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Abstract: A persisting challenge in nonlinear dynamical modelling is parameter inference from
data. Provided that an appropriate model structure was selected, the identification problem
is profoundly affected by a choice of initialisation. A particular challenge that may arise
is initialisation within a region of the parameter space where the model is not contractive.
Exploring such regions is not feasible using the conventional optimisation tools for they require
a bounded evaluation of the cost. This work proposes an unconstrained multiple shooting
technique, able to mitigate stability issues during the optimisation of nonlinear state-space
models. The technique is illustrated on simulation results of a Van der Pol oscillator and
benchmark results on a Bouc-Wen hysteretic system.
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1. INTRODUCTION

Given the advent of powerful model structures, and es-
pecially with respect to the notion of universal approxi-
mators, a persistent challenge of nonlinear system identi-
fication lies within parameter estimation. The challenges
are multiple. It is well known that dynamic model struc-
tures, which are typically nonlinear in the parameters,
result in non-convex objective functions. An additional
challenge is crossing regions of the parameter space where
the model is not contractive. The presence of an unstable
fixed point will in that case drive the output of the model
out of bound. Conventional optimisation methods require
a bounded evaluation of the cost in order to be able to
proceed to a model update. The non-contractive regions
may however not always be avoided, they might even be
deliberately chosen as initialisation point. Three scenarios
may be envisaged:

• Unintentional unstable initialisation: initial model
paramaters are generated following an alternative
(i.e. not stability) objective. An example is provided
in Section 4.2 where a reduced model is initialised
starting from the large model and the reduced initial-
isation turns out to lie in a non-contractive region.
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• Intentional unstable initialisation: such as when in-
sight dictates that the system inherently behaves un-
stable (e.g. the Van der Pol equation in Section 3.4).

• Crossing unstable regions: when an optimiser is
trapped while it could potentially proceed if it were
allowed to step into an unstable region.

A solution, enabling to deal with unstable regions, was
provided by the technique of multiple shooting. The fun-
damental idea is to split the time record into a number
of subrecords thereby preventing the instability to build
during simulation. The technique originates back to the
1960s where it was used to solve boundary value prob-
lems in the framework of ordinary differential equations
(Morrison et al., 1962). Shooting methods turn a boundary
value problem into a sequence of easier to solve initial value
problems (Osborne, 1969). Splitting the solution interval
into smaller subintervals was found to stabilise the solution
process. Within system identification, the application of
shooting methods was proposed for output error mod-
els in Ribeiro and Aguirre (2017) and more specifically
for nonlinear state-space models in Van Mulders et al.
(2010). The idea also appeared in some earlier works, e.g.
van Domselaar and Hemker (1975); Bock (1983); Buchs-
baum (2007). It is worth noting that also recurrent neural
networks may suffer from non-contractive behaviour and
hence may benefit from multiple shooting.

Ribeiro et al. (2019) attributes the success of multi-
ple shooting to a smoothing of the objective function.
They show that the Lipschitz constant and its derivate
(β-smoothness) may blow up exponentially for non-
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contractive models. Making the simulation length a design
parameter allows to reshape the optimisation landscape.

When splitting the time record in subrecords, the original
problem becomes larger. Apart from having to estimate
the model parameters, also an initial value problem needs
to be solved for every subrecord (illustration in Fig. 3).
Depending on how this initial value problem is treated, a
number of categories of ‘shooting’ exist:

• Single shooting: the conventional approach where one
simulates the entire time record at once.
• Fully constrained multiple shooting: every output

sample is assumed a function of an unknown internal
state and the input. All state vectors (i.e. at every
time step) are treated as unknown parameters that
need to be estimated, together with the model pa-
rameters. A vector of constraints is added to ensure
proper state evolution.
• Partially constrained multiple shooting: create sub-

records of specified lengths. Only constrain the
record’s beginning to match the previous record’s end
and simulate freely within one record. This is the
approach adopted in Ribeiro et al. (2019).

Both the fully constrained and the partially constrained
multiple shooting method have proven their worth in
escaping non-contractive regions. They, however, both
involve solving a constrained optimisation problem which
is considerably more expensive than single shooting and
requires a dedicated solver.

In this work we will show that lots is to be gained by
introducing a so called unconstrained multiple shooting
method. It will turn out that even without constraints,
an optimiser can be built that navigates through non-
contractive regions of the parameter space. An additional
advantage of the unconstrained approach is that only
minor changes are needed to the optimisation algorithm,
which is generally already in place for single shooting, in
order to be able to tackle the multiple shooting case.

2. PROBLEM STATEMENT

We will focus here on discrete-time polynomial nonlinear
state-space models (PNLSS) (Paduart et al., 2010), al-
though all statements will hold for the entire set of output
error models. As generic set of equations we consider
{
x(k + 1) = Ax(k) + Bu(k) + f(θf ,x(k),u(k))

ŷ(k) = Cx(k) + Du(k),

(1a)

(1b)

where k = t/Ts is the time index with Ts the sampling
period and the matrices have the following dimensions:
A ∈ Rn×n with n the number of state variables, B ∈ Rn×m
withm the number of input variables, C ∈ Rp×n with p the
number of outputs, D ∈ Rp×m and θf ∈ Rnθf containing
the parameters of the nonlinear function f. Grouping all
unknowns in a single vector θ ∈ Rnθ using the vec-operator
to stack matrix elements we have

θ = [vec(A)T vec(B)T vec(C)T vec(D)T θTf ]T . (2)

Problem statement: given an input vector u ∈ Rm×N
and an output vector y ∈ Rp×N , find the minimising θ

arg min
θ

N∑

k=1

‖y(k)− ŷ(θ, k)‖22 (3)

starting from an initialisation θ0, which includes the initial
state x(0), and for which

lim
k→N

‖y(k)− ŷ(θ0, k)‖22 < L, (4)

with L some practical upper bound.

This can alternatively be interpreted as parameter estima-
tion, initialised from a non-contractive model.

Additional requirement: formulate the objective as an
unconstrained problem.

3. UNCONSTRAINED MULTIPLE SHOOTING

The idea is to leverage the smoothness of the objective
function from multiple shooting while loosing the compu-
tationally expensive constraints (Van Mulders, 2012).

3.1 Approach

Consider an input-output data record of finite length N .
Following the principle of multiple shooting the record
is split into M parts, each of length ∆m = N/M . Every
record is attributed an unknown initial condition vector,
x0i (i-th record). The problem is then formulated into two
objective functions, one pursuing the model parameters
θ and one leading to the unknown x0i. Introducing the
sample error of a subrecord as

ei(k) = ‖y(δi + k)− ŷ(x0i,θ, δi + k)‖2, (5)

where k ∈ {1, 2, ...,∆m} and δi = (i− 1)∆m. An average
cost over all subrecords that produce bounded errors is
then given by

Vθ =
1

Mb∆m

M∑

i=1

bie
T
i ei





bi = 1 eTi ei ≤ L
bi = 0 eTi ei > L

Mb =
∑

i

bi
(6)

Notice that one can tune the model parameters without
requiring bounded errors on all subrecords. This will
prevent M from becoming needlessly large when some
subrecords are more sensitive than others. Eq. (6) can
alternatively be used to handle parameter estimation from
multiple experiments, e.g. when the underlying system
is unstable and experiments have to be limited in time
(Shafique et al., 2017).

Each x0i only affects the course of the i-th subrecord.
Hence it is updated following a subrecord specific cost
function

V 0i =
1

∆m
bie

T
i ei. (7)

This is where the unconstrained approach distinguishes
itself from the constrained approach: all sub records are
treated individually, i.e. without linking them with con-
straints, although they jointly contribute to the parameter
update via Eq. (6).

Observe that ∇x0i
Vθ = 1

Mb
∇x0i

V 0i, therefore there is

essentially only one cost function, i.e. Eq. (6).

The approach can be summarised in the following steps:
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(1) Select ∆m, and accordingly also M , on the basis of
the time constant of a linearisation of the model. Use
3 to 5 time constants as rule of thumb. In practice,
monitor the Mb/M -ratio since it will give an indication
of the fraction of subrecords from which is learned.
Avoid training (and potentially overfitting) to only a
handful of subrecords.

(2) Tune the model by descending Eq. (6) and Eq. (7)
simultaneously. An optimisation strategy is provided
in Section 3.3. When a stopping criterion is met, go
back to step (1) and increase ∆m.

(3) Iterating between steps (1) and (2) will guide the
optimiser out of the non-contractive region. Once
successful, continue tuning the model using single
shooting.

The unconstrained multiple shooting approach can hence
be seen as an initialisation for the classical single shoot-
ing method. The final estimate will therefore inherit the
properties of the single shooting estimator.

3.2 On the equivalence with single shooting

It is easy to see that for the limiting case of M = 1, Eq. (6)
boils down to single shooting.

We can moreover show that, in the absence of model
errors and output noise, the global minimum of the single
shooting cost coincides with the global minimum of the
unconstrained multiple shooting cost.

Lemma 1. Let Vθ with M = 1 be called Vs (single
shooting) and let θ∗s be the global minimiser of Vs. In the
absence of model errors and output noise, Vs(θ

∗
s) = 0. The

claim is that Vθ(θ
∗
s) = 0 for any M ≥ 1 (single shooting

and multiple shooting).

Proof : Let x(θ∗s) be the simulated state vector found fol-
lowing single shooting and choose the initial condition vec-
tor x0i of the i-th data record (single or multiple shooting,
i = 1, . . . ,M) equal to x(θ∗s) at the corresponding time
step. Then the state vector following (single or) multiple
shooting with M data records is the same as x(θ∗s) when
θ = θ∗s , and thus Vθ(θ

∗
s) = 0. 2

Note that step (3) of the approach consists of single
shooting. Hence, the estimation of x0i , and potentially
the introduced errors on the initial conditions, become
obsolete.

3.3 Optimisation scheme

Minimising Eq. (6) and Eq. (7) can be tackled using
any nonlinear optimisation algorithm. We will discuss
one particular strategy, based primarily on the classical
Levenberg-Marquardt (LM) algorithm. LM balances gra-
dient descent and Gauss-Newton in order to benefit from
a large region of convergence (gradient descent) as well as
from fast convergence (for quadratic cost). The parameter
update is computed by solving

(JTJ + λ2Inθ )∆θ = −JTe︸ ︷︷ ︸
1
2∇θV

, (8)

with λ the damping factor determining the weight between
both methods. Large values of λ favour gradient descent,

small values lean towards Gauss-Newton. When used to
descend Eq. (6), e = [eT1 . . . eTM ]T , is a concatenation

of the subrecords of errors and J(k) = ∂e(k)
∂θ (model

parameters are updated on the basis of all subrecords),

while when used for Eq. (7) e = ei and J(k) = ∂ei(k)
∂x0i

.

Notice that λ plays a double role. Apart from balancing
both methods it also governs the step size. This turns
out to be unpractical, especially in those cases where the
gradient blows up due to high errors, i.e. within non-
contractive regions. We propose to add an alternative
optimisation loop, along side the Levenberg-Marquardt
loop. This alternative loop optimises along the normalised
gradient and includes a scan over the step size (line search).
Hence, even for large gradients (due to high errors) an
appropriate step size can be found. The update is then
given by

∆θ = −α JTe

‖JTe‖2
, (9)

with α the learning rate. Switching between normalised
gradient descent and Levenberg-Marquardt is done on the
basis of the size of the error. As quantifier the relative
root-mean-squared error is used,

erel =
rms(e)

rms(y)
. (10)

Whenever erel > 10 normalised gradient descent is used,
for erel < 10 LM is used. The optimisation algorithm is
schematised in Fig. 1. It illustrates the update of both
the model parameters and the x0i vectors by collecting
them together in θ. Correspondingly also the Jacobians
are collected in J. A typical flow of operation could be as
follows:

• Evaluate whether erel > 10, if true continue with
normalised gradient descent.

• Evaluate Eq. (9), update the parameters and recom-
pute the cost.

• If the update is successful, double α, if not, α = 0.5α.
• Continue until erel > 10 is false, then enter the LM

loop.
• Evaluate Eq. (8), update the parameters, and recom-

pute the cost.
• If the update is successful, lean towards Gauss-

Newton: λ = 0.5λ, if not lean towards gradient de-
scent, λ =

√
10λ.

• Iterate until the maximum number of iterations is
reached.

Notice that an update is only considered successful when
(1) the cost has dropped and (2) M ′b ≥Mb, i.e. the number
of subrecords producing bounded errors may not drop.

3.4 A Van der Pol example

The Van der Pol equation is a second order ODE with a
position dependent damping term,

d2y(t)

dt2
− β dy(t)

dt
+ γy(t) + εy2(t)

dy(t)

dt
= u(t). (11)

It is particularly well suited to illustrate the unconstrained
multiple shooting approach since it results in an unstable
fixed point at the origin whenever β > 0. For a typical
application, ε would need to be tuned in order to counter
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Fig. 1. Schematisation of the double optimisation loop. When erel > 10, steps are computed using normalised gradient
descent, otherwise Levenberg-Marquardt is used. Primes denote updated values.

We will study the scenario where " is to be estimated from
input-output data while initialised from "0 = 0, evidently
lying in a non-contractive region of the parameter space.

To comply with the discrete time PNLSS structure
(see Section 2) Eq. (11) is discritised using a first-
order Euler approximation. With the state vector being

x = [y(t) dy(t)
dt ]T , and a sample period Ts we have the

nonlinear state-space model

8
>>><
>>>:

x(k + 1) =

h
1 Ts

��Ts �Ts + 1

i
x(k) +

h
0
Ts

i
u(k)

+

h
0

�"Ts

i
x2
1(k)x2(k)

ŷ(k) = [1 0]x(k).

(12a)

(12b)

For small Ts Eq. (12) approximates Eq. (11). In this
context we are not concerned with approximation errors
and will consider the discretised model (Eq. (12)) as the
true underlying model. The following data are generated
for training:

• � = 9.4248, � = (2⇡5)2, " = 9.4248, Ts = 0.001.
• u(k): random-phase multisine realisation (Pintelon

and Schoukens, 2012), rms(u) = 500, excitation band
0 Hz - 40 Hz in steps of 2f0 = 0.4 Hz (odd-multisine),
N = 5000 samples. Notice that the frequency band
contains the eigen-frequency of the linear part, fn =
1
2⇡

p
� = 5 Hz and multiples of fn.

For the sake of illustration all parameters, except for ",
will be assumed fixed. Hence a 1-dimensional cost function
can be drawn. This is depicted in Fig. 2. The hatched
area indicates the non-contractive region. In order to
estimate ", initialised from "0 = 0, we can use multiple
shooting. Following the scheme in Fig. 1 we first select an
appropriate length for the subrecords. In this case M = 7
seems adequate since �mTs = 3.75⌧ with ⌧ = 1/fn (the
time constant). A simulation of the subrecords is shown
together with the original signal in Fig. 3a. The initial
conditions at the start of each subrecord are initialised
with zeros, i.e. x0i = 0.

-2 0 2 4 6 8 10 12 14 16

-60

-40

-20

0

20
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80

Fig. 2. Cost as a function of ", computed from Eq. (12)
on the basis of the training data. The hatched area
indicates the non-contractive region.

Fig. 3b shows again the simulated subrecords, this time
after tuning " and all x0i . Close inspection of the signal
reveals small gaps between the subrecords. This indicates
minor errors on x0i which may still exist given the un-
constrained nature of the approach. The initial conditions
x0i become however obsolete when the model is used in
normal operation (single shooting). At that point only the
accuracy of the model parameters matter.

4. BENCHMARK PROBLEMS

We will discuss two scenarios in which unconstrained mul-
tiple shooting can provide a solution, illustrated on the
basis of the Bouc-Wen system identification benchmark
(Schoukens and Noël, 2017): Section 4.1 discusses inten-
tional unstable initialisation of the linear part of a PNLSS
model and Section 4.2 is on unintentional unstable initial-
isation based on a decoupled polynomial model (Decuyper
et al., 2019b).

The Bouc-Wen system has been intensively used to repre-
sent hysteretic e↵ects in mechanical engineering (Morrison
et al., 2001; Bertotti, 1998; Mueller, 1985). The hysteresis

Fig. 1. Schematisation of the double optimisation loop. When erel > 10, steps are computed using normalised gradient
descent, otherwise Levenberg-Marquardt is used. Primes denote updated values.

the negative damping and create a periodic orbit (stable
limit cycle).

We will study the scenario where ε is to be estimated from
input-output data while initialised from ε0 = 0, evidently
lying in a non-contractive region of the parameter space.

To comply with the discrete time PNLSS structure
(see Section 2) Eq. (11) is discritised using a first-
order Euler approximation. With the state vector being

x = [y(t) dy(t)
dt ]T , and a sample period Ts we have the

nonlinear state-space model



x(k + 1) =

[
1 Ts

−γTs βTs + 1

]
x(k) +

[
0
Ts

]
u(k)

+

[
0
−εTs

]
x21(k)x2(k)

ŷ(k) = [1 0]x(k).

(12a)

(12b)

For small Ts Eq. (12) approximates Eq. (11). In this
context we are not concerned with approximation errors
and will consider the discretised model (Eq. (12)) as the
true underlying model. The following data are generated
for training:

• β = 9.4248, γ = (2π5)2, ε = 9.4248, Ts = 0.001.
• u(k): random-phase multisine realisation (Pintelon

and Schoukens, 2012), rms(u) = 500, excitation band
0 Hz - 40 Hz in steps of 2f0 = 0.4 Hz (odd-multisine),
N = 5000 samples. Notice that the frequency band
contains the eigen-frequency of the linear part, fn =
1
2π

√
γ = 5 Hz and multiples of fn.

For the sake of illustration all parameters, except for ε,
will be assumed fixed. Hence a 1-dimensional cost function
can be drawn. This is depicted in Fig. 2. The hatched
area indicates the non-contractive region. In order to
estimate ε, initialised from ε0 = 0, we can use multiple
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-60

-40

-20

0

20
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80

Fig. 2. Cost as a function of ε, computed from Eq. (12)
on the basis of the training data. The hatched area
indicates the non-contractive region.

shooting. Following the scheme in Fig. 1 we first select an
appropriate length for the subrecords. In this case M = 7
seems adequate since ∆mTs = 3.75τ with τ = 1/fn (the
time constant). A simulation of the subrecords is shown
together with the original signal in Fig. 3a. The initial
conditions at the start of each subrecord are initialised
with zeros, i.e. x0i = 0.

Fig. 3b shows again the simulated subrecords, this time
after tuning ε and all x0i . Close inspection of the signal
reveals small gaps between the subrecords. This indicates
minor errors on x0i which may still exist given the un-
constrained nature of the approach. The initial conditions
x0i become however obsolete when the model is used in
normal operation (single shooting). At that point only the
accuracy of the model parameters matter.
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(a) Simulation with ε = ε0.
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(b) Simulation after tuning ε.

Fig. 3. Unconstrained multiple shooting applied to the
estimation of ε (Eq. (12)), initialised from ε0 = 0
in the non-contractive region. The record is split into
M = 7 subrecords, preventing the instability to build.

4. BENCHMARK PROBLEMS

We will discuss two scenarios in which unconstrained mul-
tiple shooting can provide a solution, illustrated on the
basis of the Bouc-Wen system identification benchmark
(Schoukens and Noël, 2017): Section 4.1 discusses inten-
tional unstable initialisation of the linear part of a PNLSS
model and Section 4.2 is on unintentional unstable initial-
isation based on a decoupled polynomial model (Decuyper
et al., 2019b).

The Bouc-Wen system has been intensively used to repre-
sent hysteretic effects in mechanical engineering (Morrison
et al., 2001; Bertotti, 1998; Mueller, 1985). The hysteresis
loop is modelled using a nonlinear memory-dependent
restoring force (fH). The dynamics of a single-degree-of-
freedom Bouc-Wen oscillator are governed by the second
order nonlinear ODE,

mÿ(t) + cẏ(t) + ky(t) + fH(y(t), ẏ(t)) = u(t), (13)

where k and c are the linear stiffness and viscous damping
coefficients, respectively. The hysteretic force fH obeys the
first order ODE,

ḟH(t) = αẏ(t)−
(
γ|ẏ(t)||fH(t)|ν−1fH(t) + δẏ(t)|fH(t)|ν

)
, (14)

with the Bouc-Wen parameters α, β, γ, δ and ν. We will
consider a particular realisation with the following setting
of parameters:

Parameter m c k α β γ δ ν
in SI unit 2 10 5 104 5 104 1 104 0.8 -1.1 1

The benchmark dataset consists of 4 realisations of a
random-phase multisine exciting the frequency band 5 −
150 Hz. The input level corresponds to rms(u) = 50 N.
The signal-to-noise ratio on the output is roughly 40 dB.

0 50 100 150 200 250 300

Iterations

-100

-80

-60

-40

-20

99

99.5

100

100.5

101

Fig. 4. Unconstrained multiple shooting applied to a non-
contractive estimate of the BLA of the Bouc-Wen
benchmark data. Green indicates steps computed
using normalised gradient descent. Blue shows LM
steps. The first blue plateau is reached for M = 437.
From thereon single shooting is used (M = 1) until
the second plateau is reached. Grey indicates the
portion of subrecords which are used for training (the
records that produce bounded errors).

4.1 Non-contractive linear initialisation of a PNLSS model

Estimating a PNLSS model of the form of Eq. (1) requires
a three-step procedure (implemented in the PNLSS tool-
box (Tiels, 2016)):

(1) Identify a non-parametric linear model from the data,
preferably the best linear approximation (BLA) (Pin-
telon and Schoukens, 2012).

(2) Obtain a parametric model of the non-parametric
BLA. This is typically done using linear frequency-
domain subspace identification (McKelvey et al.,
1996; Pintelon, 2002).

(3) Use LM to continue to tune both the linear and the
nonlinear model parameters.

The explicit linear step in the process may be troublesome
given the fact that this linear initialisation needs to be con-
tractive. If not, one cannot pass on to the nonlinear stage
using conventional optimisation algorithms. In some cases,
a non-contractive linear model might by better suited (e.g.
the Van der Pol model in Section 3.4). Moreover, many lin-
ear estimation techniques do not have stability as a direct
objective. In the frequency-domain subspace algorithm of
step (2) the cost is minimised on the FRF and not in
an output-error sense. We will show how unconstrained
multiple shooting can be used to circumvent this problem.

For the sake of illustration we will deliberately choose
a non-contractive linear model, computed from the sub-
space identification algorithm of step (2), implemented in
the PNLSS toolbox. The model parameters are listed in
Appendix A. It is a fourth order parametric estimate of
the BLA. To initiate the unconstrained multiple shooting-
loop M is set to 437. This corresponds to a ∆m = 375
samples which corresponds to 3 time constants. The course
of the optimisation is depicted in Fig. 4. First, a plateau
is reached for M = 437. Meanwhile the model has al-
ready become contractive. Hence M is set to 1 (single
shooting) and the optimisation is reinitiated. An accu-
rate final model is obtained yielding a figure of merit:

eRMS =
√

1/N
∑N
n=1(yval − ŷval)2 = 1.88× 10−5.
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4.2 A decoupled PNLSS model of the Bouc-Wen system

It was shown that accurate models of the form of Eq. 1
can be obtained from the training data (Noël et al. (2017)
and Section 4.1). In those cases, the nonlinear function
was modelled by a generic multivariate polynomial, i.e.
f(x(k),u(k)) = Eζ(x(k),u(k)). It was however found that
a more efficient parameterisation can be obtained using
so-called decoupled polynomial functions,

Eζ(θf ,x(k),u(k)) ≈Wg (θg,x(k),u(k)) , (15)

with g: Rr → Rr a vector function of r univariate
polynomials and W ∈ Rn×r a linear transformation
matrix. Decuyper et al. (2019b) show that the number
of parameters needed in the decoupled form can be as low
as one third of the original amount, while preserving the
accuracy of the model.

Decoupling multivariate polynomials was introduced in
(Dreesen et al., 2018). Decuyper et al. (2019a) discusses
the approximative nature of Eq. (15). A direct consequence
of the approximation is that, when plugged back into
the nonlinear state-space model, the model is slightly
altered. This modification may push the model into a non-
contractive region, making it again unfeasible to tune it
any further using conventional techniques. We will show
that the unconstrained multiple shooting technique can
be used in this case.

As illustration, the decoupling technique of Decuyper
et al. (2019a) is applied to a third order PNLSS model
containing a multivariate polynomial function f of the
second and third degree. The latter was identified from the
previously described benchmark data. After decoupling we
arrive at the following model:




x(k + 1) = Ax(k) + bu(k) + Wg

(
VT
[
x(k)
u(k)

])

ŷ(k) = cTx(k) + du(k),

(16a)

(16b)

with n = 3, p = 1, m = 1, r = 6 and V ∈ R(n+m)×r. The
univariate polynomials in g are of third order. This model
turns out to be non-contractive (the parameters are listed
in Appendix B), resulting in poor simulation performance.

The optimisation procedure is initiated by setting M =
2000. This corresponds to ∆m = 102, which is approxi-
mately 3 time constants of the BLA. The course of the
optimisation is depicted in Fig. 5. First a number of nor-
malised gradient descent steps are required (indicated in
green), this is followed by the LM loop (blue markers) until
a plateau is reached. At this point the model has already
become contractive. Hence the optimisation is continued
using single shooting until the second blue plateau is
reached.

When the optimisation is completed the model provides
accurate simulation results on the validation data, figure

of merit: eRMS =
√

1/N
∑N
n=1(yval − ŷval)2 = 7 × 10−5

compared to 2× 10−5 before the decoupling was applied.

5. CONCLUSION

In this work an unconstrained multiple shooting algorithm
is introduced. The method allows to tune the parameters of
a nonlinear state-space model even when initialised within
a non-contractive region of the parameter space.
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Fig. 5. Unconstrained multiple shooting applied to a non-
contractive initialisation of the decoupled Bouc-Wen
model (Eq. (16)). Green indicates steps computed
using normalised gradient descent. Blue shows LM
steps. The first blue plateau is reached for M = 2000.
From thereon single shooting is used (M = 1) until
the second plateau is reached. Grey indicates the
portion of subrecords which are used for training (the
records that produce bounded errors).
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Appendix A. MODEL PARAMETERS OF THE
NON-CONTRACTIVE LINEARISATION OF THE

BOUC-WEN MODEL

In a typical PNLSS model, the nonlinear function in the
state equation is modelled using a generic multivariate
polynomial: f(x(k),u(k)) = Eζ(x(k),u(k)) with E a
matrix of coefficients and ζ a vector of monomial basis
functions. As initialisation E = 0. The parameters of the
fourth order BLA are the following:

• A =




1.0402 0 0 0
0 0.9202 − 0.3146 − 0.0067

0 0.3146 0.9070 − 0.0648
0 − 0.0067 0.0648 0.9843


.

• bT = [0.0017 − 0.0013 0.0010 − 0.0004].
• cT = [−0.00002 − 0.0013 − 0.0010 − 0.0004].
• d = 7.655ee−8.

Appendix B. MODEL PARAMETERS OF THE
DECOUPLED BOUC-WEN MODEL

In a decoupled PNLSS model, the nonlinear function in
the state equation is modelled using a vector function
g containing a set of r-univariate polynomials. Hence

f(θg,x(k),u(k)) = Wg

(
VT

[
x(k)
u(k)

])
, with the following

parameters:

• A =

[
0.9384 0.2969 0.0217
−0.3027 0.9271 − 0.0442

0.0963 0.0543 1.0042

]
.

• bT = [−0.0015 − 0.0016 0.0005].
• cT = [−0.0012 0.0009 0.0008].
• d = 7.5029e−8.

• V =

[
0.3896 0.6617 − 0.1549 − 0.1600 − 0.1758 0.4130

−0.9088 − 0.6392 − 0.8475 − 0.3561 0.9482 0.7545

0.1494 0.3919 − 0.5077 − 0.9206 0.2646 0.5101

0.0022 0.0036 0.0009 − 0.0008 − 0.0018 − 0.0002

]
.

• W =

[ −88.6374 32.8868 47.0168 − 28.0746 − 22.4437 − 16.8661
59.8645 − 40.5707 − 125.6225 − 11.6282 20.4816 139.7866
−161.6076 114.1107 156.1952 23.3155 − 39.8400 − 169.9802

]
.

• θTg =

[
42646e−7 31168e−7 18251e−7 40359e−8 76467e−7 16227e−7

0.00395 0.00225 − 0.00725 0.00444 0.02006 0.004150

]
.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

354


