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Abstract: This paper deals with the coordination problem among robots and between robots
and humans using network control methods. In several applications, robots need to collaborate
with humans in order to perform tasks, such as in collaborative transportation of objects,
cooperative assembly of structures, or production line activities. In all these cases, the robot
needs to observe the environment and take actions according to one of more other agents; human
or robotic. When only one more agent is involved (dyadic interactions), the problem is relatively
well studied. However, this paper focuses on when more than one other agent is involved in the
collaboration. All agents are represented as part of a graph that determines their communication
architecture. Network controllers are proposed for this environment and simulations show that
synchronization of all agents is achieved. Furthermore, experiments show that a virtual agent is
able to efficiently interact with humans and synchronize itself to their motion. To our knowledge
this is the first time network control was explicitly applied to this problem.

Keywords: Networked control, pinning control, robots, human-machine interaction,
synchronization.

1. INTRODUCTION

In the last decade, more emphasis has been given to smart
manufacturing processes (Kang et al., 2016) for increased
productivity. The use of robots (usually called collabo-
rative robots, or cobots) in partnership with humans is
one of the technologies that have been investigated in
this context (Sadrfaridpour and Wang, 2018; Mitrea and
Tamas, 2018). Several of the tasks that require Human-
Robot Interaction (HRI) depend on the automatic syn-
chronization of all involved players, humans and robots.
Some of these tasks are the hybrid manufacturing cells
for assembly (Sadrfaridpour and Wang, 2018), collabora-
tive lifting of objects (DelPreto and Rus, 2019), folding
cloths (Saxena et al., 2017), or interacting with multiple
users (Faria et al., 2017).

The types of interactions that are usually considered in the
literature only involve a single human and a single robot.
These types of interactions are called dyadic. Other cases
involve more than one human per robot (Saxena et al.,
2017) or more than one robot per human (Lombardi et al.,
2019).

Some tasks need that the robots be synchronized with
other agents. For example, humans can hand objects to a
robot or vice-versa (Edsinger and Kemp, 2007), or robots
must cooperate with humans in sawing a log (Peternel
et al., 2014). These tasks can be modeled as oscillatory
motion and both humans and robots need to move at
approximately the same frequency.

For tasks that are oscillatory, from a control perspective
(from the point of view of the robot), one important issue is
how to model the interaction between humans and robots.
Synchronization, in this sense, is better modeled as a non-
linear dynamical process and involves some prediction of
the behaviour of the other agents so synchronism can be
achieved. One agent predicts the movement of the other
agent and adjusts its motion accordingly (Vesper et al.,
2010). This is true of humans and possibly also of robots.

This paper deals with the problem of synchronization be-
tween humans and robots in oscillatory tasks. The particu-
lar task in which we are interested is known as the mirror
game (S lowiński et al., 2016). In this game, all players
try to synchronize their motion. For example, the agents
oscillate their fingers in order to approximate the motion
of their neighbours (or of the agents that she/he sees).
The problem is modeled in a network control formulation
and the desired behaviour is that all connected agents
synchronize their motion. In other words, the controllers
seek the ability of guiding the motion of individual agents
towards desired states (Liu et al., 2011; Nozari et al.,
2019). In the specific case, the position of the finger of
all the neighbours (more realistically the average position
of the fingers of the neighbours). The problem is modeled
as a graph in which the nodes are the agents and the egdes
represent the communication among the agents.

Several different solutions for this problem have been pro-
posed in the literature. For example, an optimal controller
was developed to control a virtual player interacting with
a human (Zhai et al., 2016). If machine learning is used,
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Q-learning (Lombardi et al., 2018) or deep learning (Lom-
bardi et al., 2019) can be successfully used. Optimal
control can be very time consuming and depends on a
series of parameters to be properly tuned. Q-learning and
deep learning techniques depend on training data that
may be difficult to come by. In this paper, the control
of the network of agents follows two strategies, either
a pinning control strategy (Wang and Su, 2014) when
synchronization among different virtual agents is done, or
a network control strategy when the virtual agent interacts
with human players.

After formulating the solution of the mirror game as a
network control strategy, we first show that our solution
provides good results when only simulated agents are used.
The simulations use agents in different communication
configurations and show that synchronization is achieved
very quickly. Then, we use the same approach in a live
experiment in which a virtual agent (or robot) is executed
in a computer in a network and two human volunteers
interact with it through a track-pad. Results show that
synchronization is achieved as if only human operators
were interacting.

The rest of the paper is organized as follows. In Section 2,
the mirror game problem is defined, including the met-
rics for evaluating the players’ performance. Section 3
describes how networked control and more specifically
the pinning control strategy is used in the simulation for
synchronization. The experimental setup is also described.
In Section 4, the main results of the paper are presented.
Finally, section 5 concludes the paper.

2. PROBLEM FORMULATION

In this section we discuss the formulation of the problem.
We start by describing the interaction between agents
as a graph in Section 2.1. The dynamic model of the
virtual agents is presented in Section 2.2. The performance
metrics are introduced in Section 2.3.

2.1 Graph Formulation

The game is defined as a graph in which each agent (human
or robot) is a node and the communication between them
is an edge.

Formally, the network of agents can be represented as a
graph, G = {V,E,A}. The node set is defined as V = {vi},
and the edge set is E = {eij}, i, j = 1, 2, ..., N . Two
agents are connected, i.e., they interact, if there is an edge
between them. In practice, this means that one player can
see the other and measure the position of its “finger” (an
actual finger in the case of human players or a moving dot
in the case of a virtual agent), i.e., if eij 6= 0, agent i can
sense (or measure) the state of agent j . Note that the set
is not necessary symmetric, i.e., if player i can see player j,
it does not necessarily follow that player j can see player i.
Therefore, it is possible that the graph is undirected, thus
eij 6= eji. If there are N players in the game, the adjacency
matrix A is an N × N positive semidefinite matrix that
describes the network topology and aij are the elements of
A. We consider that aij = 1 if ∃ eij , and aij = 0 if 6 ∃ eij .

2.2 Virtual Agent Model

The virtual agent is defined as a Haken-Kelso-Bunz (HKB)
oscillator (Haken et al., 1985):

ẍi + (αix
2
i + βiẋ

2
i − γi)ẋi + ω2

i xi = ui (1)

where xi is the position of the ith agent; αi, βi, γi and ωi
are parameters intrinsic to the motion of the ith agent.

For the simulations to be discussed in Section 4, the
derivative ẋi in equation (1) can be calculated with the
integration of equation (1); whereas, for the experiments,
the derivatives are approximated by its first order approx-
imation

ẋi =
xi(tk)− xi(tk−1)

tk − tk−1
(2)

2.3 Performance Evaluation

The performance of the task can be measured in different
ways. For example, we can track the error of each player’s
position (xi(t)) with respect to the mean position of the

group (x̄(t) =
N∑
i=1

xi(t)), i.e.,

εi = |xi(t)− x̄(t)| (3)

Another way is by calculating the relative phase of each
agent. If we let θi(t) be the phase of the position signal
xi(t) of the ith player, we can define the average phase of
the group as

q(t) =
1

N

N∑
i=1

ejθi(t).

Then, the relative phase of each agent is

φi(t) = θi(t)− q(t) (4)

Then, we can track the group synchronization index (Alderi-
sio et al., 2017). If we further define φ̄i as the mean phase of
the ith agent, the coordination of the group (or the group
synchronization index (Alderisio et al., 2017)) is

ρg(t) =
1

N

∣∣∣∣∣
N∑
i=1

ej(φi(t)−φ̄i)

∣∣∣∣∣ (5)

For the results presented in Section 4, we will calculate the
metrics (3), (4) and (5) for the agents.

3. CONTROL

In this section we describe the techniques used for the
control of the virtual agent. Section 3.1 introduces the
general networked control problem. Section 3.2 describes
how synchronization is defined in terms of the networked
control problem. Section 3.3 describes the pinning control
strategy used in simulation. Finally, the mirror game is
discussed in Section 3.4.

3.1 Networked Control

In multi-agent networked systems, information flows from
agent to agent and decisions are made be each individual
controller. Using the notation discussed in Section 2.1,
each node in the set of vertices V is identified as an agent
and the edges in the set E define the communication
between the agents. By using the information received,
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agents change their behaviour. In our problem, informa-
tion is received from agents via measurement of their
positions. Then the problem is to find the control signal
such that the network reaches the desired behaviour. The
dynamics of the agent with respect to their neighbours is
described by

ūi(t) =

N∑
j=1,j 6=i

cijaij

˙̄xi = f(x̄i(t), ūi(t), t) (6)

where:

• ūi is a control signal;
• cij is the coupling strength between the nodes vi and
vj . These parameters are chosen in order to drive the
system to its desired behaviour;

• aij are the values from the adjacency matrix A;
• x̄i = [x1

i , ẋ
n
i ]> ∈ Rn is the state vector of the ith node;

• f : Rn × Rm × [0,+∞) → Rn is a continuous map
function implemented directly from (1).

Notice that it is possible to generalize the formulation in
which the control signal ūi(t) is not given for all agents,
but only a subset K ⊆ V . This will be further explored in
Section 3.3. Now we will define the objective of the control,
i.e., the synchronization of the agents.

3.2 Synchronization of the Agents

Network synchronization means that the states of all nodes
converge to a common value. A complete synchronization
occurs when:

lim
t→∞

‖x̄i(t)− x̄j(t)‖ = 0 (7)

for all i, j = 1, ..., N .

Synchronization is an interesting problem for the evalu-
ation of a control law, since all the nodes in the network
must reach the same value. Note that the system behaviour
achieved through network synchronization depends on
what the nodal states are representing. For example, if the
states are modeling the position of the agents, all players
would try to synchronize the amplitude and phase of the
motion (as in the case studied in this paper). However, if
the nodal states are describing the frequency of the motion,
“synchronized” agents would only repeat the same motion
without regard for the amplitude of the motion.

3.3 Pinning Control

As discussed before, in the context of networked control,
the term pinning control defines the placement of local
feedback controllers on a small fraction of the network
nodes. Such nodes are called pins or pinned nodes. The
nodes that are not directly actuated will be influenced only
through their connections with the pins (Zhi-Hong Guan
et al., 2010; Adaldo et al., 2015).

The problem discussed in this paper is similar to synchro-
nization of networks with time-delay (Liu et al., 2010).
Each agent observes the output of the other agents and
uses that as its own input as if that was a common input
reference trajectory.

(a) Complete. (b) Path. (c) Star.

Fig. 1. Communication configurations for the mirror game.

In pinning control, the number of pins could be as high
as the total number of nodes in the network, i.e., if K is
the set of pins (the nodes that are actuated as defined in
Section 2.1), K ⊆ V . However, Chen et al. (2007) proved
that under certain conditions, as few as only one controller
(actuating on a single node) is capable of synchronizing the
whole network to a target trajectory.

Let us consider again equation (6). Let us assume that:

• the controlled nodes (input set) are the first M nodes
of the network, thus i = 1, ...,M, ..., N ;

• the controllers to be placed in a node vi ∈ K are
ūi(t) = κ(x̄i(t) − s̄(t)), where κ is the control gain.
This control law moves the states of the node (x̄i(t))
to a reference (s̄(t)). Note that all nodes in K have
the same controller gain (κ) and will track the same
reference (s̄).

The objective of the controller is that all nodes be able
to track s̄ at the same time, even the nodes that are not
being directly controlled (Sorrentino et al., 2007) (i.e., they
are all synchronized). The pinning controllability depends
on the values of cij and κ (coupling and controller gains)
over which the synchronization of the network with the
reference is possible.

Given the assumptions above, we can rewrite equation (6)
as (Sorrentino et al., 2007)

ūi = cij

N∑
j=1,j 6=i

aij(x̄j(t)− x̄i(t))

+ cij

M∑
k=1

δ(i− k)κ(s̄(t)− x̄i(t))

˙̄xi = f(x̄i(t), ūi(t), t) (8)

where δ is the Dirac delta function, defining if either a
control input will be applied at the node vi or not.

The control signal ūi(t) is formed by two terms. The first
one describes the relationship between the node and its
neighbours. The second term only applies the feedback
control law if vi is a controlled node (node in K), weighted
by cij . The two values combined are applied to the internal
dynamic of the node vi.

3.4 Mirror game

For the application of networked control systems, we
can represent the mirror game as a graph using the
notation of Section 2.1. The game was implemented first on
simulation and then in an experiment. For the simulation,
the scenarios that we implemented are shown in Figure 1.
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Table 1. Parameters for simulated agents.

Parameter Player 1 Player 2 Player 3 Player 4

α 1 1 3 1
β 2 1 7 1
γ 1 1 0.2 1
ω 1 1.17 1.75 3.05

Fig. 2. Configurations for the experimental mirror game.

The three configurations were implemented to assess the
robustness of the technique. In all cases, the pin node was
always node 2, i.e., this node received the reference, and
all the others tried only to synchronize themselves using
equation (8). For the simulations, the parameters for the
parameters in equation (1) are listed in Table 1. The values
for α, β, γ, and ω are usually defined empirically (Lom-
bardi et al., 2019) and all values were taken from the
literature (Lombardi et al., 2019; Zhai et al., 2016; Haken
et al., 1985; Zhai et al., 2015; Alderisio et al., 2016).

The experiment was executed with three instead of four
nodes. In that case, the ring and complete graphs are
exactly the same as shown in Figure 2. The two human
volunteers had a track-pad and moved their fingers while
trying to synchronize their motion. They also were shown
an image in a monitor that simulated the motion done
by the virtual agent, who also tried to synchronize its
motion with the humans. The virtual agent implemented
equation (1) with α = 1, β = 2, γ = 1, and ω = 1.

4. RESULTS

In this section we show the results for the simulation in
Section 4.1 and the experiment in Section 4.2.

4.1 Simulation

The simulation was run for several different initial condi-
tions (initial position and velocity for each virtual player).
The parameters of equation (8) were set so that all cij = 2
and κ = 2. Even though all players have different oscilla-
tion frequencies (the different values of ω in Table 1), the
desired frequency of oscillation was set to 2 rad/s (i.e., the
reference signal was set to be a sinusoidal with frequency
2 rad/s).

First we ran 100 simulations for the complete graph case
(Figure 1a) and the path graph case (Figure 1b) . The
results are shown in Table 2. As the table shows, the
relative phase and root mean square (RMS) error for both
cases are very small. This means that the players can
efficiently follow the other players.

Figure 3 shows the results for a single run of the two
graphs. In both cases, the complete graph (Figure 3a) and

Table 2. Metrics for 100 trials in the complete graph and
path graph cases.

Metric Complete graph Path graph

Relative phase −0.0045± 0.0025 −0.0376± 0.0043
RMS 0.0228± 0.0038 0.0524± 0.0029

(a) Complete graph simulation.

(b) Path graph simulation.

Fig. 3. Absolute error for two graph configurations.

Fig. 4. Trajectories of the mean of the neighbours and an
agent.

the path graph (Figure 3b), the errors are very small and
all agents indeed converge to the behaviour of the others.

This is further shown in Figure 4. An agent (in this case
agent 4) can perfectly track the mean of the behaviour of
the other players. Also notice that the frequency of the
group is in fact the value set in the reference, 2 rad/s.
Note that we clipped the data to 30 seconds for better
visualization. All the results shown are similar to the ones
found in the literature using other control and/or machine
learning techniques.

We then simulated the scenario shown in Figure 1c in
order to set up the parameters of the controller for the
experiment. In this case, there is no pin node and the
equation used is (6). The value of the control parameters
were set such as cij = 2. These are the same parameters
used in the simulations shown so far. The mean position of
the group and that of agent 2 is shown in Figure 5. Notice
that the agent is indeed able to track the behaviour of
the neighbors (we clipped again the data to 30 seconds
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Fig. 5. Trajectories of the mean of the neighbours and
agent 2 for the star graph.

Fig. 6. Trajectories of the mean of two human volunteers
and a virtual agent.

for better visualization). With this result, we proceeded
to run the experiment described in Section 3.4.

4.2 Experiment

The experiment consisted of two human volunteers and a
virtual agent. Each one of the volunteers was given a track-
pad in which they could move their fingers and they were
asked to try to synchronize their motion. After three trials,
they were presented to a monitor representing a third
track-pad. The motion in the monitor was that of a virtual
agent running a networked control strategy described in
equation (6). The setup just described is exactly the one
shown in Figure 2.

Again, the values of the control parameters were set to
cij = 2. Ten different tests were executed with varying pa-
rameters for the virtual agent. Different virtual agent pa-
rameters were used in the experiments. The parameters are
the same described in Table 1 and three experiments were
performed for the parameters shown in column “Player
1”, three for the parameters shown in column “Player 2”,
two for the parameters shown in column “Player 3”, and
two for the parameters shown in column “Player 4”. The
paths of the group and the virtual agent for one experiment
(with parameters of “Player 1”) are shown in Figure 6. As
it can be seen in the figure, the virtual agent can mimic
the behaviour of the human players.

Another way to access the behaviour of the virtual agent
is by comparing its error with respect to the mean of the
neighbors to the errors of the human players. This is shown
in Figure 7. We shown only the error for the interval
10 s − 20 s for clarity as the remaining of the interval
has the same characteristics. Notice that the errors of the
virtual agent and the humans are indistinguishable.

The same metrics calculated for the simulations were
computed for the experiments. The results are shown in

Fig. 7. Errors of human players and the virtual agent.

Table 3. Metrics for 10 experimental trials.

Metric Experimental results

Relative phase −0.0008± 0.0126
RMS 0.0913± 0.0235

Fig. 8. Group synchronization index for an experiment
between two human agents.

Fig. 9. Group synchronization index for an experiment
involving two human and one virtual agents.

Table 3. The values for the metrics in the simulations
(Table 2) and in the experiments (Table 3) have the same
order of magnitude, meaning that the virtual agent has the
same qualitative behaviour in simulation and experiments.

Finally, the group synchronization index was calculated
for all experiments. First, the value was calculated for
interaction between only the two human volunteers. The
result for one trial is shown in Figure 8, where one can
see that the players are able to synchronize perfectly.
This result is consistent over all the trials. For the case
of three agents interacting (two humans and a virtual
agent), the behaviour is the same. A sample of the time
evolution of the group synchronization index including
the virtual player is shown in Figure 9. The pattern is
always the same. The players take some time to reach a
synchronization steady-state and then keep synchronized
until the end of the trial.

5. CONCLUSION

In this paper we implemented a networked control strategy
for the synchronization of a virtual agent (robot) and
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human players. Simulations demonstrated that the qual-
ity of the results using this technique can be compared
to solutions using other control and/or machine learning
techniques. However, the implementation of the networked
control approach is more straightforward when compared
to optimal control, as it does not need the correct deriva-
tion of a model for predictions or the implementation of
and optimization approach such as gradient descent, or
deep learning approaches, as it does not require a large
amount of data for training.

The solution is robust to changes in the configuration of
the network and to different types of agents. In the future,
we intend to implement it to a robotic arm to analyze
if the implementation advantages of the technique can
be realized for more complex tasks such as cooperative
assembly of structures.
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Teaching robots to cooperate with humans in dynamic
manipulation tasks based on multi-modal human-in-the-
loop approach. Autonomous Robots, 36(1), 123–136.

Sadrfaridpour, B. and Wang, Y. (2018). Collaborative
assembly in hybrid manufacturing cells: An integrated
framework for humanrobot interaction. IEEE Trans-
actions on Automation Science and Engineering, 15(3),
1178–1192.

Saxena, K., Labuguen, R., Joshi, R.P., Koganti, N., and
Shibata, T. (2017). A study on human-robot collab-
oration for table-setting task. In 2017 IEEE Interna-
tional Conference on Robotics and Biomimetics (RO-
BIO), 183–188.
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