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Abstract: For a discrete-time linear system, we use data from an open-loop experiment to
design directly a linear feedback controller enforcing that a given (polyhedral) set of the state
is invariant and given (polyhedral) constraints on the control are satisfied. By building on
classical results from model-based set invariance and a fundamental result from Willems et al.,
the controller designed from data has the following desirable features. The satisfaction of the
above properties is guaranteed only from data, it can be assessed by solving a numerically-
efficient linear program, and, under a certain rank condition, a data-based solution is feasible if
and only if a model-based solution is feasible.
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1. INTRODUCTION

Direct data-driven control design is an approach that aims
at designing control laws based on input-output data col-
lected from a system through an experiment, and bypasses
completely the identification of a model of the system
from the input-output data. Recent direct data-driven
control techniques addressing model reference and tracking
problems include iterative feedback tuning (Hjalmarsson
et al., 1998), virtual reference feedback tuning (Campi
et al., 2002), iterative correlation-based tuning (Karimi
et al., 2004; Formentin et al., 2013), and unfalsified control
(Battistelli et al., 2018). Direct data-driven methods have
been considered also for other control problems, including
nonlinear (Novara et al., 2013), predictive (Salvador et al.,
2018), robust (Dai and Sznaier, 2018) and optimal control
(Mukherjee et al., 2018; Baggio et al., 2019).

Most recently, a fundamental result from Willems et al.
(2005) has been given new attention because of its deep im-
plications for data-driven control. Namely, Willems et al.
(2005) claims in broad terms that the whole set of trajecto-
ries of a linear system can be represented by a finite set of
trajectories as long as those arise from sufficiently excited
dynamics. This result has been exploited in Coulson et al.
(2019) for data-based predictive control, and in De Persis
and Tesi (2020) for data-driven stabilization and optimal
control. De Persis and Tesi (2020) shows in particular that
the result by Willems et al. can be used to achieve a data-
based parametrization of feedback systems, enabling the
design of (optimal) controllers directly via data-dependent
linear matrix inequalities, also in the presence of noisy
data. This idea has been further developed in van Waarde
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et al. (2020) to show that data-driven stabilization is
possible even when data are not sufficiently rich to enable
system identification, and in Berberich et al. (2019b) where
– by formulating the data-based parametrization of closed-
loop systems with noisy data obtained in De Persis and
Tesi (2020) as a linear fractional transformation – data-
driven H∞ control is investigated, thus providing further
evidence for developing a theory of data-driven control.

Except for contributions in the area of predictive control
such as Salvador et al. (2018) and Berberich et al. (2019a),
most of the works on data-driven control do not account
for state and input constraints, which are one of the
prime issues in many practical problems. In addition to
the aforementioned papers, contributions to data-driven
control in the presence of (state and input) constraints,
also termed safe control, are found in the literature on
learning-based control (Garcia and Fernández, 2015) and
on safety certificates for learning-based control by convex
optimization (Wabersich and Zeilinger, 2018), see also
Remark 5 for a specific comparison with our approach.

In this paper, we consider data-driven safe control using
notions from set invariance (Blanchini, 1999). Specifically,
we consider linear time invariant systems in discrete time
and study the problem of designing a control law based
on a finite number of input-state data in such a way that
the controlled system satisfies prescribed safety constraints
given by polyhedral sets. Set invariance translates the
notion of safety (i.e., if the system has initial state in a
safe set, its solutions will not leave that set), so we charac-
terize safety in terms of set invariance and λ-contractivity
(recalled below in Definitions 2 and 3). Invariance of
polyhedral sets for discrete-time linear systems has been
thoroughly investigated in the late 80’s assuming exact
knowledge of the system matrices, and key results were
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given (Gutman and Cwikel, 1986; Vassilaki et al., 1988;
Blanchini, 1990). These results consider, among others,
the presence of disturbances on the state equation and
parametric uncertainties in the system matrices. We refer
the reader to the comprehensive survey Blanchini (1999)
and the monograph Blanchini and Miani (2008) for an
overview of these results.

Building on the notions of invariance and λ-contractivity,
we show that the problem of designing safe controllers di-
rectly from data can be cast as a linear program, which can
thus be solved efficiently. This is achieved by considering
only linear feedback policies, although nonlinear ones are
in general less conservative for linear systems with state
and input constraints. Further, as in Vassilaki et al. (1988);
Blanchini (1990), the solution takes the form of a state-
feedback gain, which avoids to iteratively solving an online
optimization problem as in receding-horizon predictive
control and learning-based methods. On the other hand,
in this paper we do not investigate optimality features of
the safe controller.

The paper is organized as follows. Section 2 introduces the
problem of interest along with some preliminaries on set
invariance. The main results are given in Section 3, while
Section 4 provides a preliminary result in the case of noisy
data. A numerical example is discussed in Section 5.

Notation. Z, N, and R denote the sets of integers, of
nonnegative integers, and of real numbers. For a positive
integer n, Nn := {1, . . . , n}. For column vectors x1 ∈ Rd1 ,
. . . , xm ∈ Rdm , the notation (x1, . . . , xm) is equivalent to
[x>1 . . . x

>
m]>. The n× n identity matrix is denoted by In.

The vector 1 denotes the vector of all ones of appropriate
dimension, i.e., 1 := (1, . . . , 1). Given two n×m matrices A
and B, A ≥ 0 indicates that each entry of A is nonnegative,
and A ≥ B is equivalent to A − B ≥ 0. For a polyhedron
A, vertA is the set of its vertices. Given a set A and a
scalar µ ≥ 0, µA := {µx : x ∈ A}.

2. PROBLEM STATEMENT AND PRELIMINARIES

In this section we give our problem statement and present
essential preliminaries on set invariance.

2.1 Problem statement

We consider discrete-time linear time invariant systems

x+ = Ax+Bu, (1)

with state x ∈ Rn and input u ∈ Rm. Before we introduce
our sets of interest, we need the next notion.

Definition 1. (Blanchini and Miani, 2008, Def. 3.10) A
C-set is a convex and compact subset of Rν including the
origin as an interior point.

The first set of interest is the set S relative to the state
x, which is based on a matrix S ∈ Rns×n with rows S(i),
i = 1, . . . , ns. The set S is a polyhedral C-set represented
through S as

S :={x ∈ Rn : Sx ≤ 1}
={x ∈ Rn : S(i)x ≤ 1, i = 1, . . . , ns}.

(2)

The second set of interest is the set U relative to the
input u, which is based on a matrix U ∈ Rnu×m with

rows U(i), i = 1, . . . , nu. The set U is a polyhedral convex
set (including the origin as an interior point) represented
through U as

U :={u ∈ Rm : Uu ≤ 1}
={u ∈ Rm : U(i)u ≤ 1, i = 1, . . . , nu}.

(3)

We would like to impose that the state x remains confined
in the set S, while input u is constrained in the set U . To
this end, we introduce the next notion of invariance.

Definition 2. (Blanchini and Miani, 2008, Defs. 4.1, 4.4)
A set S ⊂ Rn is invariant for x+ = Fx if each solution
to x+ = Fx with initial condition x(0) ∈ S is such that
x(t) ∈ S for all t ≥ 0.

We would like to impose that S is invariant and u satisfies
the constraints given by U without the knowledge of
the matrices A and B, by relying only on a number
of data samples collected from the system. Specifically,
we make an experiment on the system by applying a
sequence ud(0), . . . , ud(T − 1) of inputs and measuring
the corresponding values xd(0), . . . , xd(T ) of the state
response, where the subscript d emphasizes that these are
data. Following the notation in De Persis and Tesi (2020),
we organize these data as

U0,T := [ud(0) . . . ud(T − 1)] (4a)

X0,T := [xd(0) . . . xd(T − 1)] (4b)

X1,T := [xd(1) . . . xd(T )] . (4c)

We can now state the problem of interest.

Problem 1. Given a polyhedral C-set S as in (2) and a
polyhedral convex set U as in (3), find a state-feedback law
u = Kx, with feedback gain K based only on the data
in (4), that guarantees that S is invariant, the origin is
asymptotically stable, and the control input u = Kx always
belongs to U .

For brevity, we say in the following that S is admissible
for U if for each x ∈ S, we have Kx ∈ U (for some matrix
K that is clear from the context).

2.2 Preliminaries on (model-based) set invariance

In Problem 1, we ask that S is invariant and the origin
is asymptotically stable. These two properties can be
embedded in the notion of λ-contractivity defined next.

Definition 3. (Blanchini and Miani, 2008, Def. 4.19) A
C-set S is λ-contractive for x+ = Fx if for some λ ∈
[0, 1), for each x ∈ S

inf{λ′ ≥ 0: Fx ∈ λ′S} ≤ λ.

Note that if we allow λ = 1 in Definition 3, we recover
invariance of Definition 2 as a special case. We recall the
next result on λ-contractivity.

Fact 1. (Blanchini and Miani, 2008, Thm. 4.43) Given
a polyhedral C-set S of the form (2), the set S is λ-
contractive for x+ = Fx if and only if there exists a matrix
P ≥ 0 such that P1 ≤ λ1 and PS = SF .

We have the next relationship between λ-contractivity and
asymptotic stability.

Fact 2. (Blanchini and Miani, 2008, Cor. 4.52) Given a
system x+ = Fx, there exists a polyhedral C-set which is
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λ-contractive if and only if all the eigenvalues of F have
modulus less or equal to λ and all the eigenvalues for which
the equality holds have phases that are rational multiples
of π (namely, their phase θ can be expressed as θ = (p/q)π
for some integers p and q).

Some comments on Fact 2 are relevant for the sequel and
are stated in the next remarks.

Remark 1. As a consequence of Fact 2, if a polyhedral
C-set S is λ-contractive, then the origin (contained in
the interior of S by Definition 1) is asymptotically stable.
Instead of imposing that S is invariant and the origin
is asymptotically stable in Problem 1, we impose in the
sequel that S is λ-contractive. Invariance of S (λ = 1)
is equivalent to marginal stability of the origin along with
certain conditions on the eigenvalues with unitary modulus
(Blanchini and Miani, 2008, Thm. 4.50), and does not
guarantee asymptotic stability of the origin as required by
Problem 1. Hence, imposing λ < 1 is convenient to have
asymptotic stability of the origin.

Remark 2. For state-feedback control laws u = Kx as in
Problem 1, controllability of (A,B) implies that the closed-
loop eigenvalues of A+BK can be assigned to satisfy the
necessary and sufficient condition in Fact 2, hence there
exists a polyhedral C-set which is λ-contractive for A+BK.

3. DATA-BASED DESIGN AND GUARANTEES FOR
λ-CONTRACTIVITY

We now present our data-based solution to Problem 1. By
the foregoing considerations, we address this problem in
the context of λ-contractivity.

Given system (1), S, U and u as in Problem 1 and level
of contractivity λ ∈ [0, 1), we have that S is λ-contractive
for x+ = (A + BK)x and admissible for U if and only if
there exist decision variables K and P ≥ 0 such that

P1 ≤ λ1 (5a)

PS = S(A+BK) (5b)

UKs ≤ 1 ∀s ∈ vertS. (5c)

Indeed, λ-contractivity of S is equivalent to (5a)-(5b) by
Fact 1, and admissibility of S for U is equivalent to

Ks ∈ U ∀s ∈ vertS
(since S is a polyhedral C-set and U is a polyhedral convex
set). As noted in Remark 1, a feedback gainK that satisfies
(5) solves Problem 1. We have the next result.

Theorem 1. Consider S, U and u as in Problem 1 and
level of contractivity λ ∈ [0, 1). Let the data matrices U0,T ,
X0,T and X1,T be as in (4). If there exist decision variables
GK and P ≥ 0 such that

P1 ≤ λ1 (6a)

PS = SX1,TGK (6b)

UU0,TGKs ≤ 1 ∀s ∈ vertS (6c)

In = X0,TGK , (6d)

then the feedback gain

K = U0,TGK (7)

is such that S is λ-contractive for the closed-loop system
x+ = (A+BK)x and admissible for U .

Proof. The proof can be found in Bisoffi et al. (2019). �

Remark 3. We note that Theorem 1 corresponds to solv-
ing a linear program in the decision variables GK and P ,
hence it is numerically appealing.

Compared to the case where the matrices A and B are
known (cf. (5)), the data-driven solution of Theorem 1
only provides sufficient conditions for λ-contractivity. The
reason is that we made no assumptions on the data used
for designing the controller. Intuitively, if the data do not
carry enough information on the plant dynamics, it might
be impossible to get a data-based solution.

For stabilization (with no state and/or input constraints),
De Persis and Tesi (2020) shows conditions on the data
enabling a data-based parametrization of all stabilizing
state-feedback gains. van Waarde et al. (2020) considers
the minimum amount of information on the data under
which at least one stabilizing gain can be found from
data. Here, we follow the reasoning of De Persis and Tesi
(2020), which lends itself to a direct extension to the case
of state and/or input constraints. In fact, if the data enable
a parametrization of all stabilizing gains, any controller
guaranteeing λ-contractivity necessarily belongs to the
feasibility set of (6) and is parameterized by the data since
λ-contractivity is a stronger property than asymptotic
stability, as shown in Fact 2. The next result holds.

Theorem 2. Consider S, U and u as in Problem 1 and
level of contractivity λ ∈ [0, 1). Let the data matrices U0,T ,
X0,T and X1,T be as in (4). Assume further that the matrix

Θ :=

[
U0,T

X0,T

]
(8)

has full row rank. Then, there exists a feedback gain K such
that S is λ-contractive for x+ = (A+BK)x and admissible
for U if and only if there exist decision variables GK and
P ≥ 0 such that (6) holds. Moreover, any such K can be
expressed as in (7) for some GK satisfying (6).

Proof. The proof can be found in Bisoffi et al. (2019). �

Remark 4. Under a rank condition, Theorem 2 estab-
lishes an equivalence between the model-based and the pro-
posed data-based solution. In both cases, however, search-
ing for a linear feedback policy is in general restrictive for
given sets S and U , and may preclude finding a solution,
which could be found through a nonlinear feedback policy.

An interesting result related to the matrix Θ in (8) is that
if the system (1) is controllable, then one can always ensure
that Θ has full row rank if the experimental data originate
from persistently exciting input signals (Willems et al.,
2005, Cor. 2). Moreover, controllability is important to en-
able the existence of a controller achieving λ-contractivity.
Indeed, a controller achieving λ-contractivity of a given S
may not exist. In that case, one may use the same data and
search for different sets S ′ with different shapes until the
constraints in (6) become feasible. Controllability is ben-
eficial to this end because it ensures that a λ-contractive
C-set S ′ exists, see Remark 2. Alternatively, if one wants to
design S ′, the corresponding matrix S′ becomes a decision
variable and (6) becomes a bilinear program, as pointed
out in (Blanchini, 1999, p. 1755).

Remark 5. Compared to Wabersich and Zeilinger (2018),
our approach considers unknown linear dynamics instead
of known linear dynamics with unknown nonlinear term.
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On the other hand, under a rank condition on the data,
our approach always determines a solution if there is one
( cf. Theorem 2) instead of providing ellipsoidal under-
approximations of the original polyhedral set.

3.1 λ-contractivity and decay rate

As shown in Vassilaki et al. (1988), the function V : S → R
defined as

V (x) := max
i∈{1,...,ns}

|S(i)x| (9)

is a polyhedral Lyapunov function for the closed-loop
dynamics x+ = (A+BK)x constrained on the set S, and
ensures that the origin is asymptotically stable. Indeed,
V satisfies the following properties (which are justified in
Bisoffi et al. (2019)): (i) V (x) ≥ 0 for all x ∈ S, and
V (x) = 0 if and only if x = 0, (ii) it holds that

V (x+) ≤ λV (x). (10)

Properties (i) and (ii) imply asymptotic stability of the
origin. In view of (10), the level of contractivity λ is also
the decay rate of the Lyapunov function V , and it is thus
of interest to minimize λ ∈ [0, 1) as proposed for instance
in Vassilaki et al. (1988). It is straightforward to do this
based only on data, as shown in the next result.

Corollary 1. Consider the same setting as in Theorem 1.
If there exist decision variables λ, GK and P ≥ 0 solving

minλ

such that 0 ≤ λ < 1 and (6) holds,
(11)

the feedback gain K in (7) ensures that S is λ-contractive
for x+ = (A+BK)x and admissible for U . �

The decision variables λ, GK and P enter (11) in a linear
fashion. Hence, (11) still corresponds to a linear program
and can then be solved efficiently.

4. ROBUST DESIGN FOR NOISY DATA

In this section we present a preliminary result for the more
realistic setting of noisy data. To this end, we consider a
system of the form

x+ = Ax+Bu+ d, (12)

where d ∈ D ⊂ Rn and D is a polyhedral C-set rep-
resented through convex combinations of its nd vertices
d(1), . . . , d(nd) ∈ Rn as

D :=

{
nd∑
i=1

αid
(i) : 1>α = 1, α ≥ 0

}
. (13)

The disturbance affects both the data and the invariance
properties of (12). As for the data, the experiment in-
volves the quantities in (4) and, additionally, the unknown
sequence dd(0), . . . , dd(T−1) of disturbances, organized as

D0,T := [dd(0) . . . dd(T − 1)] . (14)

Because of (12), the data in (14) and (4) satisfy

X1,T =AX0,T+BU0,T+D0,T =[B A]

[
U0,T

X0,T

]
+D0,T . (15)

As for the invariance properties, we consider accordingly
the next robust version of Definition 2.

Definition 4. (Blanchini, 1990, Def. 2.1) A set S is
robustly invariant with respect to D for x+ = Fx + d if
for each initial condition x(0) ∈ S and each disturbance d

satisfying d(t) ∈ D for all t ≥ 0, the corresponding solution
to x+ = Fx+ d satisfies x(t) ∈ S for all t ≥ 0.

In this section we consider a slightly different setting than
the rest of the paper, that is, guaranteeing that S is
robustly invariant w.r.t. D for the closed-loop system and
is admissible for U , in the presence of noisy data. We recall
the next instrumental result.

Fact 3. (Blanchini, 1990, Thm. 2.1) Let S and D be C-
sets. The set S is robustly invariant w.r.t. D for x+ = Fx+
d if and only if for each s ∈ vertS and each w ∈ vertD,
Fs+ w ∈ S.

This fact allows us to conclude that given the system
in (12) and for S, U and u as in Problem 1, and the C-set
D in (13), S is

(a) robustly invariant w.r.t. D for x+ = (A+BK)x+ d,
(b) admissible for U

if and only if

S((A+BK)s+ w) ≤ 1 ∀s ∈ vertS,∀w ∈ vertD (16a)

UKs ≤ 1 ∀s ∈ vertS. (16b)

Let us apply to (16) the same approach as in Section 3 in
light of the new dynamics in (15). If there exists a decision
variable GK such that

S((X1,T −D0,T )GKs+ w) ≤ 1 ∀s ∈ vertS,∀w ∈ vertD
(17a)

UU0,TGKs ≤ 1 ∀s ∈ vertS (17b)

In = X0,TGK , (17c)

then the feedback gain K = U0,TGK would ensure for S
its desired properties (a)–(b) above. In particular, (17a)
follows from

A+BK=[B A]

[
K
In

]
=[B A]

[
U0,T

X0,T

]
GK =(X1,T−D0,T )GK

where the last equality uses the new dynamics in (15).
However, the disturbance sequence leading to D0,T in
(17a) is unknown. A possible way of overcoming this issue
is to ask conservatively that (17a) be satisfied for all the
possible sequences of the disturbance dd(0), . . . , dd(T − 1)
as long as each dd(0), . . . , dd(T − 1) belongs to D. To this
end, define for j ∈ NT and i ∈ Nnd

the matrix δji ∈ Rn×T
being zero except for its j-th column equal to Td(i), i.e.,

δji :=
[

0︸︷︷︸
1-st,

| . . . |Td(i)︸ ︷︷ ︸
j-th,

| . . . | 0︸︷︷︸
T -th column

]
.

The reason for the dependence on T in the j-th column of
δji becomes clear from the proof of our next result.

Proposition 1. Consider S, U and u as in Problem 1,
the disturbance d belonging to the C-set D in (13), and let
the data matrices U0,T , X0,T , X1,T be as in (4). If there
exists a decision variable GK such that

S((X1,T − δji)GKs+ w) ≤ 1

∀s ∈ vertS,∀w ∈ vertD,∀j ∈ NT ,∀i ∈ Nnd
(18a)

UU0,TGKs ≤ 1 ∀s ∈ vertS (18b)

In = X0,TGK , (18c)

then the feedback gain K = U0,TGK is such that S is
robustly invariant w.r.t. D for x+ = (A + BK)x + d and
admissible for U .

Proof. The proof can be found in Bisoffi et al. (2019). �
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Fig. 1. Input and state data as in (4), with T = 20.

Proposition 1 is a preliminary result due to the conser-
vatism of replacing the constraints in (17a) (where D0,T is
unknown) with ndT as many such constraints in (18a). On
the other hand, Proposition 1 still corresponds to solving
a linear program in the decision variable GK .

5. NUMERICAL EXAMPLE

In this section we illustrate the previous results through
an example taken from Vassilaki et al. (1988). The sets S
in (2) and U in (3) are determined by the matrices

S :=

 1/5 2/5
−1/5 −2/5
−3/20 1/5

3/20 −1/5

 , U :=

[
1/7
−1/7

]
, (19)

so that the set S corresponds to the quadrilateral in a
green, solid line in Figure 2, while the set U corresponds
to the condition −7 ≤ u ≤ 7. The level of contractivity is
selected as λ = 0.84. The data are collected from an open-
loop experiment as in Figure 1, where u is the realization
of a random variable uniformly distributed on [−1, 1], and
show that the underlying linear system is unstable. The
matrices A and B generating these data are

A :=

[
4/5 1/2
−2/5 6/5

]
, B :=

[
0
1

]
,

and are reported only for illustrative purposes, because
our solution relies only on the collected data.

Remark 6. Full row rank of Θ in (8) can be checked
from data. However, this condition holds by (Willems
et al., 2005, Cor. 2) if (A,B) is controllable and the input
sequence is persistently exciting of order n + 1 (see, e.g.,
(De Persis and Tesi, 2020, Def. 1)). As noted in (De
Persis and Tesi, 2020, Sect. II.A), persistence of excitation
poses a mild necessary condition on the number of samples,
i.e., T ≥ (m+ 1)n+m = 5 in the considered case.

The linear optimization problem in Theorem 1 is solved in
the variables GK and P , and the resulting K in (7) is

K = [0.420 −0.610] . (20)

Only for illustrative purposes, we also solve the problem
in (5) and obtain a gain matrix

KA,B = [0.313 −0.671] . (21)

The solutions resulting from simulating the system with
state feedback law u = Kx (our data-based solution) and
u = KA,B x (the model-based solution) are in Figure 2
and show that Problem 1 is solved. As an alternative to
solving the feasibility problem in Theorem 1, we solve

Fig. 2. Sets S and U with parameters in (19) and λ = 0.84.
(Top) Solutions arising from the state feedback law
u = Kx (see (20)) designed based on data (orange),
and from u = KA,B x (see (21)) based on the classical
model-based approach (blue), set S (green, solid) and
the sets λS, λ2S, λ3S, . . . (green, dotted). (Bottom)
Control signal u corresponding to the solutions in
orange and blue depicted on top. The control signal
satisfies the constraints given by U .

the minimization problem in Corollary 1 using the same
data. In this case we obtain λ = 0.758 and K = KA,B =
[0.379 −0.692] and the resulting solutions are in Figure 3.

Some comments on the results corresponding to Figures 2
and 3 can be made. Because Θ in (8) has full row rank,
feasibility of conditions (5) in the variables K and P is
equivalent to feasibility of conditions (6) in the variables
GK and P by Theorem 2. In general, the two feasibility
problems yield different solutions as in Figure 2, e.g.,
due to different initializations of the decision variables.
However, since feasible linear programs have a global
minimum, minimizing λ under (5) or (6) yields the same
value for λ. Moreover, minimizing λ reduces the size of the
feasibility set (due to the constraints P ≥ 0 and P1 ≤ λ1),
which leads in this case to the fact that the minimizers
GK and P under (6) yield the same feedback gain as the
minimizers K and P under the conditions in (5).

Finally, we tested the design with noisy data given by
Proposition 1. The data are generated according to (12)
with matrices A, B and input signal u and sets S, U as
before. The set D in (13) is taken as eE where e > 0 and
E := {(e1, e2) : |e1| ≤ 1, |e2| ≤ 1}, so that larger values
of e dilate E and yield a larger D, which determines in
turn the size of disturbance d in the data (see (14)) and
for robust invariance (see (12)). The feasibility problem in
Proposition 1 could be solved for e up to 8 · 10−2 (against
an input signal u in [−1, 1]). The development of methods
tailored for highly noisy data is currently under study.
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Fig. 3. See the caption of Figure 2 for the illustration
convention of the quantities in this figure, which
correspond to λ = 0.758 minimized as in Corollary 1.

6. CONCLUSIONS

This paper proposes a data-based solution for designing a
linear feedback controller enforcing that a given polyhedral
C-set for the state is λ-contractive (hence, invariant) and
given polyhedral convex constraints on the control are
satisfied. With respect to classical approaches from set-
invariance, we show that the data-based solution still
arises from a numerically-efficient linear program, and
that, under a rank condition on the collected data, the
data-based solution is feasible if and only if the model-
based solution is feasible. The level of λ-contractivity is
guaranteed based on the data. Our main results are given
for the nominal case of input and state data not affected
by noise, and a preliminary result is given for noisy data.
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