a) The original faults 3, 9, and 15 in different
layers.(b) The first layer of LSTM. (c) The second
layer of LSTM. (d) The third layer of LSTM.

By analyzing the results of experiments, we indicate
that the proposed method has good performance in fault
detection and fault classification. The Stacked LSTM
network greatly improves the accuracy of fault diagno-
sis of TE process. Obviously, the diagnosis effects of
faults 3, 9, and 15 are greatly improved compared with
other algorithms. Experiments have been implemented on
a computer with NVIDIA GeForce RTX 2080Ti GPU
and Intel Xeon CPU. The code of experiments will
be available at https://github.com/zhangqingqingq/Fault-
diagnosis-based-on-LSTM.
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5. CONCLUSIONS

A fault detection and diagnosis method based on Stacked
LSTM is proposed in the paper. LSTM could process
sequential data of any length and encode historical in-
formation in the hidden layer. In order to fully exploit
the temporal relationships among observation signals at
different times and automatically extract representative
features, we exhibit a model with three layers LSTM for
fault diagnosis. The proposed method can implement the
fault monitoring in real time, because the historical infor-
mation of fault data is stored in the memory cell units.
As a case study, the method is implemented on the TE
process and achieves the best fault detection and diagnosis
results compared with some state-of-art methods, which
verifies the feasibility and effectiveness of the method.
Therefore, this method can well diagnose a single fault. In
future research, we will apply this method to some more
complex industrial processes where multiple faults occur
simultaneously.
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