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Abstract: This paper proposes a new approach to solve the output-feedback optimal control for
linear systems. A modified algebraic Riccati equation (MARE) is constructed by investigating
the corresponding relationship with the state-feedback optimal control. To solve the derived
MARE, an online data-driven adaptive learning is designed, where the vectorization operation
and Kronecker’s product are applied to reformulate the output Lyapunov function. Consequent-
ly, only the measurable system input and output are used to derive the solution of the MARE.
In this case, the output-feedback optimal control solution can be obtained in an online manner
without resorting to the unknown system states. Simulation results are provided to demonstrate
the efficacy of the suggested method.

Keywords: Adaptive optimal control, output-feedback control, adaptive control, data-driven
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1. INTRODUCTION

The purpose of optimal control (Lewis et al. (2012)) is
to find an optimal control law, which can maximize the
control efficiency or minimize the control costs. To com-
plete the optimal control design, one needs to address an
algebraic Riccati equation (ARE) (for linear systems) or
a Hamilton-Jacobi-Bellman (HJB) equation (for nonlinear
systems), which are difficult to solve in general. Hence,
most existing methods used to solve these optimal control
equations are offline methods (Allwright (1980)). In order
to design the optimal control online, the idea of reinforce-
ment learning (RL) was recently tailored to develop the
so-called adaptive dynamic programming (ADP) (Wer-
bos (1992)). The key merit of ADP scheme is to adopt
a critic neural network (NN) to estimate the ideal cost
function, such that an approximate numerical solution
can be obtained for the ARE or HJB equation (Lewis
and Vrabie (2009); Modares et al. (2016); Heydari and
Balakrishnan (2013)). To relax the assumptions on the
fully known system dynamics in the ADP methods, an
observer (Zhang et al. (2011)) or identifier (Vamvoudakis
and Lewis (2010)) was incorporated into the ADP synthe-
sis, leading to a complex ADP structure. To further reduce
the complexity, an identifier-critic structure based ADP
algorithm was suggested in Na and Guido (2014); Lv and
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Ren (2018), where the actor NN is avoided and the control
action is calculated based on the critic NN weights directly.
However, it is noted that these ADP based optimal control
designs again require fully known system states, i.e., they
are state-feedback based control methodologies.

In fact, the vast majority of the existing ADP synthesis-
es all require that full system states should be measur-
able, while the output-feedback optimal control has been
rarely considered, which remains as an open questions
in the control fields (Syrmos et al. (1997)). Lewis and
Vamvoudakis (2011) proposed both policy iteration (PI)
and value iteration (VI) algorithms to address output-
feedback optimal control for discrete-time systems. On the
other hand, by combining the observer and ADP, Zhu et al.
(2014) proposed an integral reinforcement learning (IRL)
algorithm, where the existence of output-feedback optimal
control solution was explored inspired by Gadewadikar
et al. (2012). Nevertheless, the cost function used for
deriving the IRL depends on the full system states, so
that an observer must be used in Zhu et al. (2014) to
reconstruct immeasurable system states, leading to a two-
step optimal control implementation. Similarly, Modares
et al. (2016) adopted a new system state reconstruction
method based on the limited measurements of system
output over a certain time interval to develop an off-policy
method. However, all of these ADP based output-feedback
optimal control designs rely on the observer design, and
thus can be taken as an indirect output-feedback control
design method.
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Inspired by these discussions, in this paper, an online
data-driven learning technique is developed to address the
output-feedback optimal control design for linear systems,
where only the system input and output data are required.
The main idea is to construct a modified algebraic Riccati
equation (MARE) for output-feedback optimal control by
considering its state-feedback counterpart. Then, to solve
this MARE, the vectorization operation and Kronecker’s
product are applied to reformulate the output Lyapunov
function to facilitate the design of adaptive learning using
the system input/output only rather than the system
states. In this case, the output-feedback optimal control
solution can be online calculated based on the solution
of MARE. Consequently, the requirements on the immea-
surable system states can be removed, and the observer
design used in Zhu et al. (2014) is also avoided. Numerical
simulation results are also given to verify the efficacy of
this proposed method.

2. PROBLEM FORMULATION

2.1 State-feedback Optimal Control

Consider the following continuous-time (CT) linear system

{

ẋ = Ax+Bu

y = Cx
(1)

where x ∈ R
n is the system states, u ∈ R

m is the control
action, y ∈ R

p is the output, A ∈ R
n×n and B ∈ R

n×m

are the system matrix and control matrix, respectively.
C ∈ R

b×p is the output matrix.

The optimal control problem is to find a control u for
system (1) to minimize the following cost function:

J(x(t)) =

∫

∞

t

r(x(τ), u(τ))dτ (2)

with the utility function r(x(τ), u(τ)) = xT (τ)Qx(τ) +
uT (τ)Ru(τ), where Q > 0 and R > 0 are the symmetric
weight matrices.

Assumption 1. (Lewis et al. (2012)) The pair (A,B) is
stabilizable and the pair (A,C) is detectable.

If the full system states x are available or measurable,
the state-feedback control can be used to solve the above
optimal control problem. We can obtain the state-feedback
solution for system (1) with cost function (2) as

u∗ = −Kxx

Kx = R−1BTP ∗
(3)

It is noted that P ∗ ∈ R
n×n is a positive definite matrix,

which can be obtained by solving the following ARE:

ATP ∗ + P ∗A+Q− P ∗BR−1BTP ∗ = 0 (4)

Based on the optimality principle (Lewis et al. (2012))
and the optimal control (3), we can obtain the optimal
cost function as

V ∗(x(t)) =

∫

∞

t

xT (τ)(Q +KT
x RKx)x(τ)dτ

= xT (t)P ∗x(t)

(5)

Remark 1. Recently, the idea of ADP was presented to
obtain the optimal control action, where the policy iter-
ation (Jiang and Jiang (2012)), online adaptive learning
(Vamvoudakis and Lewis (2010)) and integral reinforce-
ment learning (IRL) (Zhu et al. (2014)) were developed.
However, it is noted that the most of existing ADP based
optimal control designs were developed based on the full
state-feedback control (Na and Guido (2014)) or recon-
structed system states via observers (Zhu et al. (2014)).
Although for linear systems the incorporation of observer
into the control design is trivial, the observer-based out-
put control needs extra computational costs for observer.
Hence, the direct output-feedback optimal control has not
been fully solved yet. Therefore, the main contribution of
this paper is to present a direct output-feedback optimal
control for linear systems without using any observer. This
is achieved by exploring the relationship between the state-
feedback optimal control and the output-feedback optimal
control, and then suggesting an online data-driven learning
algorithm to solve the derived optimal control equation.

2.2 Output-feedback Optimal Control

For system (1), the control input can be calculated based
on the output measurement associated with an output
feedback gain K, that is

u∗ = −Ky (6)

where K ∈ R
m×p is the output feedback gain to be

calculated.

To derive the feedback gain K in (6), we should rewrite it
as u∗ = −Ky = −KCx, indicating Kx = KC. Then,
taking (6) into (5), we can further represent the cost
function as

V ∗(x(t)) =

∫

∞

t

xT (τ)(Q + CTKTRKC)x(τ)dτ

= xT (t)P ∗x(t)

(7)

By calculating the time-derivative of (7), we have

ẋTP ∗x+ xTP ∗ẋ+ xT (Q+ CTKTRKC)x = 0 (8)

Substituting system (1) into (8), we can rewrite it as

xT [(A−BKC)TP ∗ + P ∗(A−BKC)

+Q+ CTKTRKC]x = 0
(9)

Since the equation (9) holds for all x ∈ R
n, the following

modified ARE (MARE) can be given as

AT
c P

∗ + P ∗Ac +Q+ CTKTRKC = 0 (10)

with Ac = (A−BKC).

According to the control actions given in (3) and (6), the
following equation can be verified
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KC = Kx = R−1BTP ∗ (11)

Since the fact u∗ = −Ky = −KCx holds mathematically,
by substituting (11) into (10), then the standard ARE (4)
can be obtained. Hence, inspired by the analysis given in
Zhu et al. (2014), we can prove the following lemma:

Lemma 1. For linear system (1), assume that a control gain
K can be found from (10) and fulfills the condition (11),
then the control action given in (11) is globally optimal.

Proof. The detailed proof of this claim can be referred to
Gadewadikar et al. (2012), which is not given here due to
the page limit.

Remark 2. To implement the proposed output-feedback
optimal control, the remaining problem is to solve the
MARE (10) to obtain an output-feedback control gain. To
this end, Gao et al. (2016) proposed both policy iteration
and value iteration methods based on a sampled-data
method to reconstruct the unmeasurable states. The work
of Zhu et al. (2014) proposed an IRL algorithm, where an
adaptive observer must be designed to estimate the system
states. Different to these results (e.g., Zhu et al. (2014);
Gao et al. (2016)), we will introduce a data-driven online
learning approach to solve the MARE (10) to further
obtain the output-feedback control gain K, where only
the system output is needed. This will create an one-step,
direct, online output-feedback optimal control algorithm,
without using observers or state reconstruction schemes.

3. DATA-DRIVEN ONLINE SOLUTION OF MARE

In this section, a data-driven learning scheme will be
introduced to solve the derived MARE (10) by using the
output measurement y only so as to implement output-
feedback optimal control. The Kronecker’s product is first
applied on the derived MARE (10) to reformulate the
equation in a parameterized form. Then, a novel adaptive
law is used to estimate the unknown parameters in the
MARE, where the solution P ∗ can be online calculated.

3.1 Data-driven Reformulation of MARE

To design a data-driven learning method to obtain the
solution of (10) via the output y rather than the system
states x, we should make further manipulations on (10).
To this end, we will carry out the Kronecker’s product
calculation as Zhao et al. (2019). To avoid using the system
states x, both sides of (10) are multiplied by CTC, then
the following equation can be derived

CTC(AT
c P

∗ + P ∗Ac)C
TC =− CTC(Q

+ CTKTRKC)CTC
(12)

We multiply both sides of (12) by system states x, such
that

xTCTC(AT
c P

∗ + P ∗Ac)C
TCx

= −xTCTC(Q + CTKTRKC)CTCx
(13)

According to the definition of system output y = Cx,
Eq.(13) can be further written as

yTC(AT
c P

∗ + P ∗Ac)C
T y

= −yTC(Q + CTKTRKC)CT y
(14)

Remark 3. Comparing (14) with (9), it is clearly shown
that we only use the system output y instead of states
x. This leads to the exact output-feedback optimal con-
trol implementation, which allows to develop new policy
iteration methods or adaptive algorithms to solve (15).

Although the system states x are not involved in (14),
the matrix Ac in (14) is unknown (since the unknown
control gain K is involved in Ac). To avoid using Ac

in the following Kronecker and vectorization operations,
we need to further decompose Ac. Then, by substituting
Ac = A − BKC and KC = R−1BTP ∗ into (14), we can
rewrite this equation as

yTC(ATP ∗ + P ∗A)CT y

= −yTC(Q − P ∗BR−1BTP ∗)CT y
(15)

It is clear now that the unknown matrix Ac is avoided,
while the control gain K is replaced by the matrix P ∗.
Hence, we can online estimate the matrix P ∗ and then
derive the control gain K.

Unlike the existing offline policy iteration or online IRL
methods, we will develop a new online adaptive learning
scheme to solve (15) to obtain the optimal control solution
P ∗. For this purpose, the vec(·) operator and the Kroneck-
er’s product are applied on both sides of (15) as Zhao et al.
(2019). Then, equation (15) can be reformulated as

2(CT y ⊗ACT y)T vec(P ∗) + (CT y ⊗ CT y)T vec(Q)

− (vec(BR−1BT )⊗ (CT y ⊗ CT y))T vec(P ∗ ⊗ P ∗) = 0
(16)

It is not difficult to find from (16) that the dimension of
vec(P ∗ ⊗ P ∗) may be high, which is not preferable in the
online learning. For instance, the system control matrix A
is with dimension n × n, then the solution of matrix P ∗

has n × n parameters, and after applying vec(·) operator
and Kronecker’s product, the dimension of vec(P ∗ ⊗ P ∗)
is n4 × 1, which will increase the computation costs and
even may lead to the failure of online learning. To reduce
the dimension of online learning parameters to reduce
the computational costs, dimension-reduction operations
should be employed. For this purpose, we will use the state-
feedback control gain Kx to replace the solution P ∗ of
ARE (i.e. Kx = R−1BTP ∗). Then, Eq.(15) can be further
formulated as

yTC(ATP ∗ + P ∗A)CT y = −yTC(Q +KT
x RKx)C

T y
(17)

Then, similar to (16), we use the vec(·) operator and the
Kronecker’s product on both sides of (17), and have

2(CT y ⊗ACT y)T vec(P ∗) + (CT y ⊗ CT y)T vec(Q)

+ (vec(R)⊗ (CT y ⊗ CT y))T vec(Kx ⊗Kx) = 0
(18)
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It is shown that (18) represents a linearly parameterized
form of the unknown optimal solution P ∗ and gain Kx

after applying vec(·) operator and Kronecker’s product.
To show this point more clearly, we further reformulate
(18) in a compact form as

Θ = −WTΞ (19)

where Θ ∈ R is the measured output and Ξ ∈ R
2n2

is the
regressor, which can be obtained by the measured system

output, and W ∈ R
2n2

is the unknown parameter vector,
which are defined as:

Ξ(y,A,C) =[2(CT y ⊗ACT y), vec(R)⊗ (CT y ⊗ CT y)]T

W (P ∗) =[vec(P ∗), vec(Kx ⊗Kx)]
T

Θ(y) =[CT y ⊗ CT y]T vec(Q)
(20)

After using the vectorization operation, the unknown
matrix P ∗ given in (19) can be considered as a vector.
Thus, an adaptive law can be used to estimate the solution
P ∗ online, which will be shown in the next subsection.
Moreover, since we use Kx ⊗ Kx to replace P ∗ ⊗ P ∗,
the dimension of unknown parameter vector W can be
reduced.

3.2 Solving MARE via Online Learning

This section will propose an adaptive law to solve the
MARE (10). From the formulation of (20) that the control
matrix B is not used, which further relaxes the require-
ments on the system. Moreover, as shown in (20), the
unknown vector W is a function of the unknown matrix
P ∗, which is the solution of MARE (10) to be solved. Thus,
an adaptive law can be used to online estimate W based
on (20) so as to obtain the estimate of P ∗. To this end,

we define an auxiliary regressor matrix S ∈ R
2n2

×2n2

and

vector ∅ ∈ R
2n2

as

{

Ṡ = −ℓS + ΞΞT , S(0) = 0

∅̇ = −ℓ∅+ ΞΘ, ∅(0) = 0
(21)

where ℓ > 0 is a design parameter. Therefore, S and ∅ can
be online obtained via measurable output y.

We define an auxiliary vector M ∈ R
2n2

according to the
derived variables S and ∅ in (21) as

M = SŴ + ∅ (22)

where Ŵ is the estimate of the unknown vector W .

Therefore, the adaptive law used to online update Ŵ is
designed by

˙̂
W = −ΓM (23)

with Γ > 0 being the adaptive gain set by the designers.

To show the merit of the above learning algorithm (23)
over the gradient algorithm, we solve (21) and substitute

(19) into (21), then can verify that ∅ = −SW . In this case,
we can rewrite (22) as

M = SŴ + ∅ = −SW̃ (24)

with W̃ = W − Ŵ being the learning error. Hence, it is
in (23) that the estimates Ŵ is updated along with the

estimation error W̃ extracted by using the measurable
system output y. Thus, this adaptive algorithm clearly
differs to the gradient descent algorithms used in oth-
er ADP literatures (e.g., Abu-Khalaf and Lewis (2005);
Vamvoudakis and Lewis (2010) and references therein),
which adopt the gradient descent algorithm to minimize
the HJB residual error.

Before showing the convergence analysis (faster conver-
gence), we exemplify the positive definiteness of matrix S,
which is summarized as:

Lemma 2 (Na and Guido (2014)). The persistent exci-
tation (PE) of vector Ξ in (21) equals to the positive
definiteness of S defined in (22).

Lemma 2 implies that the PE condition can be online
verified by calculating the minimum eigenvalue of matrix
S. The value of Lemma 2 lies in that it provides a feasible
technique to online test the PE condition, which remains
as an open problem in the field. On the other hand, this
PE condition is necessary for retaining the convergence
of learning algorithms and has been widely utilized in
the ADP literatures (e.g., Abu-Khalaf and Lewis (2005);
Vamvoudakis and Lewis (2010)). In practice, a vanishing
probing noise can be inserted into the measurements dur-
ing the transient learning stage to fulfill this condition as
proposed in Abu-Khalaf and Lewis (2005); Vamvoudakis
and Lewis (2010).

Hence, the main results o this paper can be given as:

Theorem 1. For (19) with adaptive law (23), if the regressor

vector Ξ in (21) is PE, then the estimation error W̃
converges to zero exponentially.

Proof. First, Lemma 2 indicates that the matrix S is
positive definite under the PE condition of Ξ, i.e., the
minimum eigenvalue λmin(S) > σ > 0. Hence, we choose

a Lyapunov function V1 = 1

2
(W̃TΓ−1W̃ ), such that V̇1 can

be derived from (23) and (24) as

V̇1 = W̃TΓ−1 ˙̃W = −W̃TSW̃ ≤ −σ‖W̃‖2

≤ −µV1

(25)

where µ = 2σ/λmax(Γ
−1) is a positive constant with

λmax(·) being the maximum eigenvalue. Consequently,
one can conclude from the Lyapunov theorem that the
estimation error W̃ converges to zero exponentially.

Remark 4. As shown in the above derivation of adaptive
law, only the output data y is used for online obtaining the
solution of MARE, which is clearly different to available
results (Abu-Khalaf and Lewis (2005); Vamvoudakis and
Lewis (2010)). In particular, in this section, by introducing

the adaptive law (23) driven by the estimation error W̃ ,
faster (exponential) convergence of the estimation error is
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obtained, outperforming the gradient based adaptive laws
used in the existing ADP designs.

According to the above derived solution of MARE (10), we

can extract the estimated matrix P̂ of the ideal solution
P ∗. Hence, we can obtain the actual optimal control action
for system (1) as

u = −K̂y (26)

Based on Theorem 1, the estimation error W̃ → 0 provided
that the regressor Ξ is PE. Hence, the derived control in
(26) converges to its optimal control (6), i.e., ‖u−u∗‖ → 0.
In this case, based on Lemma 1, we know that for linear
system (1) with control action (26) and adaptive law (23),
if the initial control u(0) is admissible, then the controlled
system is stable.

4. SIMULATION

In this section, we use a practical industrial system (e.g.,
power systems (Tang et al. (2017); Mu et al. (2017);
Zhao et al. (2020))) to verify the validity of the proposed
output-feedback optimal control. In this application, the
micro-grids include the distributed and renewable energies.
However, the frequency deviation may occur due to the
imbalance between load consumption and power genera-
tion. Therefore, it is very important to ensure the stability
of micro-grids. For this purpose, we consider a practical
power system consists of a turbine generator, a system
load, and an automatic generation control.

The purpose is to find an optimal output-feedback control
law u = −Ky such that the closed-loop system is stable,
and the predefined cost function is minimized. In order
to facilitate simulations, we consider ζf , ζg and ζG as the
incremental change of the frequency deviation, the gener-
ator output, and the governor value position, respectively.
Moreover, we take the control input u to represent the
incremental speed change of positive deviation. Then, one
defines x = [ζf ; ζg; ζG] ∈ R

3 as the state vector, where
x1 = ζf , x2 = ζg and x3 = ζG. Hence, we write the state-
space model of this power system as

ẋ =















−
1

TG

0 −
1

FrTG
Kt

Tt

−
1

Tt

0

0
Kg

Tg

−
1

Tg















x+







1

TG
0
0






u (27)

y = [1, 0, 0]x

where the model parameters can be found in Table 1.

Since the purpose of this simulation is to verify the
effectiveness of the proposed method, the parameters can
be selected as: the initial conditions x0 = [−0.3, 0.5, 1]T ,
and the gains Q = diag([1, 1, 1]) and R = 1. Moreover,
the parameters used in the adaptive law are set as ℓ = 1,
and Γ = 10. Since the studied system is in a linear form,
the proposed optimal control solution can be obtained by
solving the ARE offline. To verify the effectiveness of the
developed adaptive learning technology, the offline solution
of (4) is first given as

Table 1. PARAMETERS OF POWER SYS-
TEM

Symbol Meaning Values

TG Time constant of the governor 5
Tt Time constant of the turbine model 10
Tg Time constant of the generator model 10
Fr Feedback regulation constant 0.5
Kt Gain constant of the turbine model 1
Kg Gain constant of the generator model 1

P ∗ =

[

2.5817 1.4963 −1.7575
1.4963 7.7916 3.2394
−1.7575 3.2394 11.4121

]

(28)

Fig. 1 indicates the response of the approximated solution
of the MARE, i.e., P̂ , with the adaptive law (23), which
shows very fast convergence. To verify the convergence to
the exact value, the estimation error between P̂ and the
ideal value P ∗ is given in Fig. 2 (For easier reading, Fig.
2 is given in the log scale in the y-axis). We can find that

the online updated P̂ converges to a very small set around
the ideal solution P ∗, which illustrates the correctness of
the theoretical analysis.

With the estimated matrix P̂ , the actual output-feedback
control gain K̂ (K̂ = R−1BT P̂CT (CCT )−1) can be online
calculated as

K̂ = 0.5163 (29)

Fig. 3 indicates the profiles of system states with the
derived control action u = −K̂y, which shows that the
control system is stable. Moreover, the derived control is
also shown in Fig. 3, which is bounded and smooth.
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Fig. 1. The profile of the online updated matrix P̂ .

5. CONCLUSION

This paper is concerned with solving the output-feedback
optimal control for linear systems with output measure-
ment only. The main idea is to develop an online data-
driven learning method to solve the derived optimal e-
quations. Hence, a MARE is first constructed for the
output-feedback optimal control by further investigating
the corresponding relationship with the state-feedback
optimal control. After using the vectorization operator
and Kronecker’s product to reformulate this MARE, a
new adaptive learning method is developed to obtain the
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Fig. 3. The profile of controlled system states x and control
u.

solution of MARE. In this framework, the observer widely
used in the output-feedback control is avoided. Simulation
results are provided to illustrate the effectiveness of the
suggested algorithm. This idea will be further tailored
to output-feedback robust control of uncertain nonlinear
systems.
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