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Abstract: In this work, the full-state observability properties of a class of biological wastewater
treatment plants are analysed. Specifically, the five biological reactors and the secondary settler
in the Benchmark Simulation Model no. 1 are studied. For the task, we represented the activated
sludge plant as a dynamical system consisting of 145 states, 8 controls, 14 disturbances and 12
outputs and as a complex network to study its observability properties from a structural and a
classical point of view. By analysing the topology of the network, we show how the system is not
observable in the structural sense and thus how it is also not observable in the classical sense for
all possible realisations of its parameters. As this is also true for a linearisation commonly used
in the literature, we analysed a reduced-order system that, based on such linearisation, does not
consider the state variables corresponding to dissolved oxygen and alkalinity in the upper-layers
of the settler. We show how this system configuration is only observable in a structural sense.
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1. INTRODUCTION

Wastewater treatment is facing unprecedented challenges
due to stricter effluent requirements, costs minimisation,
sustainable reuse of water, nutrients and other resources,
as well as increasing expectations in the public to attain
high service standards. Because of their wide diffusion,
activated sludge processes play a key role in the biological
treatment of wastewater and their efficient operation and
control has a large technological and societal impact.

Many control strategies for activated sludge plants have
been proposed in the industrial and academic literature
(Olsson et al., 2013). Important research efforts have
been possible thank to a number of support tools that
provide a simulation protocol for real-world activated
sludge processes. The Benchmark Simulation Model no.
1 (BSM1, Gernaey et al. (2014)), specifically, offers a
simulation protocol and a general platform for analysing
common activated sludge processes subjected to typical
municipal wastewater influents. Though the availability of
BSMs has stimulated the design of a number of modelling
and control solutions, yet too little has been done to study
this model and its measurements from a system analytical
perspective. To the best of our knowledge, still too few
works discuss, for example, state estimation (Busch et al.,
2013) and observability (Yin and Liu, 2018) of BSMs.

In this work, the observability properties of a class of
activated sludge plants represented by the BSMI1 are
investigated. For the task, we mapped the dynamical
system consisting of 145 state variables, 8 controls, 14

* This work has been done within the international project Con-
troldReuse, part of the ICAWATER programme, in the frame of the
collaborative international consortium of the Water Challenges call
2017, Changing World Joint Programme Initiative (Water JPI).

Copyright lies with the authors

disturbances and 12 outputs onto a complex network in
which we studied full-state observability properties of the
model from a classical and a structural point of view. As we
are primarily interested in determining whether the plant
is observable under all feasible linearisations, we studied
the structural observability (Lin, 1974; Liu et al., 2013)
of the model. The study complements our work on the
controllability of this class of models (Neto et al., 2020).

According to our results, BSM1-plants are not structurally
observable and thus they are not full-state observable also
in a classical sense. As the result is true for almost all
linearisations of the nonlinear model, we firstly used struc-
tural observability to show that a linearisation commonly
used in the literature is not full-state observable, and then
we verified the classical counterpart of this result using the
Popov-Belevitch-Hautus test (Hautus, 1969). We complete
the analysis, by discussing the observability of a reduced-
order system with 137 state variables in which dissolved
oxygen and alkalinity in the upper layers of the settler are
removed. This system is based on the same linearisation
and output variables and is only structurally observable.

The work is presented as follows: Section 2 describes an
activated sludge plant and its state-space model, Section
3 overviews the classical and structural notion of full-state
observability, Section 4 discusses our results on the full-
state observability for this class of activated sludge plants.

2. THE ACTIVATED SLUDGE PLANT

We consider the activated sludge process in a conventional
wastewater treatment plant. The process consists of five
biological reactors and a secondary settler (Fig. 1).

The treatment is based on the denitrification-nitrification
process in which bacteria reduce nitrogen present in form
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Fig. 1. The activated sludge plant: Process layout.

of nitrate and ammonia in the wastewater into nitrogen
gas to be released into the atmosphere. No chemicals
are added to the process and only oxygen is potentially
added by insufflating air into each reactor. In the aerated
reactors, the ammonium nitrogen (NH4-N) contained in
the wastewater is oxidised into nitrate nitrogen (NOs-
N), which is in turn reduced into nitrogen gas in the
anoxic reactors. The process begins with a first reactor
where wastewater from primary sedimentation, return
sludge from secondary sedimentation and internal recycle
sludge are fed. The outflow from the first reactor is
then sequentially fed to the downstream reactors and,
eventually, from the fifth reactor to the secondary settler.
Mixed liquor from the fifth reactor is recirculated into
the first reactor together with the recycle sludge from
secondary sedimentation, as mentioned. Each reactor is
described by the Activated Sludge Model no. 1 (Henze
et al., 2000), while the settler is represented by the 10-
layer non-reactive model proposed by Takéacs et al. (1991).
Under this configuration, the bioprocess corresponds to the
Benchmark Simulation Model no. 1 (Gernaey et al., 2014)
and it will be referred to as the activated sludge plant.

From the system perspective, the dynamics of each k-th re-
actor in the activated sludge plant, if studied individually,
are represented using 13 state variables, the concentrations

AW — [gAK) GAW) Y AW) Y AG) xAG) Y AK) xak)
S5 S8 st sy XA(k) sS4 (k=1,....5),

and one controllable input, the oxygen transfer coefficient
u® = Kpa®. The dynamics of the m-th layer in the
settler are described using 8 state variables, concentrations

25(m) _ [Xg(m) Ss(m) Sg(m) Sg(m) Sif%n)

SY st g5 (m =1,...,10).

Moreover, the activated sludge plant is subjected to three
additional controllable inputs, the internal and external
sludge recycle flow-rates (Q4 and Qr, respectively) and
the wastage flow-rate Qyy, in addition to 14 uncontrollable
inputs or disturbances, the influent flow-rate Q;x and its
concentrations zAUN) all directly implemented in the first
reactor. Wastewater concentrations for the internal recycle
are given by 240®) whereas 5 are the concentrations
within the external recycle and wastage flow. Table 1
provides a brief description of the concentration variables.

As for the measurements, we consider a typical arrange-
ment with a set of sensors measuring the concentrations

A1 (5 A(5 10
155"+ 55" Sy&) Saik X35

S0 BOD;?“O) copst0) N7UO
The effluent concentrations of biochemical oxygen demand
(BODs3), chemical oxygen demand (COD) and total nitro-

y:

gen (Nror) are defined in terms of state variables to be
BOD?OO) —((1- fP)(XS(lo) +XS(1O)) " Sg(lo)

coDpS10) — SS(lO) i SS(lO) +XS(1O) +Xs(lo) +XS(10)
N;(Olg) _ SS(IO) i SS(lO) Jrz.XB(XS(lo) +XS(1O))

S(10 S(10
+ S + X +ixp(Xp0Y + X700,

in which the stoichiometric parameters (fp, ixp, and
ixp) are given in Gernaey et al. (2014) and the effluent

concentrations X **) (Xgélo)/Xf)Xf(s) with a €
{I,S,BH,BA, P, ND}, are computed in terms of X; =

075X + x50+ X5 + X5 + Xp).

Table 1. Activated sludge plant: Concentra-
tions (state variables and measurements).

Description (Units)

St Soluble inert organic matter (g COD m™—3)
Ss Readily biodegradable substrate (g COD m™3)
X7 Particulate inert organic matter (g COD m~3)

Xs Slowly biodegradable substrate (g COD m™—3)

Active heterotrophic biomass (g COD m™3)

Active autotrophic biomass (g COD m™3)

Xp Particulate products from biomass decay (g COD m~3)
So Dissolved oxygen (g Oz m~3)

SNo Nitrate and nitrite nitrogen (g N m~3)

SNH NHIJr NHj3 nitrogen (g N m~3)

SND Soluble biodegradable organic nitrogen (g N m~—3)
Xnp | Particulate biodegradable organic nitrogen (g N m~3)
Sark | Alkalinity (mol HCOZ m~3)

Xgs | Total suspended solids (g COD m~3)
BODs5 | Biochemical oxygen demand (g COD m~3)

COD | Chemical oxygen demand (g COD m~3)

Nror | Total nitrogen (g N m—3)

The state-space model of the activated sludge plant is
i(t) = f(z(t), u(t), w(t)|bz) (2a)
y(t) = g(x(t), u(t), w(t)|0,) (2b)

with state variables z(t) € R]ZV’(; = [z40) ... 2AB) 2S(1)

30T output variables y(t) € R;Vg, controllable

inputs u(t) € RY; = [Qa Qr Qw KraV - Kpa®)]”
uncontrollable inputs w(t) € RYy = [Qry 24UN]T. The

time-invariant dynamics f(-|0, ) and ¢g(-|0y) depend on a
set of stoichiometric and kinetic parameters ¢, and 0,
(Gernaey et al., 2014). Summarising, we have N, = 13 x
54+ 8 x 10 = 145, N, = 3+ 5 = 8 controllable inputs,
N, =1+ 13 = 14 disturbances and N, = 12 outputs.

The default control strategy proposed for the BSM1 con-
sists of two low-level controllers: ) nitrate and nitrite

nitrogen concentration in the second reactor, Sﬁg), by ma-
nipulation of the internal recycle @ 4; i) dissolved oxygen
concentration in the fifth reactor, 53(5), by manipulation
of the oxygen mass transfer coefficient K7 a(®). On a higher
level, the performance of the plant is assessed in terms
of flow-weighted time-averaged effluent concentrations of
total suspended solids (Xgg), biochemical oxygen demand
(BODs), chemical oxygen demand (COD), total nitrogen
(N7or) and ammonia (Syg). Typically, control perfor-
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mance is assessed in terms of effluent quality by measuring
and minimising the compound effluent concentrations.

The focus of this work is on the full-state observability
properties of this common class of activated sludge plants.

3. PRELIMINARIES

Consider a dynamical system, state-space representations

&(t) = fe(x(t), u(t), w(t)|0z) (3a)

y(t) = ge(x(t), u(t), w(t)|by) (3b)
describe how the state vector z(t) € R+ evolves in time,
given its current value and a set of controllable and un-
controllable but measurable input vectors u(t) € RV« and
w(t) € RN» - the state equation Eq. (3a) - and how the
state vector is emitted to form the measurement vector
y(t) € RNv - the measurement equation Eq. (3b). The
nonlinear, time-varying and parametric vector functions
fi(:|0z) and g.(-|0,) define the dynamics and the mea-
surement process, respectively. ¢, and 6, are the model’s
parameters. We limit ourselves to time-invariant systems
f(-) and g(-) without feedthrough of the inputs and, with
no loss of generality we will assume an initial time tg = 0.

The way state components interact with each other is
encoded by a N, x N, matrix A, whereas a N, x IV,, matrix
B captures which state components are affected by the
controls and a N, x N, matrix G can be used to identify
which state components are affected by the disturbances.
Similarly, a IV, x N matrix C can be used to encode the
interaction existing between state and output variables.

The structure of matrix A, B, G and C can be deter-
mined using inference diagrams in such a way that ele-
ment A;; (respectively, B;;, G;; and C; ;) is non-zero
and potentially unknown whenever component z; (u;, w;
and again z;) appears in the vector field f;(-) and alge-
braic function g¢(-); that is, whenever the (4, j)-th element
0fi/0x; (0fi/0u;, Of;/0w; and Og;/0x;) in the Jacobian
matrix(es) is not identically null. Evaluating the Jacobians
at some specific point (z/,u,w’) leads to a linearised
system in which A, B, G and C' are assumed to be known
and quantify of the strength of the interactions. A steady-
state operating point is often used for the linearisation.

The structural nature of the state-space representation of
the system can be written using the usual linear model

#(t) = Az(t) + Bu(t) + Gw(t) (4a)
y(t) = Ca(t) (1)

A dynamical system is said to be observable if it is possible
to uniquely determine its initial state from a sequence
of measurements over a finite time interval. This notion
of observability is, in general, a prerequisite for state
estimation and, for known linear time-invariant systems,
sufficient and necessary observability conditions have been
derived from the classical definition by Kalman (1960):

Definition 1. (Observability). The pair (A, C') is said to be
observable in the finite time interval [0,¢;] if and only if
any initial state (0) can be determined by the force-free
evolution of the output vector y(t) over the same interval.

When matrix A and C are known only structurally, we
have to resort to the alternative notion of structural ob-

servability and associated sufficient and necessary condi-
tions. In this section, we briefly overview these approaches.

8.1 Classical observability

Let W,(t) = fot eA"TCTCeATdr be the N, x N, observ-
ability Gramian of a system (A4, C), a sufficient and nec-
essary condition for observability is that det(W,(t)) # 0
for any ¢ > 0. Though this criterion allows for a direct
determination of the initial state x(0) from the y(¢) of
minimum quadratic effort or measurement-energy E(t) =

fot lly()]|?dt, its computation is unpractical. Equivalently,
let O = [CT ATCT (AT)2CT ... (AT)N==1CT]" be the
RNuNa*No gbservability matrix, a sufficient and necessary
condition for observability is that rank(Q) = N,, O must
be full-rank (Kalman, 1960). This criterion is straightfor-
ward and, for low-dimensional systems, its evaluation only
requires a small number of matrix multiplications. For
high-dimensional state vectors, determining matrix O is
troublesome, as the computation is numerically ill-posed.

A scalable alternative is given by the Popov-Belevitch-
Hautus (PBH) observability test, from the Hautus lemma:

Lemma 1. (Hautus, 1969). Let o(A) = {\}7 be the
spectrum of A. The statement ‘the pair (A, C) is observ-
able’ and the two following statements are equivalent:

e rank([A — AT CT]") = N,, VA € C;
o rank([\ — AT C7]") = N,, VA, € 0(4) C C.

Thus, the pair (A4,C) is observable if and only if, for
each eigenvalue \; of A (that is, when rank(\; ] — AT) <
N,), the rows of C' have at least one component in the
state-space direction associated to the eigenvector of A
corresponding to \;, v; € RN+, Eigenvectors v; for which
rank([\;] — AT CT]T) < N, indicate directions that are
unobservable through the measurements from matrix C.

8.2 Structural observability

The measurement process of a linear time-invariant system
(A,C) can be studied by mapping the state and output
equations onto a digraph G = (V,&). The vertex set
V = V4 UV consists of the union of vertex set V4 =
Z1,...,2nN, } of state components and of vertex set Vo =
Eyl, e 7yNy} of outputs, while the edge set £ = 4 U &
is the union of set €4 = {(z;,x;) | Ai; # 0} of directed
edges between state component vertices and set & =
{(zj,yr) | Ck,; # 0} of directed edges between state and
output components vertices. If the elements of A and C'
are either zeros or unknown, then the system is referred to
as a structured dynamical system (Reinschke, 1988).

The pair (A, C) is said to be structurally observable if the
nonzero elements of A and C can be set in such a way that
the system is observable in the classical sense. Formally,

Definition 2. (Structural Observability). The pair (A, C)
is said to be structurally observable if and only if there
exists an observable pair (A,C) of the same dimension
and structure of the pair (A, C) such that [|[A — Al < ¢
and ||C — C|| < e, for an arbitrary small & > 0.
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Two pairs (4,C) and (A, C) have the same structure if
they have the same dimensions and each element A; ; # 0
(respectively, C; ; # 0) whenever A; ; # 0 (C; ; # 0).

As controllability and observability are dual concepts
(Kalman, 1960), the necessary and sufficient conditions for
structural observability can be derived from (Lin, 1974):

Lemma 2. Let G = (V, ) be the directed network associ-
ated to the pair (A4,C). (4,C) is said to be structurally
observable if and only if the following conditions hold:

o (Accessibility) For every z; € V4 there exists at least
one directed path starting from z; to any yx € V.

o (Dilation-free) For every S C Vg4, |T(S)| > |S|, where
T(S) ={z; €V |x; € SN (xs,2;) € E} denotes a
neighborhood set for S.

The first condition can be verified by identifying the out-
put vertices that are accessible from each possible origin
vertex (a state component): Any graph search algorithm
can be used for the task (Cormen et al., 2009). The second
condition can be verified by forming a maximum matching
M C T of an equivalent bipartite graph K = (V:{ U
V,,T') and then checking that all unmatched state ver-
tices x; € V:{ are directly connected to distinct output
vertices in G = (V,€) (Liu et al., 2013). The maximum
matching problem consists of identifying a (possibly not
unique) subset of edges without common vertices that has
maximum cardinality. The bipartite graph K = (VI U
V5 .T') is defined by the disjoint and independent vertex
sets Vi = {af,...,a} } and V; = {a7,..., 2y }, and
by the undirected edge set I' = {(z", z;) | (zi,x5) € €}
Unmatched state vertices linked to distinct output vertices
form a Vj{ —perfect matching. A guarantee of the dilation-
free condition follows from the Hall’s theorem (Hall, 1935).

4. RESULTS AND DISCUSSION

In this section, we analyse the full-state observability prop-
erties for the class of activated sludge process plants rep-
resented by model (2) defined in Section 2. We present the
results about the structural observability of the associated
structural system (A, C) and then we discuss the classical
results obtained for a common linearisation (A°°, C%).
We conclude with the analysis of a reduced-order system.

4.1 Observability of the complete system
For the activated sludge plant () = f(z(¢), u(t), w(t)|0,
with measurement process y(t) = g(x(t),u(t), ()\ )
with N, = 145, N, = 12, N, = 8 and N,, =

the structural pair (A, C) is obtained from the Jacoblan
matrices, in such way that A € R5*145 = 9f/9x and
C € R12X15 = 9g/0z. The associated digraph G = (V, £),
in Fig. 2, is defined by the vertex set V = V4 U Vo =
{@1,.. ., 2145} U {y1,...,y12} and the directed edge set
E=ExUEc = {(zj,2:) | Aij #0}U{(zj,yx) | C; # O}

The topology of network G = (V, £) indicates that the pair
(A, C) is structurally unobservable (Lemma 2). As there

are no paths from the state vertices {Ss(m) Sf\(ﬁ? 0.

to any of the output vertices, the accessibility condition
is not satisfied. Conversely, the dilation-free condition is

)

B
Fig. 2. Network G = (V, £), left, and associated structural
pair (A4, C), right. State vertices x; € V4 are in black,
output vertices y € V¢ are in red. State-state edges
(xi,x;) € £4 and state-output edges (z;,yx) € Ec are
dyed to match the corresponding entries in A and C.
To reduce clutter, state self-loops have been omitted.

I

satisfied by the perfect matching M of size |[M| = N,
obtained by choosing the self-loop associated to each state
vertex. The lack of structural observability implies that
the system is also not full-state observable in a classical
sense. We conclude that for the activated sludge plant
given by model (2) it is not possible to determine the
initial state 2(0), and thus neither intermediate states x(t),
starting from a measurement y(tf). Being of structural
nature, the conclusion is valid also in a classical sense,
whatever the model linearisation. As a result, it is also
not possible to design a full-state-observer based on the
existing measurements, no matter what pair (A, C) is used.

For completeness, we consider the linearisation (A%, C'S%)
corresponding to the fixed point (2%, u®%, w% y*) con-
sidered by Gernaey et al. (2014). This linearisation is com-
monly utilised in the literature and constitutes the default
configuration of the BSM1. We show that this realisation is
unobservable also in a classical sense. The pair (499, C59)
from the Jacobians evaluated at such equilibrium point
(that is, ASS = 0f/0x|ss and C°% = 0g/0z|ss) is
depicted in Fig. 3, together with the weighted digraph
Gss = (Vss,Ess) with vertex set Vgg = Vyss U Vgss =
{z1,... 2145} U{y1,...,y12} and edge set Egg = Egs5 U

Fig. 3. Network Gss = (Vss, Ess), left, associated to pair
(A% O59), right. State self-loops have been omitted.

The spectrum o(A°¥) consists of 69 distinct eigenvalues
{)\i(ASS)}, with {)\1, s ,)\30} C R and {)\31,)@1, sy
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69, Mg} C C. Five complex conjugate pairs of eigenvalues
have algebraic multiplicity equal to two and one real
eigenvalue has algebraic multiplicity equal to twenty-eight.
Being Re();) < 0 for all \; € a(A%%), then A% is a stable
matrix and this plant is considered asymptotically stable.

As expected, also the pair (A%%, B%%) is not full-state
observable in a structural sense, as there is no path from

the state vertices {S5™, S5/ }10__ to any of the output,
vertices. Again, this result is valid also in the classical
sense. The classical counterpart can be verified only by
performing the PBH observability test (Lemma 1), as an

accurate computation of the observability matrix O =
[CSST ASST 0SS . (ASSTYNa=10SSTIT is unfeasible.

V31 I

NO
S(

S(m)
NH
S(m)
ND

S
S
S,
S
S
S
S

S(m)
DALK

Fig. 4. Pair (A%% C%9): Eigenvectors v;()\;) with \; €
o(A%%) such that rank([\;] — ASST C’SST]T) < N,.
Only the real part Re(v;) is being displayed.

The test confirms that the pair (45, C%%) is not full-
state observable, as 4 distinct eigenvalues, including the
real value with multiplicity equal to 28, lead to rank-
deficient matrices [A;J — ASS" CSS"]T. The 31 eigenvec-
tors associated to such eigenvalues are depicted in Fig.
4. Interestingly, note that the non-zero entries of the 28
eigenvectors associated to the real eigenvalue correspond
to state variables relative to soluble matter in the settler’s
last layer. The other three eigenvectors have non-zero en-

tries only at state variables {X}q(k)}izl and {Xﬁ(k)}‘zzl

4.2 Observability of a reduced-order system

Although not realistic, a structurally observable system
can be easily obtained by including, for example, a
set of outputs that directly measure the state variables

{S (m) SALK 10__: a total of 8 sensors would be required.
A more parsimonious solution would be to measure only
the state variables corresponding to the leaf nodes of the

two directed paths connecting state-vertices {SS m)}

and {510 that is, state variables S5\ and Si%lf(
Being observable in a structural sense, both such systems
would be also full-state observable in a classical sense, for
almost all possible linearisations of the model or, equiva-
lently, in the vicinity of all feasible operating points.

Alternatively, it is possible to consider the reduced—order

system in which state variables {S5™, 5110 are
excluded. As these state variables have decoupled dynam-
ics and, as already pointed out, they are not directly
measured, their removal lead to a structurally observable
system of smaller size. As full-state observability in the
structural sense implies observability in the classical sense
for almost all possible realisations of the associated matrix
A € RBTXI7 and C € R'2*137 we conclude that such a

reduced-order system is therefore almost surely observable.

With this respect, we considered the specific linearisation
(A95 C99) of the reduced-order model corresponding to

the usual fixed points (2%, u%9, SS’ySS) considered

by (Gernaey et al., 2014). The pair (455 CS5) and its
associated digraph Gss = (Vsg,Ess) are depicted in Fig.
5. In the following we briefly discuss the stability of this
realisation and we show that it is unobservable in the
classical sense, although observable in the structural sense.

Fig. 5. Network Gss = (]755,555), left, associated to pair
(A9 O59), right. State self-loops have been omitted.

The spectrum of A% consists of 69 distinct eigenvalues
A\i(A%9), among which there are five complex conjugate
pairs each with algebraic multiplicity equal to two and
one real value with algebraic multiplicity equal to twenty.
Also in this case, being Re();(A°%)) < 0 always negative,
this system is considered to be asymptotically stable.

As expected, the pair (A°%, C9) is full-state observable
in the structural sense (Lemma 2). Conversely, the PBH
observability test (Lemma 1) reveals that the same pair is
not observable in the classical sense. In fact, being state
variables {Sg(m),Si(L”;() 1O __ characterised by decoupled
dynamics, their exclusion leads to a spectrum o(A%%) that
still contains a number of eigenvalues that renders the ma-
trix [\ — ASS" CS5"]T rank-deficient. We can interpret
this result by comparison with the pair (A%% C°%), in
which 8 eigenvectors of matrix A% whose non-zero entries

correspond to Sg(w) and Si(LlIO() and their respective eigen-
values are no longer present, while 20 eigenvectors whose
non-zero entries correspond to remaining soluble matter
in settler’s last layer and 3 eigenvectors whose non-zero

entries correspond to {XA(k) Xﬁ(k)}‘zzl are still present.

We conclude that for the activated sludge plant with
measurement process given by the pair (455, C%%) it is
not possible to determine the initial state z(0), neither
intermediate states x(t), starting from measurement y(t¢).

The apparent contradiction between the structural and the
classical result can be explained from the analysis of the
the dilation-free and accessibility condition applied to the
network gss = (Vss,fss) Specifically, as the existence
of a self-loop for each state vertex is sufficient to satisfy
this condition, the output vertices are needed only to
satisfy the accessibility condition. Whenever some of the
self-loop weights are equal, the maximum matching will
underestimate the number of output vertices needed for
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full-state observability (Zhao et al., 2015). This is the case

with (ASS,C5S), where all settler’s soluble components
(respectively, all reactors’ non-reacting components) from
the same layer (unit) always have identical self-dynamics.

The dynamics of the soluble components {S,‘f WMIO)} with
a€{I,S,NO,NH,ND} in the upper layers of the settler
are each represented in model (2) by first-order differential

equations of the form S5 "™ = an)(Sf(m_l) — 55 for

m=7,...,10. Q%m) denotes the influent flow-rate to the
m-th layer. The model assumes the same influent flow-

rate for each layer, {Q(Em) =(Qin — QW)/VSm) 10 and

constant volumes Vs(m) = 600 m®. For the relevant entries
in the Jacobian matrix df/0x of the dynamics, we have

9835m) _ Qw — QN
S(m - m
555 v

)

SS

SS

which is equal for all upper layers (m = 7,...,10),
independently of the fixed-point adopted for linearisation.

Similarly, the dynamics of the non-reacting components

{Xf(lva}7 with b € {I,P} in the reactors are each
represented in (2) by first-order differential equations of

the form X;'" = QWY — XtV 4 B for
k=1,...,5. Q% denotes the influent flow-rate to the k-th

reactor and Rl()k) indicates the contribution from process
reactions. The model assumes the same influent flow-rate
for each reactor, {Q*) = (QA—l—QR—i—QIN)/Vf(‘k)}i:l, and
constant volumes VIL(‘IMQ) = 1000 m® and va‘r’) = 1333
m3. As lel *) represent non-reacting matter, we have

8Rl()k)/ 6Xl;4 *) = 0 and ng) = 0. For the relevant entries
in the Jacobian df/0x of the dynamics, we have

8X;4(k)
3)(;“k) 5

Qa+Qr+QIN
vy

)

S SS

which is equal for all reactors, whatever the fixed-point.
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Appendix A. A SMOOTH APPROXIMATION OF THE
SETTLER’S MODEL

To compute Jacobian linearisations, the vector-valued
functions f and g must be differentiable. Due to a number
of discontinuous functions in the model of the settler, this
is not true for the formulation by Gernaey et al. (2014).

A smooth approximation of the original model was ob-
tained by replacing the many terms corresponding to min-
imum and maximum functions between two terms with a
log-sum-exp or softmax function, whereas a logistic func-
tion was used for approximating conditional statements.

Specifically, the downward flux of solids in the sixth and
higher layers (m > 6) is defined using conditional functions

. S(m— S(m S(m—

T = WG, G, XY > X
Jo(X58M),

with Jo(X50™) = v (X50™) X 50™) denoting the gravita-

tional solid flux, settling velocity vg(X “Sgém)), and threshold
concentration X; = 3000 g m~—3. We rewrite the condition,

S(m—1 S(m
Jeta = [1— o(X55"I(X55™)
+ (X5 min(J, (X530, g,(xSmDy),

elsewhere

with @(Xgémfl)) = 1 (respectively, @(Xgémfl)) = 0)
when X507V — X, > 0 (ngmsf(” . X, < 0). We
m—

approximate the step function ¢(Xgg

function @(Xgémfl)) 2 (1+e’°‘(XS

) with a logistic
gnL71>7Xt))—17 a = 100.
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