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Abstract: In the paper, we formulate the problem of charging electric vehicles with a time-
dependent energy source as a Markov Decision Process (MDP), with states defining the presence
of cars, their individual levels of charge as well as the level of available renewable energy and
storage devices. We exploit MDPs-based online algorithms such as Monte-Carlo Tree Search
(MCTS) to overcome the scalability issues associated with charging of a large number of EVs,
which corresponds to real distributed networks with flexible options. Using MCTS, we were
able to generate optimal policies that balanced the energy toll on the electric grid with the final
charge levels of each vehicle. We compare the performance of offline MDP solvers (Discrete Value
Iteration algorithm) and online MDP solvers (MCTS) as well as reinforcement learning-based
solvers (Q-learning) to find the optimal policy for EV’s flexible charging optimization.

Keywords: electric vehicles, charging, flexibility, Markov decision process, stochastic
optimization

1. INTRODUCTION

The large-scale integration of electric vehicles (EVs) into
the power grid brings both challenges and opportunities to
the system performance. On one hand, the load demand
from EV charging imposes a large impact on the stability
and efficiency of the power grid. On the other hand, EVs
could potentially act as mobile energy storage systems
to improve power grid performance, such as load flat-
tening, fast frequency control, and facilitating renewable
energy integration. Evidently, uncontrolled EV charging
could lead to inefficient power network operation or even
security.

Since deep market penetration of EVs will impose substan-
tial current demands on an already fragile electricity grid,
an optimal policy is sought to schedule smooth charging of
EVs overnight and minimize the need for non-renewable
electricity sources. In the paper, we propose to do by
structuring the problem as a Markov Decision Processes
(MDP) and performing online MDP solvers

2. PROBLEM STATEMENT

Especially in the distribution network, an uncontrolled
integration of EVs causes an increased need for grid ex-
? This work was supported by the Russian Scientific Foundation
(No. 19-49-04108) and the German Science Foundation/DFG (No.
RE 2930/24) under the project ”Development of Innovative Tech-
nologies and Tools for Flexibility Assessment and Enhancement of
Future Power Systems”.

pansion. Table 1 shows the estimated grid expansion costs
of different studies for the German grid. They calculate
costs between 11bn euro and 253bn euro for uncontrolled
and uncoordinated charging of EV’s battery for different
scenarios.

Table 1. Estimated Grid Extension Cost

Study Year Grid
Level

EV
pene-
tration

Grid ex-
tension
costs

Pregger and
et al (2012)

2012 HV, MV,
LV

5,1 Mio ≺ 3%

Friedl and et al.
(2018)

2018 LV 50%,
100%

11, 26 bn
euro

Brundlinger
and et al.
(2017)

2017 HV, MV,
LV

100% 146-253
bn euro

Uncontrolled charging processes, especially on private
charging infrastructure, cause load profiles whose max-
imum values are at the same time as the maximum of
the standard load profile. Figure 1 shows the load profiles
of the two charging cases “charging after arriving after
the last trip” and “charging after arriving after work”.
Both profiles are for charging at home and calculated
for a maximum charging power of 3.7 kW and 11 kW
J.Maasmann (2019).

In combination with the standard load profile overload
situations or voltage violations are the consequence. A
temporal shift of the two load peaks can lead to a reduction
of the cumulated total load and thus prevent overload
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Fig. 1. Load profiles with EVs of the two charging cases

hbt

Fig. 2. The possible configuration to handle grid controlled
charging

situations. This shift is made possible by making loading
processes flexible. A communication infrastructure is used
to determine which requirements the user of the EVs
has and which grid constraints exist. An algorithm then
determines a charging model, which optimizes the charging
processes for the gird. In addition to the goal of preventing
critical grid conditions, such charging models can also have
additional optimization goals, such as the increased use of
renewable energies.

The charging models presented in the technical literature,
however, overlook the stochastic nature of driving pat-
terns and grid constraints. Here we introduce an efficient
stochastic model to optimally charge an EV while account-
ing for the uncertainty inherent to its use and considering
distribution grid constraints Tang et al. (2016).

To handle grid controlled charging proceeds Figure 2 shows
a possible configuration. The charging models and grid op-
timization runs on the central grid control. This aggregate
information due to station control agents from different
charge controller in the connected charging stations. After
optimization the central grid control system, communicate
the optimal power for the charge procedure via the station
control agent to the charging controller. The charging
controller adjust the maximum or optimal charge power
to the EV.

A classification of handle charging problem can be sep-
arated in three general research fields. To find out more
about the general behavior of charging EV with the electri-
cal grid empiric approaches like Metz and Doetsch (2012)
are necessary who analyses the behavior of the mobility.

Out of these studies, the impact of to the electrical grid
and the need of flexibility can be evaluated. Research on
technology with applied approaches in lab and field tests
shows the possibility for using controlled charging to gen-
erate flexibility during the charging process for different
control strategies (e.g. Maasmann et al. (2014)).

The design of the control strategies differs with the ob-
jective of the control. A promising approach is the for-
mulation of an optimization problem to create a schedule
for the charging processes Mukherjee and Gupta (2015).
Especially for optimization of minimizing financial costs
Sortomme and El-Sharkawi (2012) or to reduce CO2 emis-
sion Jin et al. (2012) under constrains from electrical grid
an optimization of charging schedule is helpful. Important
is a scalable and efficient algorithm for solving there opti-
mizations problems. This approach focus on MDP solvers
for handle charging optimization of EV.

3. MDP DEFINITION FOR CHARGING AN EV

3.1 Markov Decision Processes

Charging requires some form of feedback from the EV
so that it only is pulling energy from the grid during
off-peak times, and only to the extent that the grid can
sustainably handle Mwasilu et al. (2014); Hadley and
Tsvetkova (2009). Therefore, since both of these ideas rely
on a knowledgeable car charging energy distribution cycle,
a problem wrapped in uncertainties, it becomes the basis
for this research.

In order to solve this decision-making problem, it is useful
to model the scenario as a MDP, which allows for princi-
pled decision making under conditions of uncertain sens-
ing. An MDP is a mathematical framework for sequential
decision making under uncertainty, and where all of the
uncertainty arises from outcomes that are partially ran-
dom and partially under the control of a decision maker.
Mathematically, an MDP is a tuple (S,A, T,R), where S
is the state space, A is the action space, T is a transition
function defining the probability of transitioning to each
state given the state and action at the previous time, and
R is a reward function mapping every possible transition
(s, a, s′) to a real reward value Kochenderfer (2015).

3.2 Online and offline solvers

Sequential decision making under uncertainty involves
both online and offline calculations. Methods that use
MDP framework to solve planning in an imperfectly known
and dynamic environment can be classified into two ap-
proaches - offline and online. The first approach embeds
all possible environments and their dynamics as part of
the MDP model. It uses an offline MDP solver to find
a good policy (strategy), prior to execution. When the
environment and its dynamics are largely unknown, this
approach constructs MDP models too huge to be solved
by even the best offline solver today.

The second approach (online) models only the known part
of the environment and its dynamics (both stochastic and
deterministic), and allows the model to change during
execution when more information about the environment
becomes available. The key to the success of this approach
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is an efficient online MDP solver that can compute a
good policy during runtime, following changes in the MDP
model.

For the task of optimization and planning of charging
EVs, the scalability problem becomes relevant with an
increase in the number of machines and other flexibility
options in the distribution grid. One of the options would
be to use a MDP-based online method. This would only
consider the states that are reachable from the current
state and would, therefore, limit the computational power
and storage required for computation by again trading off
the certainty of optimality. One of the popular online MDP
approaches now is Monte Carlo Tree Search (MCTS). This
solver became the foundation of an advanced AI system -
AlphaGO Zero from the Google DeepMind Silver et al.
(2017). In Li and Du (2018); Tomin et al. (2019) several
potential MCTS applications in power systems were pro-
posed, including coordinated management of plug-in EVs.

MCTS is a policy-optimization algorithm for finite-
horizon, finite-size MDP, based on random episode sam-
pling structured by a decision tree. MCTS proceeds in
four phases of selection, expansion, rollout, and back-
propagation. The standard MCTS algorithm proceeds by
repeatedly adding one node at a time to the current tree.
Given that leaf nodes are likely to be far from terminal
states, it uses random actions, to estimate state-action
values. After the rollout phase, the total collected rewards
during the episode is back-propagated through the tree
branch, updating their empirical state-action values, and
visit counts. Upper Confidence Bounds (UCB) is an opti-
mization algorithm that is used for choosing which child
node to expand (i.e., choosing an action) Kartal et al.
(2019). Each parent node chooses its childs with the largest
USB(st, at) value according to the following formula:

USB(st, at) = Q(st, at) + C
√

(ln(Np)/(1 +Ni) (1)

where Ni is the visit count for ith child; Np is the number
of visit counts for the parent node The parameter c ≥ 0
controls the tradeoff between choosing lucrative nodes (low
c) and exploring nodes with low visit counts (high c);
Q(st, at) is the state-action value function associated to
an optimal policy π∗ is used to characterize the quality of
taking action at at state st and then acting optimally and
is defined as:

Q(st, at) = r(st, at) + γminat+1(Qt+1(st+1, at+1)) (2)

It’s important to note that one of the popular reinforce-
ment learning (RL) approaches is Q-learning algorithm,
which implements an iterative approximation of Q(st, at)
through training on temporal differences, when the mean
square error between the predictor and the goal is min-
imized at each step (see Eq. 2). RL solves the problem
of sequential optimal decision making Sutton and Barto
(2018). The mathematical model of this problem is MDP.

3.3 Methodology

The problem of charging an EV can be posed as a conflict
between two opposing objectives. The end-user desires
to have the EV charged and ready for use at his/her
discretion, while also minimizing the costs of running

the EV. Demand for electricity varies over the day and
so does the electricity generated from renewable sources.
This introduces a varying energy price which can make t
beneficial for the end-user to postpone charging his/her
EV. This means the user is faced with the problem of
postponing charging to minimize costs or to charge right
away so as to maximize the availability of the EV.

An optimal policy is sought to schedule smooth charging
of EVs overnight and minimize the need for non-renewable
electricity sources. This is done by structuring the problem
as a MDP and performing various solvers (online and
offline). We scale the MDP to the level of a distribution
network with homes as typical consumers. In this case,
we model n homes on the electric grid, each with an EV
charging port capable of charging one car. It is assumed
that each car follows a unique driving route during the
day and arrives back to the home for charging at night at
a variable time and with variable amount of current charge
c.

In this model, the arrival times of the EVs are determined
on the basis of real measured user behavior. This provides
a more realistic representation of the results than is
possible by using standard load profiles. The departure to
work varies between seven and nine o’clock and the return
home between 16 and 22 o’clock (Fig. 3 and Fig. 4). The
loading outside the house is not considered for the creation
of this load profile.

Fig. 3. The example of house load profiles with ’grid
friendly’ charging of EVs for several consumers of
HTW Berlin

We simplify the simulation of the driving patterns of EVs
and their corresponding state of charge through transition
function for the MDP environment (Fig. 5). In our study,
the transition model mandates that time increments by
one, or tt = tt−1 + 1. Additionally, if a EV is present, it
will remain until the end of the simulation. If a EV is not
present, the probability of it arriving at the next time step
is

Pn,t =
1

1 + exp(−20 t−1
T )

(3)

When a car first arrives, it’s initial charge may take any
value between 0 and C − 1 with equal probability. If a car
was present and the action to charge that car is taken,
the level is incremented by one, up to a maximum charge
potential C.
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Fig. 4. Example of the charge pattern of the EV’s battery.
Above is the state of charge of the vehicle in kWh,
below the power reference of the charging station in
kW shown.

Fig. 5. A probability curve of the EV appearing in any slot
at time t given total timescale T

Thus, we use the simple typical probability of the EV
arrival (Eq. 3), which based on empirical observations of
the driving patterns Metz and Doetsch (2012). Of course,
this is a rough approach, however, the main goal of the
current study is not to capture more of the real-world
dynamics, but to evaluate different MDP solvers for the
EV charge optimization problem.

All EVs draw energy from the same grid, which can have
a renewable energy level (REL) up to R. Charging a EV
will increment its charge level up towards C, the maximum
charge level. However charging too many cars at once will
reduce the energy level. An ideal policy for this model
would discern which cars to charge at every time step,
with the goal that by the end of the night (when t = T ),
all cars would be fully or nearly fully charged while keeping
the grid’s renewable energy mixture level high.

A state-space model is considered to describe the use of
the EV. The states are defined by a four component tuple.

(1) A boolean vector of length n describing whether there
is a car in each port.

(2) A vector providing the charge level for the EV at that
indexed location. Each car can take on discrete charge
levels in the range of [0, C]. If there is no car present,
the charge level reported is zero.

(3) Model car arrival probabilities and renewable level
changes as a function of time in the range of [t, T ].

(4) The current REL, which can take discrete values in
[0, R].

The state space therefore has |S| = 2n · (C + 1)n · (R+ 1)
possible states. The action to take at each time step is
whether to charge each car. The REL is updated based
on the number of actions taken and a function modeling
how the renewable energy source levels change naturally
throughout the day.

rt+1 = rt + addPV (t)− addBat(t)−
∑

n ai
n

. (4)

The AddPV(t) and AddBat(t) functions allow to add a
level of complexity by modeling how renewable energy
changes over time due to external causes. In our default
case, we assume there is AddPV(t) or AddBat(t) equal
zero, but we also explore how our policy changes when we
define these functions.

The reward function is modeled using the current REL r,
charge amounts in each EV c, and time t, by

Rt(s, a) = λr − Σi=1:n exp((C − ci)/C). (5)

The first part of the equation gives reward at each time-
step based on the current REL r. This inherently penalizes
for dropping the REL. The second part of the equation
gives penalties based on the level of charge in each car at
the terminal state. Remaining charge is exponentiated to
more heavily penalize cars with less charge. The relative
weighting of the two components is dictated by λ.

4. EXPERIMENTAL RESULTS

We tested various solvers with a MDP-based environ-
ment of the electricity grid including houses with EVs,
RELs (wind and PV) and batteries (Fig. 6). Using the
POMDPs.jl Julia library Egorov et al. (2017), we evalu-
ated offline MDP solvers (Discrete Value Iteration algo-
rithm, DVI) and online MDP solvers (MCTS) as well as
RL-based solvers (Q-learning) to find the optimal policy
for EV’s flexible charging optimization.

External grid 
(non-renewable 

sources)

Fig. 6. The example of MDP-based environment of the
electricity grid

First of all, we decided to compare the time it takes to find
the optimal policy for each solver for a different number of
EVs. The results of this comparison are presented in Table
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2.It is clearly seen that the offline VDI-based solver does
poorly with the scalability of the task. With the increase
in the number of EVs, the time spent finding the optimal
policy increases significantly.The Q-learning based solver
shows significantly better results in terms of calculation
time. However, the best results are given by the online
MCTS. Therefore, in further experiments we will use the
MCTS-based solver.

Table 2. The time to find the optimal policy
for MDP solvers with different scalability of

the task

Number of EVs DVI MCTS Q-learning

3 145 s 8 s 8 s
4 3108 s 9 s 14 s
5 - 17 s 33 s
6 - 54 s 99 s
7 - 142 s 175 s
8 - 634 s 1011 s
9 - 6985 s 10685 s

Experiments have shown that with decreasing λ, our policy
informs us to take the greedy action, and charge every car
it can. You can observe for the evolution of policy from
more greedy λ = 0.1 to less greedy λ = 50.0 policy (Fig. 7–
9). The color of each block represents the charge of that
EV at that time step, with black indicating a EV is yet to
arrive.

Fig. 7. Charge level 5-car simulation with λ = 0.1

Fig. 8. Charge level 5-car simulation with λ = 10.

For example, as we can see, λ = 0.1 policy cares much more
than every car is charged by the end of the simulation.
However, our MDP-agent try to incrementally charge the

Fig. 9. Charge level 5-car simulation with λ = 50.

cars for most of the time duration in order to keep the
REL high. Opposite the λ = 50.0 policy focuses more on
keeping the rel high throughout the simulation. Therefore,
the MDP-agent charges only one EV at a time, even if in
doing so, the EV will not be fully charged at the end of
the simulation.

This is because the reward function (5) exponentially
penalizes lack of charge, meaning that one car having a
small amount of charge is much more costly than having
two cars with a moderate amount of charge. According
Chandramoul et al. (2018), this mirrors what we would
wish to see in real-world implementation of such a tool,
since making the decision to not charge one person’s car
and fully charge another’s could lead to consumer distrust
of the grid operator.

Next, we observe what happens when we model additional
renewable energy being added to the system as it is
collected from PV sources. We model to add a level of
PV energy for each of the first T/2 time steps. This
would correspond to starting the simulation when there
is daylight still available. It’s important to note that even
though we use = 10.0 (less greedy policy) (Fig. 10), our
updated policy still informs us to take the greedy action,
and charge every car it can during timestep 3, since there
would be no reduction in REL in the first few timesteps.

Fig. 10. Charge level 5-car simulation with λ = 10 with
added PV for first T/2 time steps

A run with with added batteries for charging on the second
T/2 time steps indicated that this hypothesis to be true
(Fig. 11). We can show a more greedy policy since there
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would be a reduction in RELs in the second T/2 timesteps
because we should charge the batteries.

Fig. 11. Charge level 5-car simulation with λ = 10, added
battery charging

5. CONCLUSION

We proposed an MDP-based EV charging process model
to find an optimal policy with respect to the number of
cars that need to be charged, the length of time available
for charging, and different REL dynamics without any
prior knowledge of uncertainties. When we added external
sources of energy, as expected, the model chose to greedily
charge the cars when RELs were high, and become more
conservative as these levels dropped (in the case of adding
batteries for charging). Due to the curse of dimensionality,
standart MDP-based approaches, including RL, fail to
solve large-scale problems in real-world scenarios. We have
exploited MDPs-based online algorithms such as MCTS to
overcome the scalability issues associated with charging of
a large number of EVs.

Future work could also utilize other methodologies to
capture more of the real-world dynamics and constraints
inherent in the problem. For example, cars do not all
arrive at the same time, so a future model could utilize
a structure more similar to a partially observable MDP
to determine an optimal policy despite uncertainty as to
each car’s arrival time. This could also implement a form
of machine learning to determine approximate arrival and
departure times for each car over time.
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