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Abstract: This paper addresses the challenges of developing an embedded non-linear model predictive
control (NMPC) solution for the optimal driving of miniature scale autonomous vehicles (AVs). The
NMPC approach lends itself perfectly to driving applications, provided that a system for localization
and tracking of the vehicle is available. An important challenge in the implementation results from
the need to accurately steer the vehicle at high speeds, which requires fast actuation. In this paper
we present a solution to this problem, which employs an artificial neural network (ANN) controller
trained with rigorous NMPC input-output data. We discuss the development process, from modelling
until the realization of the ANN controller within the operating system of the AV. The procedure is
demonstrated within the virtual environment of the popular F1/10 race car, an AV platform widely used
in AI and autonomous driving challenges. The results contain both NMPC and ANN-based simulations
for different race tracks and for different driving strategies. The main focus of this work lies in the
formulation of the optimal driving control problem and the training method of the ANN. Our approach
uses a standardization of the driving problem, which enables us to abstractize optimal driving and to
simplify it for the learning process. We show how driving patterns can be learned accurately on a reduced
set of training data and that they can subsequently be extended to new and more challenging driving
situations.
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1. INTRODUCTION

The F1/10 cyber-physical platform (see O’Kelly et al. (2019))
was first introduced in 2015 as an open source learning plat-
form, drawing inspiration from events like the DARPA chal-
lenges and the Google autonomous driving challenge. With
its added aspect of being also a student competition, it offers
an exciting learning environment for those passionate about
control, autonomous driving and artificial intelligence.
The challenge is primarily posed as an ”autonomous driving”
one, with control coming in as a secondary, but necessary,
task. Therefore the research work published so far in the F1/10
community has predominantly been focused on solutions for
positioning and localization, which constitute a crucial part of
any autonomous driving platform. In the driving department,
often the approach consists of a two-layer structure, where an
upper-layer algorithm analyses the sensor data and computes
a local path, which is then tracked by a low-level controller.
Some examples of this approach can be found in O’Kelly et al.
(2019). These results show that this approach is very robust
and efficient, offering a sufficiently good solution for the com-
petitive environment. However, outside the explicit scope of
F1/10 racing, other scientific results have tackled the problem
of autonomous driving as a compact optimization problem and
tried to solve it accordingly. Paden et al. (2016), Plessen (2019)
or Kabzan et al. (2019) summarize some of the latest research
in autonomous driving and propose learning-based solutions for
modelling the non-linear behaviour of vehicles and for solving
the planning problem. Meanwhile, other authors as e.g. Zanon

et al. (2014) and Kong et al. (2015) have shown how race
driving can be treated as an non-linear model predictive con-
trol problem and be solved rather efficiently on low-resources
embedded hardware.
In this work, we present a viable alternative to the previous
results, which introduces a simple, yet effective way of posing
the driving problem and its constraints by using local track data
obtained from the LIDAR system. The approach starts by con-
structing a non-linear model of the race car and adapting its pa-
rameters to given driving behaviour and track conditions. This
non-linear model is used in an NMPC structure in order to gen-
erate the optimal driving policies, which are tested and tuned
in a realistic simulation environment. The second step is to use
the simulation results of the NMPC in order to train an artifi-
cial neural network (ANN) to replace the predictive controller.
Because the optimal controller must directly set the inputs of
the car, the computation times are required to be very small, so
that the controller can effectively steer the car in the real-time
environment. It has been shown previously by, e.g Chen et al.
(2019) that ANNs can replace linear MPC controllers. Further-
more, applications of machine learning approaches have been
reported for more complex NMPC challenges, like the complex
chemical reactor in Lucia and Karg (2018). The previous results
inspired confidence towards solving the optimal autonomous
driving as a machine learning approach for the F1/10 test case.
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2. THE F1/10 SIMULATION PLATFORM AND THE
DYNAMIC MODEL OF THE CAR

The F1/10 learning platform is built around low cost and widely
available resources for AV building and control. Researchers
are encouraged to test their algorithms in an open-source sim-
ulation environment which is curated by the F1/10 community
and is very well documented (see O’Kelly et al. (2020)). The
platform is built around ROS -Robot Operating System (Stan-
ford Artificial Intelligence Laboratory et al. (2018)), a common
framework for robotics systems applications. A simplified ver-
sion of the F1/10 ROS platform is depicted in Fig. 1. It permits
seamless switching between the simulation model and the real
AV. Furthermore, the community manages several simulation
workspaces for F1/10 development. It is important to note that
the platform also simulates a realistic data gathering module,
which employs the LIDAR and SLAM algorithms described
by Kohlbrecher et al. (2011). In this work, the ROS simula-
tions were done in the Gazebo simulator (Koenig and Howard
(2004)), using the model developed for the Shukla et al. (2018).
In order to begin designing a model predictive controller, one
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Fig. 1. Architecture of the F1/10 software platform, including
information flow and a conceptual overview of the ROS
configuration. The Gazebo model replaces the real AV in
our simulation studies.

first needs an accurate dynamic model of the car. In this work
we have followed one of the most common approaches for the
modelling of 4-wheeled vehicles, which involves a simplifica-
tion of the system to a 2-wheeled bicycle model. Similar ap-
proaches have been adopted by Zanon et al. (2014), Kong et al.
(2015) or Kabzan et al. (2019), with different levels of detail.
The physical parameters of the AV are based on the Traxxas
1/10 Scale Ford car model depicted in O’Kelly et al. (2019). For
the motor and tire parameters, we have considered the Gazebo
model as the benchmark and used it to fit the parameters.
By acquiring position, velocity and orientation measurements,
we set up a least-squares minimization optimization in order
to obtain their values. This procedure is not detailed further
due to limited space. The resulting values are listed in Tab. 1.
The model is based on Liniger et al. (2015) and consists of 6
ordinary differential equations (ODEs), with the state vector
ψ = [x,y,vx,vy,φ ,ω]. The steering angle and the motor duty
cycle are the inputs used by the controller in order to drive the
car: u = [δ ,D]. The model equations are:

Table 1. Parameters of the dynamic model

Name Description Value Unit
mcar Total mass of AV 4.0 kg
Icar Moment of inertia 0.1217 kg ·m2

Cr0 Friction coefficients 0.6 1/m
Cr2 - 0.1 m/s2

Cm1 Motor coefficients 1.8073 m/s2

Cm2 - -0.2511 1/s
lcar wcar Length, width of AV 0.535 , 0.281 m

l f lr Axel distance to COG 0.164 , 0.160 m
B f Br Tire coefficients 29.495 , 26.9705 −
C f Cr - 0.0867 , 0.1632 −
D f Dr - 42.5255 , 161.585 −

dx
dt

= vx cosφ − vy sinφ (1)

dy
dt

= vx sinφ + vy cosφ

dvx

dt
=

1
m

(
Fx,r−Fy, f sinδ +mvyφ̇

)
dvy

dt
=

1
m

(
Fy,r−Fy, f cosδ −mvxφ̇

)
dφ

dt
= ω

dω

dt
=

1
Iz

(
Fy, f l f cosδ −Fy,rlr

)
,

where:

Fx,r = (Cm1−Cm2vx)D−Cr2v2
x−Cr0,

Fy, f = D f sin(C f arctan(B f α f )),

Fy,r = Dr sin(Cr arctan(Brαr)).

The position of the car in 2D space is given by the vector
P = (x,y), the axial velocities are vx and vy, respectively, and
φ and ω represent the orientation and the angular velocity of
the car. The tire model is based on the Pacejka Magic Tire
Formula (Pacejka and Bakker (1992)) and Liniger et al. (2015).
The parameters in the equations of Fx,r, Fy, f and Fy,r reflect
the surface and driving parameters implemented in the Gazebo
simulator.

Fig. 2. A representation of the bicycle model in 2D space. The
track and boundary points are also represented.

3. AUTONOMOUS DRIVING AS AN OPTIMAL
CONTROL PROBLEM

The model presented in the previous section was implemented
in Python with CasADi (Andersson et al. (2019)), a sym-
bolic framework for simulation and optimization. The CasADi
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framework enabled us to use automatic differentiation and
packages like SUNDIALS (Hindmarsh et al. (2005)) for sim-
ulating the model and IPOPT (Wächter and Biegler (2006))
for solving the resulting optimization problems. The work pre-
sented in this contribution also makes use of the do-mpc plat-
form (Lucia et al. (2017)) to implement driving as an NMPC
problem. In the following we will discuss the implementation of
autonomous driving as an optimal control problem, by address-
ing the formulation of the driving constraints and the objective
function of the controller.
One of the main challenges for autonomous driving is to steer
the car through the track boundaries, defined in the F1/10
challenge by side-walls along the track. The data provided by
the SLAM algorithm is used to obtain a 2D projection of the
track on the floor and a center-line of the drivable track region.
Furthermore, the algorithms also deliver information about the
current position and orientation of the car. We do not provide
further detail about the SLAM algorithm, as this is not the focus
of this work and has been discussed in previous works related
to the F1/10 platform. We assume that the full state of the car
and the track information can be obtained from the simulation
platform.
The top part of Fig. 3 illustrates an example of a track, with the
car represented by a rectangle. The green points to the left and
right are sampled from the track data and will be used further to
define the left and right track boundaries. The center-line of the
track is also marked in the figure, where the red dot represents
the closest point to the car position on the center-line. Since
the position and the heading of the car in the global coordinate
system are known, it is possible to extract the relevant boundary
points for the upcoming region of the track from the available
data. The positioning data, together with the track boundaries
and the car dynamics constitute the information needed in order
to define the OCP problem. The main advantage of the formu-
lation used in this work is that it requires a limited number of
points around the current position of the car, which is closely
related to the real-world scenario, where the AV will only ”see”
the portion of the track ahead of it. A mathematical expression
for the two track boundaries is obtained by using the following
interpolating non-linear polynomials:

Left boundary:gL(x) = cL3 · x3 + cL2 · x2 + cL1 · x+ cL0 (2)

Right boundary:gR(x) = cR3 · x3 + cR2 · x2 + cR1 · x+ cR0

A linear transformation of the input data is performed, which
results in the OCP always being posed with respect to the car’s
reference system. To that end, every labelled point in Fig. 2
must be rotated by an angle γ between the orientation of the
car and the x-axis and translated so that the car’s position
pcar = [pi,x, pi,y] is located in the origin. This is a key aspect of
the proposed approach and it leads to a local formulation of the
OCP which is independent of the position on the track and the
relative orientation of the car. It also leads to a direct translation
to the training of the ANN network, as will be described in the
next section. The transformed model reads:

x′ = cos(γ)(x− pi,x)+ sin(γ)(y− pi,y) (3)
y′ =−sin(γ)(x− pi,x)+ cos(γ)(y− pi,y),

where the variables (x′,y′) represent the rotated and translated
position for each point (x,y)∈P, as depicted in the lower part of
Fig. 3. This transformation simplifies the NMPC problem and,
at the same time, reduces the learning effort for the artificial
neural network. Furthermore, the optimal control problem is
formulated here as a simultaneous prediction and optimization
problem of the form in (4), where the dynamic model of the car

Fig. 3. Example transformation of the car and boundary coor-
dinates that are used in the definition of the OCP.

and the track boundaries are used in order to define the feasible
solution space.

min
Ψk,uk

NPH

∑
k=1

Jcost(Ψk,uk), (4)

subject to:
Ψk+1 = f (Ψk,uk), ∀(k+1) ∈ I,
gL(xk)− yk ≤ 0 , ∀ k ∈ I,
gR(xk)− yk ≥ 0 , ∀ k ∈ I,
−π/6≤ δk ≤ π/6 , ∀ k ∈ I,
−1≤ Dk ≤ 1 , ∀ k ∈ I,
Ψlb ≤Ψk ≤Ψub , ∀ k ∈ I,

where I is the set of all indices within the prediction horizon
and gL(x) and gR(x) are the polynomials obtained from 2. The
coefficients cL,i,cRi are fitted before each optimization step,
taking into consideration new track data. In addition to the track
boundaries, the state variables of the car and the inputs are
restricted to finite sets which represent physical limitations on
the variables.
The style of driving can be embedded in the OCP mainly in
two ways. First the constraints in (2) can be set very close to
the physical boundary detected by the SLAM algorithm, for
an aggressive driving policy. Alternatively, a more conservative
approach is achieved by restricting these boundaries to a nar-
rower region around the middle line. Furthermore, the structure
of the cost function plays a role in the optimal driving solution.
In this work we have experimented with two types of cost
functions, presented in (5). In order to implement the fastest
possible driving strategy, the cost function in Eq. (5a) takes the
farthest visible point in the environment which lies between the
two track boundaries. This point is treated as the goal point,
labelled PG = (xG,yG), and is updated in the cost function in
each NMPC iteration. This method ensures that the optimizer
continuously works towards finding the shortest and fastest
path around the track. If one defines the driving as the task of
tracking a predefined line on the track, then the cost function in
Eq. (5b) can be seen as trying to minimize the distance between
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the current position of the car, Pk = (xk,yk), and the target
trajectory, which is implemented here by the polynomial T (xk).
This is the same as reducing the distance between the current
position of the AV and the line represented by the polynomial.
The term ∆uk represents the input change and is added to the
cost function in order to penalize sharp changes in the control
inputs and thus smoothen the driving behaviour.

Optimal driving :

Jdmax(xk,uk) =
NPH

∑
k=0

[
ω0((xk− xG)

2 +(yk− yG)
2)+ω1∆u2

k
]

(5a)
Trajectory tracking :

Jlt(xk,uk) =
NPH

∑
k=0

[
ω0

√
(T (xk)− yk)2 +ω1∆u2

k

]
(5b)

A comparison of the two driving modes can be seen in Fig.
4. In the top section we show a 2D plot of the track, in grey,
and the trajectory of the car. The black lines are the NMPC
results with the minimal time approach, whereas the green lines
represent the line tracking NMPC. As it was the case with
all the results presented here, both algorithms were run for a
fixed number of iterations and the final positions are depicted
by colored starts in the figure. It can be seen that the two
strategies are slightly different, especially around corners. It is
expected that the first formulation will produce a faster, more
”aggressive” style of driving, which is what we can see in
the figure. However, the trajectory tracking strategy also works
well and it would result in different driving patterns, if the
trajectory was changed. From an optimization point of view, it
is better to define general constraints and let the optimizer find
the optimal trajectory for the car, as well as the optimal input
trajectory. Any other method would, theoretically, result in sub-
optimal control inputs. Therefore we propose the first driving
method as a template solution for fast driving. The line tracking
implementation is more conservative and it could provide a
safer driving behaviour during training laps or mapping of the
track.

4. THE ML APPROACH AND RESULTS

4.1 Training of the ANN controller

The structure of the ANN employed in this work is given
in Fig. 5. It depicts a fully-connected feed-forward network
consisting of 3 linear layers connected by non-linear ReLu
nodes. The outputs of the network are the two control inputs
of the car. The input structure is essential for a good perfor-
mance of the system and is based on the transformed coordi-
nates depicted in Fig. 3 and discussed in the previous section.
Because of the way the driving problem is posed, only the
velocity of the AV together with four left and right boundary
points is needed. This is the minimum data necessary and it
was found that it can, indeed, be used for successful training
of the ANN. The input vector of the network thus consists
of 18 individual values, which are also depicted in Fig. 5:
UANN = [vx,vy, pli−1, ..., pli+3, pri−1, ..., pri+3]. The output of
the network consists of only two values: YANN = [δ ,D]. There-
fore the network effectively implements a non-linear mapping
between these two sets F(UANN) = YANN . This mapping must

Fig. 4. Driving done by the NMPC controller: in black - optimal
driving (aggressive) and in green - trajectory tracking
(conservative).
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Fig. 5. An overview of the ANN structure and the input-output
relationship.

be learned by the ANN controller in the training process. In
contrast to the example given by Lucia and Karg (2018), in this
work the complexity of the ANN is much lower, as the driving
problem is comparatively an easy one. The number of data pairs
needed for training is also much lower, because the number of
possible situations is restricted and we benefit from the ability
to quickly re-sample the data and compute new control moves.
The training data was obtained by running 1500 individual
iterations of the NMPC formulation with the cost function in
Eq. 5a on the track depicted in Fig. 4, which results in pairs
of input-output data of the type presented above. The curvature
of the road and the speed of the car determine how much the
controller will have to decelerate and steer, which gives rise to
certain patterns in the driving behaviour. We have depicted such
an example that emerges from the training data in Fig. 6. The
crosses in the image depict clouds of boundary points for all the
cases where the the NMPC controller decided to steer the car
left at an angle 0.25rad≤ δ ≤ 0.30rad. The point clouds clearly
form the shape of a mild left turn in the track, which represents
one of the rules that the ANN must learn. Similar patterns will
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occur for other situations and it is sufficient to train the ANN
with relevant left and right turns. More data could help train a
better ANN in the future. However, it was found that for this
application a simple track like the one in Fig. 4 is sufficient.
The ANN controller was implemented in the open-source plat-

Fig. 6. Example of training data patterns. Each point represents
a track constraint given to the NMPC controller. The
points form clouds that can be approximated by track
boundary points which depict a mild left turn.

form PyTorch, a Python module that can be freely downloaded
from Paszke et al. (2019) and is detailed by its authors in Paszke
et al. (2017). The training was done using a standard approach,
consisting of a mean square error (MSE) loss function. The
ANN parameters were optimized using Adam (Kingma and Ba,
2014), an optimizer that is supported by default in PyTorch.
The training was executed over 5000 epochs, with the overall
training accuracy reaching 98.7% at the end of the training. Fig.
7 shows how the ANN performs versus the NMPC controller.
Both controllers were started from the same initial position and
were required to complete one lap of the test track. Overall, the
ANN controller performs very well. For this track, an average
error of approximately 3.75% exists between the two control
results. However, this does not translate into significant trajec-
tory differences. Because the ANN controller takes a slightly
different trajectory, its outputs should not be directly compared
to the ones obtained in training from the NMPC controller.

4.2 Testing of the controller on new tracks

To further analyse the robustness of the ANN controller to
changes in the driving situations, we tested the trained con-
troller on a completely new track, which is longer and more
challenging, but which poses a similar level of cornering dif-
ficulty. The results are depicted in Fig. 9, where one can see
the F1/10 car driving around a scaled down version of the
Nürburgring F1 circuit. Although the controller was not trained
with optimal driving data for this particular track, it can suc-
cessfully navigate it. The average error between the two control
moves for this track did increase to 7.3%, but the ANN per-
formed well without having a priori track data. We used this
new track to test the robustness of the ANN controller and
found that the limited training dataset was robust enough for
small changes of the track. However, in applications with the
F1/10 car, we recommend gathering data about the new tracks
and re-training the controller before deploying it.

Fig. 7. Driving comparison between: black - the optimal driving
NMPC controller and green - the machine-learning ANN
approach. Both controllers were run for a fixed time of 20
seconds.
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Fig. 8. Further results: simulation test with the ANN controller
on the 2018 Porto F1/10 race track. Top view of the
track and of the AV trajectory obtained in the real-time
simulation environment Gazebo.

5. CONCLUSIONS

We have presented an NMPC implementation for a small-
scale race car model, showing how a non-linear model can
be employed for optimal driving around a known track. The
driving problem was transformed into a dynamic optimization
problem by transferring all positional aspects of driving around
a central frame, with the car at the origin of the system.
Therefore, the track can be easily represented with the help
of two polynomials which are interpolated through points on
the track boundaries. We showed that this strategy results in
an accurate representation of the track and can be used in
order to shape the optimal solution of the NMPC. However,
the resulting controller is too computationally demanding for
an online implementation of the controller on the on-board
hardware. Therefore, our approach adopts a machine-learning
based solution, where the optimal results generated by the
NMPC controller are used as a training data set for a simple
artificial neural network. By training the ANN to learn the
optimal behaviour, one can replace the NMPC controller with a

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6113



Fig. 9. Driving test on a scaled down version of the Nürburgring
circuit. Although the ANN was not trained on this track, it
can successfully navigate it at the first attempt.

good control performance. We showed that the ANN controller
is robust to changes in the track shape and can be applied in a
competitive environment, even on unknown tracks. Therefore,
we are confident that the approach can be integrated with results
obtained by other groups in the F1/10 community. It must be
noted, however, that the proposed solution is case dependent
and it assumes that the non-linear constraints can approximate
well the real track boundaries. Similarly the cost function
formulation does not guarantee a globally optimal path, but
has shown it can generate good results on complex tracks.
This two-staged approach can be used for any NMPC scenario,
regardless of the underlying car model or the optimizer used in
the training.
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