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Abstract: The robust fault detection problem for a class of nonlinear uncertain systems
with event-triggered measurement communication is addressed in this study. The proposed
event-triggered robust fault detection scheme has two steps. First, with the event-triggered
measurement, an adaptive approximator is proposed to learn the unknown modeling uncertainty
online. Second, after the learning procedure, an event-triggered residual generator is designed
by integrating the adaptive approximator with the residual signal for fault detection. The
adaptive threshold for fault detection decision is derived by taking the event-triggered scheme
into consideration. The performance of the event-triggered fault detection system is rigorously
analyzed by characterizing the event-triggered sampling error, including the stability of the
adaptive approximation and the fault detectability.
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1. INTRODUCTION

In recent years, considerable research attentions have been
dedicated to fault diagnosis design and analysis. Various
fault diagnosis methods for different system description-
s have been reported, such as the unknown input ob-
server method, parity space method, and multiple ob-
jective optimization methods; see Ding (2008); Seliger
and Frank (1992); Zhong et al. (2018). In the case of
nonlinear systems, due to their additional complexity,
compared to linear systems, some different approaches
have been considered. For instance, with fuzzy model
approximation, nonlinear system fault diagnosis can be
transferred to a specialized fuzzy system fault diagnosis
problem for the feasible solution and implementation, es-
pecially when optimization is considered (Li et al. (2015,
2016b)); with the Lipschitz (or sector) assumption for the
nonlinearity, the linear matrix inequality method can be
utilized for the residual generator/fault detection filter
solution (Pertew et al. (2007)); and with adaptive estima-
tion/approximation, the unknown nonlinear dynamics can
be addressed for nonlinear system fault diagnosis (Zhang
et al. (2010); Keliris et al. (2017); Reppa et al. (2014);
Boem et al. (2011)).

Model-based fault diagnosis design requires the availabil-
ity of input and output data of the underlying system.
For networked systems, the underlying system with the
associated sensors/actuator is not collocated with its mon-
itoring/fault diagnosis module, therefore sampling and
transmission are often essential. To reduce the commu-
nication burden, event-triggered sampling has been shown
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to be a promising approach (Heemels et al. (2012); Peng
and Li (2018)), which has drawn significant attention in
recent years. The event-triggered control problem has been
well-studied, and several key problems like stability and
minimum inter-event time have been solved for different
control systems by using the small gain theorem (Liu and
Jiang (2015)), input to state stability (De Persis et al.
(2013); Tabuada (2007)), and impulse system descriptions
(Abdelrahim et al. (2017)), respectively.

For event-triggered nonlinear system fault diagnosis, the
event-triggering creates additional challenges in the fault
diagnosis system design due to the (state dependent) ape-
riodic sampling error. Some successful solutions have been
reported. In Li et al. (2016a), a fuzzy model approximation
is introduced, and then an event-triggered fault detection
filter is designed for the obtained fuzzy system. Another
idea is to model the event-triggered scheme as a bounded
time delay (Zhang et al. (2016); Pan and Yang (2018)),
and use the time-delay system observer design method,
as well as the linear matrix inequality technique, for the
solution to the fault detection observer.

In this study, a robust fault detection system is designed
for nonlinear uncertain system with event-triggered com-
munication. Different from the reported event-triggered
fault detection methods for nonlinear systems (Li et al.
(2016a); Pan and Yang (2018)), in this work we provide
explicit solution for a general nonlinear system, which is
subject to event-triggering. Our objective is to quantify
the effects of the aperiodic sampling error on the non-
linear fault detection scheme, and then propose a suit-
able algorithm for fault detection by considering these
effects. To address the presence of modeling uncertainty,
an adaptive approxiamtion method is adopted, which is
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rigorously analyzed taking into consideration the event-
triggering parameters. A nonlinear observer-based residual
generator is proposed, and the corresponding adaptive
threshold is derived for fault detection decision by taking
the event-triggered sampling scheme into consideration.
By introducing an auxiliary variable to characterize the
event-triggered sampling property, the fault detectabili-
ty analysis under the proposed event-triggered residual
generator and adaptive threshold is derived. Finally, the
fault detection scheme for the event-triggered nonlinear
uncertain system is established, and the event-triggered
sampling effects on adaptive approximation and nonlinear
system fault detection are investigated.

The paper is organized as follows. Section 2 presents the
model description, main system assumptions, and problem
formulation. The adaptive approximation scheme and its
stability analysis are given in Section 3, and the fault
detection system design and its performance analysis are
respectively given in Sections 4 and 5. Section 6 provides
some concluding remarks.

The state variables and functions are referred to without
the time argument or variable arguments when there is no
ambiguity.

2. PROBLEM FORMULATION

Consider the following class of nonlinear uncertain system-
s, 

ẋ(t) = Ax(t) + f(x(t), u(t)) + η(x(t), u(t))

+ β(t− T0)φ(x(t), u(t)),

y(t) = Cx(t) + v(t),

(1)

where x ∈ Rn is the system state, u ∈ Rm is the control
input, y ∈ Rp is the measurement output, and v is the
measurement noise. The matrix A is the known linear
part of state equation, f : Rn × Rm 7→ Rn represents the
known nonlinear system dynamics, and η : Rn×Rm 7→ Rn

characterizes the modeling uncertainty. The pair (A,C) is
assumed to be observable.

The term β(t−T0)φ(x(t), u(t)) is employed to characterize
the change in the system dynamics as a result of a fault,
where φ : Rn × Rm 7→ Rn is an unknown smooth vector
field and β(t−T0) is the time profile function denoting the
evolution of a system fault. In this study, both incipient
and abrupt fault are considered. Thus, we have

β(t− T0) =

{
0, t < T0,

1− e−a(t−T0), t ≥ T0,
(2)

where a ≥ 0 is the unknown fault evolution rate, and T0 is
the unknown fault occurrence time. As a→∞, β(t− T0)
approaches a step function, which corresponds to abrupt
faults, while as a becomes small, β(t− T0) corresponds to
slowly developing faults.

To avoid waste of the communication resources, in this
paper we consider an event-triggered data transmission
scheme from the sensors to the fault detection scheme.
Define a monotonically increasing sequence γk to denote
the triggering time:

γk =

{
0, k = 0,
sup {t > γk−1| ‖es(t)‖ ≤ sth(t)} , k ∈ N+,

(3)

where es(t) = y(t) − ys(t) and sth(t) = δ1 ‖y(t)‖ + δ2.
Here, ys(t) is the event-triggered output, which is received
by the fault detection scheme. To allow both relative
and constant triggering thresholds, we employ the non-
negative threshold parameters δ1 and δ2 (Peng and Li
(2018)). For simplicity, in this study we assume that there
is no transmission delay. Thus, following the definition of
γk in (3), we have

ys(t) = y(γk−1), t ∈ [γk−1, γk) . (4)

Based on (3) and (4), one knows that a new measurement
output will be sent to the fault detection scheme only
when the defined event is triggered. In this study, we
consider the case that the event triggering is only at the
measurement output y(t), not at the control input u(t).
The reason for this is that typically in cyber-physical
systems, the fault detection scheme (monitoring module)
and the control scheme are co-located (or are embedded in
one software/hardware module). Therefore, the controller
output (and the transmitted controller output) is directly
accessible by the fault detection scheme, independent of
the communication scheme between the controller and the
actuator to the system. Thus, we consider the case that
the control input u(t) is accessible by the fault detection
scheme in this study.

Throughout this paper, the following assumptions are
used:

Assumption 1. The unknown measurement noise is bound-
ed, i.e., ‖v(t)‖ ≤ v̄, where v̄ is a known constant.

Assumption 2. For well-posedness, the state vector x(t)
and control input u(t) are bounded before and after
the occurrence of system fault, i.e., there exists compact
regions of interest X ⊂ Rn and U ⊂ Rm such that
x(t) ∈ X and u(t) ∈ U , for all t ≥ 0.

Assumption 3. The nonlinear vector field f(x, u) is locally
Lipschitz with respect to x; i.e., for all x, x̂ ∈ X and u ∈ U ,
we have

‖f(x, u)− f(x̂, u)‖ ≤ Lf ‖x− x̂‖ , (5)

where Lf is a known Lipschitz constant.

Assumption 4. The unknown modeling uncertainty satis-
fies ‖η(x(t), u(t))‖ ≤ η̄(x(t), u(t)), where η̄ : Rn×Rm 7→ R
is an unknown κ∞ function (Khalil (2002)); i.e., η̄(0) = 0,
η̄ is strictly increasing, and lim

r→∞
η̄(r) =∞.

Assumption 1 characterizes the required available infor-
mation for the measurement noise. This assumption is
required to distinguish between the effect of system faults
and noise. It is a common assumption for fault detection
design (Riverso et al. (2016)). Assumption 2 requires the
boundedness of the system state and control input before
and after the fault occurrence with event-triggered mea-
surements. This assumption is required, since the focus
of this study is the fault detection system design, not
the control system design. The fault detection system is
independent of the controller structure and fault accom-
modation is not considered. More details of various event-
triggered control schemes for nonlinear systems can be
found in Liu and Jiang (2015); Tabuada (2007); Abdel-
rahim et al. (2017) and references therein. Assumption 3
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characterizes the class of nonlinear systems under consid-
eration; this class of systems is commonly found in robotic
and power system applications. Assumption 4 implies the
boundedness of the unknown modeling uncertainty when
x(t) and u(t) are bounded, which is necessary for the
adaptive approximation.

The main objective for this study is to design robust
fault detection scheme for the class of nonlinear uncertain
system described by (1) with event-triggered measure-
ments defined by (3) and (4). To deal with the unknown
and unstructured modeling uncertainty, an event-triggered
adaptive approximator is proposed to learn the unknown
modeling uncertainty η(x(t), u(t)) (see Fig. 1). After the
learning procedure, the approximator will be integrated
into the event-triggered observer-based residual generation
and evaluation for the fault detection decision.

3. EVENT-TRIGGERED ADAPTIVE
APPROXIMATION

In this section, we propose an adaptive approximation
scheme to learn the modeling uncertainty, within an event-
triggered measurement communication framework, for the
period t ∈ [0, Tl], where Tl < T0. The stability properties of
the approximation system with event-triggered measure-
ment are also derived.

3.1 Approximation model

For the unknown modeling uncertainty η(x, u), let its
optimal approximation be η̂(x(t), u(t), θ∗) : X × U ×
Rnθ 7→ Rn, which could be described by a Radial Basis
Function network or some other network model (Farrell
and Polycarpou (2006)). Here, θ∗ is the optimal parameter
vector defined as

θ∗ = arg

{
min
θ∈Θ

{
sup

x∈X,u∈U
ñ(t, θ)

}}
, (6)

where ñ(t, θ) = ‖η(x(t), u(t))− η̂(x(t), u(t), θ)‖∞ and Θ ⊂
Rnθ is a given compact set. The predefined set Θ is
introduced to avoid parameter drift for weight vector
estimation (Farrell and Polycarpou (2006)).

With the approximation η̂(x(t), u(t), θ∗) and without
fault, the state dynamics of system (1) can be rewritten
as

ẋ(t) = Ax(t) + f(x(t), u(t)) + η̂(x(t), u(t), θ∗)

+ eη(x(t), u(t)),
(7)

where eη(x(t), u(t)) = η(x(t), u(t))− η̂(x(t), u(t), θ∗) is the
minimum functional approximation error for x(t) ∈ X,
u(t) ∈ U , and θ∗ ∈ Θ.

In this study, we employ a linearly parameterized approx-
imation network, given by

η̂(x(t), u(t), θ∗) = Π(x(t), u(t))θ∗,

Π(x(t), u(t)) = πT1 (x(t), u(t))⊕ · · · ⊕ πTn (x(t), u(t)),
(8)

where Π : X × U 7→ Rn×nθ is the known basis matrix
and πi : X × U 7→ Rnθi is the bounded basis function

vector for i ∈ {1, ..., n} and (x, u) ∈ X ×U (
n∑
i=1

nθi = nθ).

With the approximation model in (8) and the formulated
state dynamics in (7), we next present an event-triggered
adaptive approximation algorithm.

3.2 Event-triggered adaptive approximation algorithm

The proposed design is based on an event-triggered
observer-based scheme. The key task is to minimize ñ with
the event-triggered measurement such that the accessible
modeling uncertainty estimation can be used to enhance
the robustness of fault detection.

Based on (7), (8), and the event-triggered measurement
ys(t), we have the following estimation scheme:

˙̂x(t) = Ax̂(t) + f(x̂(t), u(t)) + Π(x̂(t), u(t))θ̂(t)

+ Ψ(t)
˙̂
θ(t) + L(ys(t)− ŷ(t)),

˙̂
θ(t) = PΘ

{
ΓΨT (t)CT (ys(t)− ŷ(t)

}
,

Ψ̇(t) = ALΨ(t) + Π(x̂(t), u(t)),

ŷ(t) = Cx̂(t),

(9)

where x̂ is the state of the estimator, θ̂ is the weight
vector, and Ψ(t) is the intermediate variable represent-
ing the filtered version of Π(x̂(t), u(t)), which is used
for ensuring the stability of the adaptive approximation
scheme. PΘ denotes the projection operator to restrict the
weight estimation within the predefined set Θ (Farrell and
Polycarpou (2006)) and also ensure the stability of the
learning algorithm in the presence of nonzero minimum
approximation error eη(x(t), u(t)). The matrix L is the ob-
server gain for ensuring a Hurwitz AL, where AL = A−LC
(since (A,C) is observable, the existence of the required L
can be met). The matrix Γ > 0 is the learning rate for
weight estimation. Without loss of generality, the initial
values for the estimation system (9) are set to x̂(0) = 0,

θ̂(0) = 0, and Ψ(0) = 0.

Remark 1. The adaptive approximation scheme for fault
diagnosis has been studied in Zhang et al. (2010); Keliris
et al. (2017). However, in these studies the input for
the estimation system is continuous, which implies that
there is no sampling error. In this paper, we propose
an approximation estimation algorithm based on event-
triggered measurements, with the aperiodic sampling error
addressed in the analysis.

3.3 Stability analysis

Next, the stability and learning capabilities of the event-
triggered adaptive approximation scheme will be analyzed.

Let ex(t)
∆
= x(t)−x̂(t), ey(t)

∆
= y(t)−ŷ(t), and θ̃(t)

∆
= θ̂(t)−

θ∗ be the estimation errors of system state, measurement
output, and weight vector, respectively. The following
theorem describes the stability properties of the event-
triggered adaptive approximation scheme given by (9).

Theorem 1. Under Assumptions 1-4, for t ≤ Tl, (x, u) ∈
X × U , and θ∗ ∈ Θ, the event-triggered adaptive ap-
proximation scheme given by (9) ensures that the state
estimation error ex(t), measurement output estimation

error ey(t), and weight vector estimation error θ̃(t) are
all bounded.
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Proof. Based on (7) and (9), one can get the dynamics of
state estimation error when t ≤ Tl:

ėx = Aex + f̃(t) + Π(x(t), u(t))θ∗

−Π(x̂(t), u(t))θ̂(t) + eη(x(t), u(t))

−Ψ(t)
˙̂
θ(t)− L(ys(t)− ŷ(t)),

(10)

where f̃(t) = f(x(t), u(t)) − f(x̂(t), u(t)). According to
the event-triggered scheme defined in (3) and (4), we have
ys(t) − ŷ(t) = Cex(t) + v(t) − es(t). Referring to the

expression of Ψ̇(t) in (9), it follows that

Π(x(t), u(t))θ∗ −Π(x̂(t), u(t))θ̂(t)−Ψ(t)
˙̂
θ(t)

= Π̃(t)θ∗ +ALΨ(t)θ̃(t)− d{Ψ(t)θ̃(t)}
dt

,
(11)

where Π̃(t) = Π(x(t), u(t)) − Π(x̂(t), u(t)). Finally, we
obtain

ėx = AL(ex + Ψ(t)θ̃(t)) + f̃(t)

+ Π̃(t)θ∗ + eη(x(t), u(t))

− L(v(t)− es(t))−
d{Ψ(t)θ̃(t)}

dt
.

(12)

Further, based on (12) and using Ψ(0) = 0, the state
solution of ex can be obtained:

ex(t) = eALtex(0) +

∫ t

0

eAL(t−τ)
(
f̃(t)

+ Π̃(t)θ∗ + eη(x(t), u(t))

− L
(
v(t)− es(t)

))
dτ −Ψ(t)θ̃(t).

(13)

Based on Assumptions 1 and 3 and referring to the
Bellman-Gronwall Lemma (Ioannou and Sun (1995), Lem-
ma 3.3.7), we have

‖ex(t)‖ ≤ Ex(t) + αLLf

∫ t

0

Ex(τ)e−qα(t−τ)dτ, (14)

where

Ex(t) = αLe
−qt ‖ex(0)‖+

∥∥∥Ψ(t)θ̃(t)
∥∥∥+

∫ t

0

αLe
−q(t−τ)

×
(∥∥∥Π̃(t)θ∗

∥∥∥+ ‖eη(x(t), u(t))‖+ ‖Lv̄‖+ ‖es(t)‖
)
dτ.

qα = q − αLLf , and αLe
−qt ≥

∥∥eALt∥∥. Based on As-
sumptions 2 and 4, eη(x(t), u(t)) is bounded. Also, with

the projection operator, both θ∗ and θ̃(t) are bounded.

With bounded Π(t), it is known that Π̃(t) is bounded
for (x, u) ∈ X × U and t ≤ Tl. Recalling the event-
triggered threshold design for (3) with bounded δ1, δ2,
and y(t), we have bounded sampling error when event-
triggered communication is employed. Finally, bounded
ex(t) and ey(t) can be ensured when qα > 0. 2

The above theorem summarizes the stability properties
of the event-triggered approximation system, and quan-
tifies the effect of the event-triggered sampling error on
the stability of the approximator. From (14), it can be
seen that the event-triggered sampling error has a direct
contribution on the state estimation error and also the
approximation performance. Since a smaller state esti-
mation error indirectly reflects a better approximation

performance, within the adaptive approximation time in-
terval, smaller threshold for triggering could be adopted
with smaller δ1 and δ2. Another interpretation for using
smaller δ1 and δ2 during learning is that it corresponds to
lower confidence on the data/model due to the unknown
modeling uncertainty.

4. EVENT-TRIGGERED FAULT DETECTION

After the learning period, the estimated modeling un-
certainty, represented by the adaptive approximator, is
integrated into the residual generator.

According to the adaptive approximator in (9), an observer
based residual generator with event-triggered communica-
tion scheme is proposed as follow:

˙̂z(t) = Aẑ(t) + f(ẑ(t), u(t)) + Π(ẑ(t), u(t))θ̂(Tl)

+ Lz(ys(t)− ŷ(t)),
(15)

where ẑ is the state of residual generator, ẑ(0) = 0, and Lz
is the observer gain for ensuring Az = A−LzC is Hurwitz.
Let ez(t) = x(t)−ẑ(t) and ŷ(t) = Cẑ(t), the residual signal
r(t) is based on the accessible measurement (since y(t) is
not available now), where

r(t) = ys(t)− ŷ(t) = Cez(t) + v(t)− es(t). (16)

Next, we consider the design of the adaptive threshold for
r(t). Based on (16), Assumption 1, and the event-triggered
scheme in (3), it yields

‖r(t)‖ ≤‖Cez(t)‖+ v̄ + δ1 ‖y(t)‖+ δ2
≤ (1 + δ1)(‖Cez(t)‖+ v̄) + δ2 + δ1 ‖ŷ(t)‖ . (17)

For the analysis of the residual signal, the dynamics of
ez(t) can be obtained:

ėz = Azez + f̃z(t) + ηz(t)− Lz(v − es(t))
+ β(t− T0)φ(x(t), u(t)),

(18)

where f̃z(t) = f(x(t), u(t)) − f(ẑ(t), u(t)) and ηz(t) =

η(x(t), u(t))−Π(ẑ(t), u(t))θ̂(Tl). For the fault-free case the
solution of (18) is given by:

ez(t) = eAz(t−Tl)ez(Tl) +

∫ t

Tl

eAz(t−τ)
(
f̃z(τ)

+ ηz(τ)− Lz
(
v(τ)− es(τ)

))
dτ.

(19)

For the learning performance, the following assumption is
made.

Assumption 5. For (x, u) ∈ X × U and for t ∈ [Tl, T0],
the difference between the model uncertainty and its
approximation is bounded; i.e., ‖ηz(t)‖ ≤ η̄(ẑ(t), u(t)),
where η̄ : Rn × U 7→ R+ is a known bounding function.

Based on Assumptions 1-5 and referring to the event-
triggered scheme for dealing with the sampling error in
(17), we have

‖ez(t)‖ ≤ Ez(t) + LCαz

∫ t

Tl

e−qz(t−τ) ‖ez(τ)‖ dτ, (20)
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where

Ez(t) = αze
−qz(t−TL) ‖ez(TL)‖+ αz

∫ t

Tl

e−qz(t−τ)

×
(
η̄(ẑ(t), u(t)) + Lv v̄ + δ2 + δ1 ‖ŷ(t)‖

)
dτ,

LC = Lf + δ1 ‖C‖, Lv = ‖Lz‖ + δ1, and αz and qz are
positive scalars such that

∥∥eAzt∥∥ ≤ αze−qzt.
Applying the Bellman-Gronwall Lemma to (20) yields
‖ez(t)‖ ≤ ēz(t), where

ēz(t) = Ez(t) + LCαz

∫ t

Tl

Ez(τ)e−(qz−LCαz)(t−τ)dτ.(21)

To keep the boundedness of ēz(t), it is required that qz −
LCαz > 0.

Taking ‖ez(t)‖ ≤ ēz(t) into (17), the adaptive threshold
for fault detection can be obtained as

‖r(t)‖ ≤ r̄(t)

= (1 + δ1)(‖C‖ ēz(t) + v̄) + δ2 + δ1 ‖ŷ(t)‖ .
(22)

Finally, the fault detection logic is designed to be:{
‖r(t)‖ ≤ r̄(t), fault free,
‖r(t)‖ > r̄(t), faulty.

(23)

The fault detection procedure is summarized in the follow-
ing algorithm.

Algorithm 1.

i) Construct the approximation system (9) by selecting
the design approximator parameters L and Γ, and the
basis function matrix Π;

ii) Run the adaptive approximation scheme for t ∈ [0, Tl];
iii) Activate the event-triggered residual generator in

(15), with the θ̂(Tl) generated from the approximation
scheme;

iv) Based on the fault detection logic in (23), generate the
fault detection decision.

Due to the event-triggered scheme, we notice that the
sampling error affects both the stability and the adaptive
threshold. Since Lf and C are system parameters, the
parameter δ1 in the event-triggered scheme will affect the
convergence of the state estimation error bound of the
residual generator. Therefore, the allowed maximum of δ1
equals to

qz−Lfαz
αz‖C‖ . In other words, the gain for the relative

triggering threshold is required to be upper bounded for a
successful fault detection. Comparing to the standard non-
event-triggered fault detection case (Zhang et al. (2010);
Keliris et al. (2017)), the measurement matrix C now
affects the convergence of the adaptive threshold for the
event-triggered fault detection. From (16) and (17), we
notice that the “folding effect” of the event-triggered mea-
surement brings in the term ŷ(t) since y(t) is not available.
To guarantee a successful event-triggered fault detection,
the inaccuracy of the measurement information should
be limited (es(t) should be bounded). Overall, the event-
triggered fault detection scheme has a higher requirement
on system and the residual generator, comparing to the
non-event-triggered results.

5. FAULT DETECTABILITY ANALYSIS

Since the “folding effect” of event-triggered communica-
tion on r(t) has been addressed in (17), the key for fault
detectability analysis is to measure the fault effect on the
residual signal. Obviously, ez(t) in (19) contains the fault-
free case. When t ≥ T0, we can get the contribution of
fault vector on the estimation error by consider the fault
input. To show the fault affecting channel, based on (18),
we introduce the auxiliary state ef (t), where

ėf (t) = Azef (t) + β(t− T0)φ(x(t), u(t)), (24)

and ef (T0) = 0. Directly, one can find that ef = ez, when

ez(T0) = 0 and f̃z = ηz = v − es = 0 in (18). Hence, he
existence of the auxiliary system (24) can be ensured by
(18)). Based on (24), we have the state solution of ef (t) as

ef (t) =

∫ t

T0

eAz(t−τ)β(τ − T0)φ(x(τ), u(τ))dτ. (25)

Let e(t) be the state estimation error of residual generator
when t ≥ T0. Combine (1) with (15), we have e(t) = ez(t)+
ef (t), where ez(t) is given in (19). After the occurrence of
the fault, the residual signal, contributed by both ez(t) in
(19) and ef (t) in (25), can be reformulated based on (16)
to be

r(t) = ys(t)− ŷ(t) = Ce(t) + v(t)− es(t). (26)

To quantify the event-triggered sampling error es(t), we
can rewrite the norm inequality in (3) to be a vector
equality:

es(t) = µ1δ1y(t) + µ2vδ

= µ1δ1(Ce(t) + v(t)) + µ1δ1ŷ(t) + µ2vδ,
(27)

where µ1 ∈ [−1, 1], µ2 ∈ [−1, 1], and vδ ∈ Rn is an
auxiliary vector satisfying ‖vδ‖ = δ2. Replacing es(t) in
(26) by (27) yields

r(t) = (1 + µ1δ1)(Ce(t) + v(t)) + µ1δ1ŷ(t) + µ2vδ
= (1 + µ1δ1)Cef + (1 + µ1δ1)(Cez(t) + v(t))

+ µ1δ1ŷ(t) + µ2vδ.

(28)

Recalling the fact that ‖ez(t)‖ ≤ ēz(t) and based on the
triangular inequality, we present the following Theorem to
summarize the property of the fault detection scheme.

Theorem 2. Let Assumptions 1-5 hold. For t ≥ T0, if
‖(1 + µ1δ1)Cef (t)‖ ≥ 2r̄(t) is satisfied, the occurrence of
the system fault will be detected.

6. CONCLUSIONS

In this study, we address the problem of how to design and
analyze robust fault detection scheme for continuous-time
nonlinear uncertain systems subject to event-triggered
sampling. The proposed method has two parts. First,
the event-triggered adaptive approximation has been pro-
posed to deal with the unknown modeling uncertainty.
Second, fault detection logic has been established with
event-triggered measurement transmission, supported by
the adaptive approximation result, the nonlinear observer-
based residual generation, and the adaptive detection
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threshold. The performances of the event-triggered adap-
tive approximation and event-triggered fault detection de-
sign have been analyzed.
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