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Abstract: This paper proposes an equivariant observer for second order pose estimation of a
rigid body. The observer exploits the second order kinematic model and its symmetry group.
The observer uses conventional sensors and simple computations that allow it to be run on
resource-constrained devices. The observer design is based on the lifted kinematics and we
prove its asymptotic convergence property. The performance of the observer is demonstrated in
simulation.
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1. INTRODUCTION

Robust estimation of pose and velocity is vital for many
applications in Virtual Reality (VR), Augmented Reality
(AR) and mobile robotics applications. In most of these
applications, the device tends to have strict power, latency,
computational and sensors constraints. In VR and AR
community, vision sensor is a natural sensor modality
since a camera provides an information rich measurement
that enable interaction between real and virtual world.
Hybrid systems that use vision and inertial sensor are
the most promising configuration for indoor and outdoor
applications (Hughes et al., 2005; Rabbi and Ullah, 2013;
Marchand et al., 2015).

The classical method of nonlinear state estimation is based
on some variant of the Extended Kalman Filter (EKF)
(e.g., Bonnable et al. (2009); Barrau and Bonnabel (2016);
Wu et al. (2017)). More recently, nonlinear observers (e.g.,
Mahony et al. (2008, 2009); Grip et al. (2011)) are becom-
ing more popular. Nonlinear observers are generally sim-
pler to implement for real-time applications. Additionally,
nonlinear observers can guarantee powerful convergence
properties, whereas similar results are challenging to prove
for EKF designs. For these reasons, this work proposes a
simple and efficient nonlinear observer, and proves asymp-
totic convergence.

Most existing work on observer design uses a first order
system model, where the input to the system is the
first time derivative of the variable to be estimated. For
example, attitude estimation (e.g., Mahony et al. (2008);
Grip et al. (2011); Hua et al. (2014); Liu and Zhu (2018))
uses gyroscope to measure the angular velocity, which is
integrated and then corrected by vector measurements.
Velocity-aided attitude estimation (e.g., Bonnable et al.
(2009); Hua et al. (2016, 2017)) uses Inertial Measurement
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Unit (IMU) and linear velocity sensor (e.g., GPS, doppler
sensor) to estimate the attitude and linear velocity. In
this case, the linear velocity kinematics are first order to
acceleration and the works do not consider the position
estimation. Pose estimation (e.g., Baldwin et al. (2009);
Hua et al. (2011, 2015); Hamel and Samson (2017); Hashim
et al. (2019)) also assumes both linear and angular velocity
can be directly measured. The recent work by Barrau and
Bonnabel (2016) is also based on first order kinematics.
Mahony et al. (2013) proposed equivariant observer that
leverage the symmetric property of kinematics system.
This allows the behaviour of the system to be analysed at
one point, and transported to all points using symmetric
transformation to obtain a global observer design. To the
best of our knowledge, our previous paper (Ng et al., 2019)
is the first work on second order equivariant observer.

In this paper, we extend our novel work (Ng et al., 2019)
on the second order attitude kinematics to second order
pose kinematics. An output equivariant pose observer for
the second order pose kinematics is proposed. The observer
uses linear and angular acceleration measurements as in-
puts to the second order pose kinematics. The innovation
is constructed using measurements of the magnetic field di-
rection and relative position measurements from the device
to visible known landmarks. Most of the measurements
can be obtained by conventional inertial measurement
units (IMUs). The relative position measurement can be
obtained using a monocular camera observing known 2D
landmarks (e.g., ArUco marker), stereo cameras, or RGBD
camera.

The paper is organised as follows. Section 1 presents
the introduction and related work, Section 2 discusses
the problem formulation which covers the state space
and measurements used. Section 3 presents the symmetry
group of the second order pose kinematics, the associated
group action, and defines the origin point. Section 4
presents our proposed observer and stability analysis,
followed by Section 5 where simulation results are shown
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and discussed. Section 6 presents the conclusion and future
work.

2. PROBLEM FORMULATION

This paper considers the problem of estimating the second
order pose of a rigid body. We denote the pose as P , body-
fixed velocity as V , and body-fixed acceleration as U such
that

P =

[
R t
0 1

]
∈ SE(3),

V =

[
Ω× v
0 0

]
∈ se(3),

U =

[
θ× a
0> 0

]
∈ Tse(3) ≡ se(3),

where R ∈ SO(3) and t ∈ R3 are the orientation and
translation of the body-fixed frame with respect to the
world fixed frame {W}, Ω× is the body-fixed angular
velocity represented by a skew-symmetric matrix, v is the
body-fixed linear velocity, θ× is the body-fixed angular
acceleration represented by a skew-symmetric matrix, and
a is the body-fixed linear acceleration.

Then, the classical second order pose kinematics is given
by

Ṗ = PV, (1a)

V̇ = U. (1b)

Note that unlike dynamics, we do not model mass, inertia
and coriolis effects.

Next, we introduce the state and velocity spaces for
the second-order pose kinematics. The second order pose
kinematics are naturally posed on TSE(3). By using the
standard left trivialisation of the velocity space, a tangent
vector PξVξ ∈ TPξ

SE(3) is identified with Vξ ∈ se(3). In
this manner, we consider the state of our system as an
element of the product manifold

M = SE(3)× se(3).

The associated velocity space is the tangent TPξ
SE(3) to

SE(3) at Pξ ∈ SE(3) and that tangent space Tse(3) to
se(3) at a point Vξ ∈ se(3). Since se(3) is a linear space,
then Tse(3) ≡ se(3). The tangent space TPξ

SE(3) can be
left trivialised to se(3) analogously to the approach taken
above. Thus, the input velocity space that we consider is
based on this construction for a parametrization of the
tangent space to M . That is a space V = se(3) × Tse(3)
where we preserve the Tse(3) notation to make clear the
part of the velocity space that is modelling the second
order part of the kinematics. An element u = (U1, U2) ∈
V ≡ se(3)×Tse(3) in the input space can be thought of as
two independent elements U1 ∈ se(3) and U2 ∈ Tse(3) ≡
se(3).

For an element ξ = (Pξ, Vξ) ∈ M , and velocity u =
(U1, U2) ∈ V ≡ se(3)×Tse(3), the kinematics are given by

Ṗξ = Pξ(Vξ + U1), (2a)

V̇ξ = U2, (2b)

and the kinematics system of the state is

ξ̇ = f(ξ, u) = (Pξ(Vξ + U1), U2). (3)

Note that the natural behaviour of the system is recovered
by measuring the linear and angular acceleration input in
U2 and by setting U1 ≡ 0. That is, the velocity input U1

that acts on the first order state kinematics is zero in the
natural system kinematics (as in (1)). A key property of
the kinematics (2) is the presence of the drift term

f((Pξ, Vξ), 0) = (PξVξ, 0)

for u ≡ 0 ∈ V . That is, the system function is affine in
the input u ∈ se(3) × Tse(3) similar to the novel work
on second order attitude kinematics discussed in Ng et al.
(2019).

The first component of the state ξ = (Pξ, Vξ) ∈ SE(3) ×
se(3) is the pose Pξ of the rigid body with respect to an
inertial frame. The second component of the state is the
linear and angular velocity Vξ expressed in the body-fixed
frame {B}. The input u for the system kinematics in (3)
contains the input velocity U1 and the input acceleration
U2 of the rigid body with respect to the inertial frame,
expressed in the body fixed frame {B}.
In the subsequent sections, we use the following notation
to represent homogeneous coordinates

v =

[
v
1

]
, v◦v =

[
v
0

]
.

2.1 Measurement of Input Acceleration

An accelerometer is used to measure the linear accelera-
tion of the rigid body. Following non-rotating, flat Earth
assumption, the acceleration of the body-fixed frame aB
can be obtained from the accelerometer measurement, a
and gravitational acceleration, aG = [0, 0, 9.81]> as fol-
lows (Hua and Allibert, 2018)

a◦aB = a◦a− Pξ−1a◦aG − Ω× v. (4)

If the rigid body has at least four non-coplanar accelerom-
eters placed at known locations, similar to Ng et al. (2019),
the angular acceleration θ× of the rigid body can also be
recovered. The input acceleration is then

U2 =

[
θ× aB
0> 0

]
. (5)

2.2 Partial Measurement of Pose

The pose of the rigid body can be partially observed by
using a vision sensor (camera) looking at landmarks placed
at known location in the scene. We assume each visible
landmark can provide a relative pose between the camera
and the visible landmark. We denote the position of the
landmark relative to the inertial frame as p◦i , the measured
relative position relative to the camera as pi, such that
p◦i , pi ∈ R3. Then,

pi = Pξ
−1p◦i . (6)

A single visible landmark will constraint the possible
pose to any point on a sphere with fixed radius, and an
unknown rotation around the line joining the landmark
and the camera (3 degrees of freedom). Two landmarks
will constraint the possible pose to any point on a circle (1
degree of freedom). Three or more visible landmarks will
fully constraint the pose to a single solution.
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2.3 Partial Measurement of Orientation

The orientation can be partially observed by using a mag-
netometer, and assuming that the magnetic field remains
constant and known throughout the experiment. This con-
straints the orientation of the rigid body with only an
ambiguity around the direction of the magnetic field. We
denote the magnetic field direction relative to the inertial
frame by m◦, the measured magnetic field direction in
body-fixed frame by m, such that m◦,m ∈ S2 ⊂ R3. Then,

m◦m = Pξ
−1m◦m◦. (7)

3. SYMMETRY OF POSE SYSTEM

Physical systems usually have physical models with sym-
metries that encode the equivariance of the laws of mo-
tion. When viewed through a symmetric transformation
of space, the behaviour of the system at one point is the
same as the behaviour at another point in the state space.
Thus, a system with symmetry allows a global analysis of
an observer by analysing the behaviour at one point in
space (Mahony et al., 2013; Ng et al., 2019).

3.1 The Symmetry Group

The symmetry group G we consider is a semi-direct prod-
uct of SE(3) n se(3). Let two elements in the symmetry
group be (A, a) and (B, b). Then, following Brockett and
Sussmann (1972), the semi-direct group product is given
by

(A, a) · (B, b) = (AB, a+ AdA b), (8)

with group identity (I4, 0) and group inverse

(A, a)−1 = (A−1,−AdA−1 a). (9)

Define a map φ : G×M → M by

φ((A, a), (Pξ, Vξ)) = (PξA,AdA−1(Vξ − a)). (10)

Lemma 3.1. The action φ (10) is a transitive right group
action of G on M .

Proof. Let (A, a), (B, b) ∈ G. Then,

φ((A, a),φ((B, b), (Pξ, Vξ)))

= φ((A, a), (PξB,AdB−1(Vξ − b)))
= (PξBA,AdA−1(AdB−1(Vξ − b)− a))

= (PξBA,AdA−1B−1(Vξ − b−AdB a))

= (Pξ(BA),Ad(BA)−1(Vξ − (b+ AdB a)))

= φ((B, b) · (A, a), (Pξ, Vξ)).

This demonstrates that the (right handed) group ac-
tion property holds. It is straightforward to verify that
φ((I4, 0), (Pξ, Vξ)) = (Pξ, Vξ).

To see that φ is transitive, let (Pξ, Vξ) and (P ′ξ, V
′
ξ ) be

any elements of M . Then we can find the group element
(Pξ
−1P ′ξ, Vξ −AdPξ

−1P ′
ξ
V ′ξ ) such that

φ((Pξ
−1P ′ξ, Vξ −AdPξ

−1P ′
ξ
V ′ξ ), (Pξ, Vξ))

= (PξPξ
−1P ′ξ,AdP ′

ξ
−1Pξ

(Vξ − (Vξ −AdPξ
−1P ′

ξ
V ′ξ )))

= (P ′ξ, V
′
ξ ).

�

3.2 Output Equivariance

Define a map ρi : G×Ni → Ni by

ρi((A, a), yi) = A−1yi, (11)

where Ni ≡ R4 representing a homogeneous coordinate.

Lemma 3.2. The map ρi (11) is a transitive right group
action of G on Ni. Moreover, the measurement function h
is equivariant with respect to actions φ (10) and ρi. That
is

ρiX(h(ξ)) = hi(φX(ξ)).

Proof. Let (A, a), (B, b) ∈ G and let yi ∈ Ni. Then we
have

ρi((A, a), ρi((B, b), yi)) = ρi((A, a), B−1yi)),

= A−1B−1yi,

= (BA)−1yi,

= ρi((B, b) · (A, a), yi).

This shows that the (right handed) group action property
holds. It is straightforward to verify that ρi((I4, 0), yi) =
yi. Thus, ρ is indeed a right action.

hi(φX(ξ)) = hi((PξA,AdA−1(Vξ − a)))

= (PξA)−1y◦i

= A−1Pξ
−1y◦i

= ρiX(hi(ξ)).

Thus, the measurement function h is verified to be equiv-
ariant with respect to action φ and ρi. �

3.3 System Lift onto the Group

In order to work with our observer on G, we need to lift
the kinematics of the system. A lifted equivariant system
is defined as the system on the symmetry group G

Ẋ := dLXΛ(ξ, u), (12a)

yi := ρi(X, y◦i ) =: Hi(ξ), (12b)

for ξ ∈ M , u ∈ V and dLX given by Lemma A.1.

Specifically, we require a system lift, which is a function
Λ : M × V → g such that dφξ[Λ(ξ, u)] = f(ξ, u) for all
ξ ∈ M , u ∈ V. Define a function Λ : M × V→ g by

Λ((Pξ, Vξ), (U1, U2)) = (Vξ + U1,
[
Vξ, U1

]
− U2), (13)

where the square bracket represents the matrix commuta-
tor.

Lemma 3.3. The function Λ (13) is a lift function for (3)
onto the group G.

Proof. In order to show that Λ(ξ, u) is indeed a system lift,
we need to show that dφξ[Λ(ξ, u)] = f(ξ, u) for all ξ ∈ M ,
u ∈ V, and X ∈ G. Let (Pξ, Vξ) ∈ M , (U1, U2) ∈ V, and
(A, a) ∈ G be arbitrary.

Then we have
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dφ(Pξ,Vξ)[Λ((Pξ, Vξ), (U1, U2))]

= D(A,a)

∣∣∣
I,0

(PξA,AdA−1(Vξ − a))[Λ((Pξ, Vξ), (U1, U2))]

= (Pξ(Vξ + U1),−
[
Vξ + U1, Vξ

]
− (
[
Vξ, U1

]
− U2))

= (Pξ(Vξ + U1), U2)

= f((Pξ, Vξ), (U1, U2)),

which shows that our condition holds, and therefore
Λ(ξ, u) is a system lift as required. �

3.4 Origin of the Global Coordinate

Let an element of the lifted state space be represented
as X = (A, a) ∈ G, with unknown initial condition
X(0) ∈ G. We denote a world fixed frame as {W}. It
is necessary to pick a reference point ξ◦ = (Pξ◦ , Vξ◦) ∈ M
with respect to {W}, which we term the origin point. This
point defines an arbitrary origin for the global coordinate
parametrization φξ◦ : G → M of the state space M by
the symmetry group G. From Lemma 2 of (Mahony et al.,
2013), the solution X(t,X(0)) projects back to the state
ξ(t, ξ◦) via the group action

φξ◦(X(t;X(0))) = ξ(t; ξ◦),

such that

(Pξ, Vξ) = φ((A, a), (Pξ◦ , Vξ◦))

= (Pξ◦A,AdA−1(Vξ◦ − a)), (14)

and,

(P̂ξ, V̂ξ) = φ((Â, â), (Pξ◦ , U0))

= (Pξ◦Â,AdÂ−1(Vξ◦ − â)). (15)

From equation (13) and (12a), the lifted kinematics on G
can be written as

Ȧ = A(AdA−1(Vξ◦ − a) + U1), (16a)

ȧ = AdA(
[

AdA−1(Vξ◦ − a), U1

]
− U2), (16b)

where U1 ≡ 0 in the real system, since there is no
input linear and angular velocity (unlike first order state
kinematics).

We denote the output associated to the chosen origin point
to be

y◦i := hi(ξ◦).

4. OBSERVER DESIGN

Our proposed observer works on the symmetry group of
the pose state space i.e. G, and not the manifold M .
We use X̂(t; X̂(0)) ∈ G to denote the estimate for the
lifted system state X(t;X(0)) for unknown X(0). The
fundamental structure for the observer that we consider is
that of a pre-observer (a copy of (16)) with innovation. The

innovation takes outputs {yi} and the observer state X̂,
and generates a correction term for the observer dynamics

with the goal that ξ̂ = φ(X̂, ξ◦) converges to ξ(t, ξ◦).

4.1 Proposed Observer

Theorem 4.1. Let (Pξ◦ , Vξ◦) be the chosen reference point

in M . Let X̂ = (Â, â) ∈ G, with arbitrary initial condition

X̂(0) = (Â0, â0). Consider the observer kinematics on the
open-loop kinematics (16) with U1 = 0 as

˙̂
A = Â(AdÂ−1(Vξ◦ − â))−∆1Â, (17a)

˙̂a = −AdÂ(U2)−∆2, (17b)

where U2 is given by (5) and

∆1 = −k1 AdÂ(Pse(3)

(
M
)

),

∆2 = AdÂ(Pse(3)

([
V̂ξ,AdÂ−1 ∆1

]
+ k2M

)
),

M =

N∑
i=1

1

N
Â>

(
p◦i − Âpi

)
pi
> + Â>

(
m◦m◦ − Âm◦m

)
m◦m>.

Then, (P̂ξ, V̂ξ) = φ((Â, â), (Pξ◦ , Vξ◦)) converges asymptot-
ically to (Pξ, Vξ).

Proof. The stability of the observer (17) is analysed as
follows. The Lyapunov function is defined as

L = ll + lm + lv, (18)

and

ll =

N∑
i=1

1

2N

∣∣p◦i − ρiX̂−1(pi)
∣∣2 ,

lm =
1

2

∣∣m◦m◦ − ρi
X̂−1(m◦m)

∣∣2 ,
lv =

1

2k2

∥∥∥Vξ − V̂ξ∥∥∥2
F
,

where ‖P‖F =
√

tr (P>P ) denotes the Frobenius norm of

a matrix, and |p| =
√
p>p denotes the Euclidean norm of

a vector.

Computing the time derivative of each components in (18),

l̇l =

N∑
i=1

1

N
tr
(

(AdÂ−1 ∆1)>Â>(p◦i − Âpi)pi>
)

+

N∑
i=1

1

N
tr
(

(Vξ − V̂ξ)>Â>(p◦i − Âpi)pi>
)
, (19a)

l̇m = tr
(

(AdÂ−1 ∆1)>Â>(m◦m◦ − Âm◦m)m◦m>
)

+ tr
(

(Vξ − V̂ξ)>Â>(m◦m◦ − Âm◦m)m◦m>
)
, (19b)

l̇v =
1

k2
tr
(

(Vξ − V̂ξ)>(
[
V̂ξ,AdÂ−1 ∆1

]
−AdÂ−1 ∆2)

)
.

(19c)

Combining (19a)(19b)(19c), the time derivative of the
Lyapunov function is

L̇ =
〈

AdÂ−1 ∆1,M
〉

+
〈
Vξ − V̂ξ,M +

1

k2
(
[
V̂ξ,AdÂ−1 ∆1

]
−AdÂ−1 ∆2)

〉
,

(20)

where
〈
A,B

〉
= tr

(
A>B

)
denotes the Frobenius inner

product.

Define the lifted state error

E = X̂X−1 = (Ã, ã), (21)
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where

Ã = ÂA−1,

ã = â−AdÂA−1 a.

The dynamics of E is given by

Ė = ( ˙̃A, ˙̃a), (22)

where
˙̃A = (AdÂ(V̂ξ − Vξ)−∆1)Ã,

˙̃a =
[

AdÃ a,AdÂ(V̂ξ − Vξ)−∆1

]
−∆2.

Substituting ∆1 and ∆2 in (17),

L̇ = −
〈
k1Pse(3)(M),M

〉
= −k1

〈
Pse(3)(M),Pse(3)(M)

〉
= −k1||Pse(3)(M)||2F
= −k1||Pse(3)(Â

>(I − Ã)QA−>)||2F , (23)

where Q =
∑N
i=1

1
N p
◦
i p
◦
i
>+m◦m◦m◦m◦>, which is a symmetri-

cal positive definite matrix if there are at least three non-
collinear landmarks visible. This proves that the estima-
tion error terms are bounded.

Computing the second time derivative of the Lyapunov
function

L̈ = −k1 tr
(

(Pse(3)(Â
>(I − Ã)QA−>))>

(Pse(3)(
˙̂
A>(I − Ã)QA−>

+ Â>( ˙̃A)QA−> + Â>(I − Ã)QȦ−>))
)
,

where all the terms are bounded. Applying Barbalat’s
lemma, proves that L̇ converges asymptotically to zero,
and hence

||Pse(3)(Â
>(I − Ã)QA−>)||2F → 0.

Let

Â =

[
R̂A t̂A
0 1

]
, A =

[
RA tA
0 1

]
,

Q =

[
Σ µ
µ> 1

]
, Ã =

[
R̃A t̃A
0 1

]
.

then

Pse(3)(Â
>(I − Ã)QA−>) = Pse(3)

([
S11 S12

(·) (·)

])
,

where (·) represent the part of the matrix that does not
matter, and

S11 = R̂A
>

(I − R̃A)(ΣRA − µtA>RA)

− R̂A
>
t̃A(µ>RA − tA>RA),

S12 = R̂A
>

(I − R̃A)µ− R̂A
>
t̃A.

So,

t̃A = (I − R̃A)µ, (24)

Pso(3)(S11) =
RA
>(R̃A

>
Q̄− Q̄R̃A)RA
2

= 0, (25)

where

Q̄ = Σ− µµ>.

From (25), we have

R̃A
>
Q̄ = Q̄R̃A.

Following the proof of Theorem 5.1 in (Mahony et al.,

2008), R̃ is asymptotically stable to I. From (24), t̃A
is asymptotically stable to 0. Thus, Ã is asymptotically
stable to I, regardless of the choice of ξ◦. �

Note that the observer is implementable without requiring
body-fixed linear and angular velocity.

5. EXPERIMENTAL RESULTS

We evaluate the performance of our proposed observer
with the help of simulation. We tested for two separate
scenarios – (1) the case where the device has multiple
accelerometers placed at known locations (similar to Ng
et al. (2019)) such that both the linear and angular
acceleration can be measured, (2) the case where one
accelerometer and one gyroscope is installed on the device,
which is a more common sensor configuration.

In the simulation, there are 12 landmarks randomly gener-
ated on two planar (12×12m2) surfaces orthogonal to each
other, which represents known landmarks (e.g., ArUco
markers) placed on walls in a room. The simulated vision
sensor (landmark data) has a sampling frequency of 30Hz
and field of view of 90◦. A consequence of this choice is that
all landmarks are not visible at all times. We implement
the proposed algorithm for all visible landmarks and note
that this will cause discontinuities in the evolution of the
Lyapunov function (Figure 2 and 4) as landmarks enter or
leave the field of view.

The simulated magnetic field is in the direction [1, 0, 0]>,
and gravity vector is [0, 0, 9.81]ms−2. The simulated IMU
has a sampling frequency of 200Hz and the observer state
is updated at 1000Hz. The simulated noise for all sensor
measurements follows a zero mean Gaussian process, with
standard deviation of 0.03 along each axis. Note that our
observer does not rely on the Gaussian noise assumption.

The device is undergoing a smooth sinusoidal motion
with linear and angular velocity vector following the func-
tion [0.25sin(0.1t + 2);−0.025;−0.25cos(0.1t − 3)] and
[sin(0.05t); cos(0.05t); 0].

We have also implemented an EKF using 13 state vari-
ables, where the orientation is represented with a quater-
nion. The gains of our observer is tuned such that the
rate of convergence is similar to the EKF for a fairer com-
parison. The following subsections present the simulation
results for the two sensor configurations.

5.1 Simulation with Measured Linear and Angular
Acceleration

From (5), the input angular acceleration θ× is measured
using an array of accelerometers placed at known location
similar to that described in (Ng et al., 2019). The input
linear acceleration follows (4), where the state variables

Pξ, Ω and v are replaced with the estimate P̂ξ, Ω̂ and v̂,
such that

a◦aB = a◦a− P̂ξ
−1
a◦aG − Ω̂× v̂. (26)
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Figure 1 shows the time evolution of the error in pose Pξ
and velocity Vξ converging asymptotically to zero. Figure 2
shows the time evolution of the Lyapunov function L
asymptotically converging to zero.

From Figure 1, we can observe that the EKF performs
similar to our observer in the simulation. It can also be
noted that the EKF method requires higher memory and
computational requirements than our proposed observer,
where large covariance and Jacobian matrices have to
be computed. EKF also relies on the Gaussian noise
assumption, and requires prior knowledge of the covariance
matrices of the process and measurement noise, which are
not required by our observer.

The jumps in the evolution of the Lyapunov function in the
first 5 seconds of Fig. 2 are associated with landmarks en-
tering and leaving the field of view. The strong asymptotic
convergence properties ensure that these small transients
are quickly compensated for in the observer state. Once
the principle observer state transient is complete, after
around 10s, the effect of new image points entering the
field of view becomes insignificant.
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Fig. 1. Time evolution of pose Pξ and velocity Vξ error
showing asymptotic convergence and practical stabil-
ity in the presence of noise.
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Fig. 2. Time evolution of the Lyapunov function L showing
asymptotic convergence to practical stability.

5.2 Simulation with Measured Linear Acceleration and
Angular Velocity

In this simulation set-up, we consider the case where
the angular acceleration is not measured. In this case,
we replace Ω̂ = Ω the measurement of angular velocity
in the pose velocity estimate V̂ . In the absence of a
measurement of angular acceleration θ we use a low pass
filtered numerical derivative of the measured gyroscope,
such that at time instance k,

θk ≈ 0.2θk−1 + 0.8
d

dt
Ωk, (27)

in the definition of U2 for (17). The additional noise
injected into the velocity estimate will not affect the

angular velocity since the state of the estimator is directly
set to the measurement. However, the derivative estimate
is important in modelling the coupling due to the semi-
direct product in the group structure.

Figure 3 shows the time evolution of the error in pose Pξ
and velocity Vξ converging asymptotically to zero. Figure 4
shows the time evolution of the Lyapunov function L
asymptotically converging to zero.

From Fig. 3, it can be seen that our observer and EKF
performs similarly. It can be observed that the estimated
pose and velocity is noisier than the case where the angular
acceleration is directly measured by multiple accelerome-
ters. This is due to the additional noise introduced by the
numerical derivative of the noisy gyroscope measurement,
which affects the estimated linear velocity due to the
coupling effect. From the logarithm of the Lyapunov in
Fig. 2 and 4, it can be observed that the jumps at 2s and
3.2s are present in both plots, due to significant changes
in the visible landmarks. The logarithm of the Lyapunov
plots also shows clear linear decreasing trend, which is a
characteristic of exponential convergence of the Lyapunov
function to zero.
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Fig. 3. Time evolution of pose Pξ and velocity Vξ error
showing asymptotic convergence and practical stabil-
ity in the presence of noise.
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Fig. 4. Time evolution of Lyapunov function L showing
asymptotic convergence to practical stability.

6. CONCLUSIONS

An equivariant observer for the second order pose kine-
matics was presented. The observer does not rely on the
measurement of linear velocity commonly used by existing
methods. The observer works on the symmetry group of
the second order pose state space, and is shown to exhibit
strong asymptotic convergence property, regardless of the
chosen origin point (Pξ◦ , Vξ◦).

Future work includes the study of sensor bias, and more
experimental validation on actual hardware for VR or AR
applications.
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Appendix A. LEFT TRANSLATION

Define the left translation on the group by LX : G → G,
LXY := X · Y .

Define a map dLX : TIG→ TXG by

dL(A,a)[w1, w2] = (Aw1,AdA w2).

Lemma A.1. dL(A,a) is the differential of the left transla-
tion L(A,a).

Proof. Computing the differential of the left translation

D(B,b)

∣∣∣
I,0

((A, a) · (B, b))[w1, w2]

= D(B,b)

∣∣∣
I,0

(AB, a+ AdA b)[w1, w2]

= (Aw1,AdA w2)

= dL(A,a)[w1, w2].
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