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Abstract: This paper presents a novel identification procedure for a class of hybrid dynamical
systems. In particular, we consider hybrid dynamical systems which are single flowed and single
jumped and whose flow and jump maps linearly depend on two sets of unknown parameters. A
systematic way to determine whether the system is flowing or jumping is introduced and used
to identify the unknown parameters by employing a linear recursive estimator. Simulations have
been performed to prove the validity of the proposed methodology. Results proved the efficiency
and accuracy of the developed identification procedure.
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1. INTRODUCTION

In recent years, there has been a growing interest in hybrid
dynamical systems (HDS). These kind of systems are char-
acterized by interacting continuous and discrete time dy-
namics and provide new and promising modeling perspec-
tives for systems presenting discontinuous behaviors [Van
Der Schaft and Schumacher 2000]. The presence of both
discrete and continuous dynamics makes this formalism
appealing also for modeling physical phenomena in many
different areas, from biology and medical applications
to robotics, manufacturing, traffic management and bio-
molecular networks [Aihara and Suzuki 2010, Bortolussi
and Policriti 2008]. Overviews of this framework are given
in [Van Der Schaft and Schumacher 2000, Haddad et al.
2006, Goebel et al. 2009, 2012]. As common in Automatic
Controls, controller design, simulations and diagnostics of
hybrid dynamical systems require an accurate knowledge
of the model. However, these processes are always char-
acterized by sets of parameters which are typically not
known.

System identification techniques are the interface between
real world application and mathematical world of control
theory and mathematical abstraction [Ljung 2010]. These
methods aim to obtain estimates of the parameters and
update the model from direct measurements collected
during the time evolution of the system [Åström and
Eykhoff 1971].

The majority of the literature on identification of HDS
is related to classes of Piece Wise Affine systems (PWA)
Westra et al. [2011], i.e. systems which are defined by
subdividing the space into polyhedral regions which have

associated an affine state update equation. It is possible
to discern four main different identification procedures
for PWA systems: Bayesian, algebraic, clustering-based
and bounded-error approaches. Qualitative comparison
between the performance of those methodologies is re-
ported in [Juloski et al. 2005a, Paoletti et al. 2007]. Identi-
fication of piecewise affine (PWARX), hinging hyperplanes
(HHARX), and Wiener piecewise affine (WPWARX) au-
toregressive exogenous models of hybrid dynamical sys-
tems have been addressed in [Bemporad et al. 2001]. Al-
though in this work global convergence is provided through
a mixed-integer linear or quadratic programming, the per-
formance of the proposed solution strictly depends on the
choice of the input signal u. Picewise affine identification
of submodels and the valid polyhedral partitions of the
domain of hybrid systems are evaluated by combining clus-
tering, classification and linear identification techniques in
the work proposed in [Ferrari-Trecate et al. 2001]. The
particular behaviour of each procedures is evaluated via
experimental evaluation of the electronic components of a
pick-and-place device. Even if experimental results shown
the validity of the proposed solution, it requires strict
assumptions on the working space and error bounds. A
pick-and-place machine has also been used in [Juloski et al.
2005b] to evaluate a Bayesian scheme which model the
unknown parameters as random variables described with
probability distribution functions an implemented with
particle filtering methodologies.

Researchers also tried to implement on-line identification
of electronic componets with fuzzy clustering [Sepasi and
Sadrnia 2008] and machine learning techniques. Feed-
forward neural networks have been used for identification

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 893



of a class of hybrid systems by Messai et al. in [Messai et al.
2008, 2006]. The networks, characterised by continuous
inputs, continuous outputs and binary discrete inputs,
use a black-box approach to track all the mode of the
system. Results are promising but highly dependent on the
input sequence. Other, more recent work include [Yuan
et al. 2019, Hojjatinia et al. 2019, Lauer and Bloch
2019]. Compared to previous works, in this paper we aim
to solve the identification problem for a class of HDS
in the form of hybrid inclusions, introduced in [Goebel
et al. 2009, 2012]. Hybrid inclusions combine constrained
differential and difference inclusions and constitute the
most general representation of HDS. In particular, we
consider hybrid inclusions with one flow and one jump, i.e.
one constrained differential equation for the continuous–
time part and one constrained difference equation for
the discrete–time part. This class of systems includes
ball–juggling mechanisms (see, e.g., [Tian et al. 2013]),
impact pendulums and other systems from the nonsmooth
mechanics framework [Brogliato 1999]. Furthermore, with
respect to previous works, we will treat the autonomous
case, in which no input–output relations are defined, with
the assumption of being able to collect measurements
of the state during a trajectory and linearity of the
flow and jump maps with respect to two distinct sets
of unknown parameters. The proposed method relies on
the Lipschitz continuity assumption of the flow map to
determine from observations whether the state undergoes
to a discontinuity, acknowledging that a jump happened.
A linear recursive estimator is then used to estimate both
the flow and jump parameters while the flow and jump
sets are approximated by convex hulls.

This paper is organized as follow: Section 2 gives an
overview of the problem and presents the basic assump-
tions. The procedure used for the detection of a jump is
reported in Section 3. Section 4 describes the identification
methodology. The simulation results are presented in Sec-
tion 5. Conclusion and future work are drawn in Section 6.

Notation The set R is the the set of real numbers. ‖ · ‖
denotes the norm induced by the inner product on Rn. The
origin of Rn is 0n. Let Λ be a finite subset of Rn, conv(Λ)
is the convex hull of Λ defined by the convex combinations
of its elements. The notation x+ indicates the next value
of the quantity x after a discrete–time event.

2. PROBLEM SETTING

Let us consider an autonomous hybrid dynamical system
represented by the following equations:

H :

{
ξ̇ = f(ξ) ξ ∈ C
ξ+ = g(ξ) ξ ∈ D

(1)

where ξ ∈ Rn is the state of the system, f : Rn → Rn and
g : Rn → Rn are vector fields, C and D are closed subsets
of Rn. Let us call C the flow set, f the flow map, D the
jump set, g the jump map. The notation ξ+ indicates the
next value of the state ξ after a jump. The system can be
also represented by means of the hybrid automata in Fig.
1. System (1) is the single–flow single–jump specialization
of the more general hybrid inclusions whose framework is
deeply explored in Goebel et al. [2009, 2012].

ξ̇ = f(ξ)
ξ ∈ C ξ+ = g(ξ)

ξ ∈ D

Fig. 1. Hybrid automata: Conceptual representation of the hybrid
system H characterized by a single flow map f and one jump
map g. Only one state and one reset branch are needed to
picture the behaviour of the system.

Let us suppose that the flow map f and the jump map g
depend on two sets of unknown parameters α ∈ Rmf and
β ∈ Rmg , i.e.

f = f(ξ, α) g = g(ξ, β)

and that no a priori knowledge of both, the flow set C and
the jump set D , is available. Assume that the system is
observable, i.e. it is possible to measure and collect samples
of the state ξ.

In order to correctly simulate the system or design a
controller for it, it is necessary to identify the parameters
in α, β and estimate the sets C and D from measurements
of the state ξ.

Hereafter, the basic assumptions required to develop the
proposed identification method are presented. Firstly, as a
very general hypothesis, both the flow and jump maps are
assumed to be linear in the parameters. However, f and
g are usually nonlinear with respect to the states. Thanks
to this assumption, it is possible to employ linear identifi-
cation techniques to estimate the unknown parameters.

Assumption 1. (Linearity in the parameters). The maps f
and g are linear with respect to constant parameters col-
lected in the vectors α ∈ Rmf and β ∈ Rmj respectively,
i.e., there exist ϕ : Rn → Rmf×n and ψ : Rn → Rmj×n

such that {
ξ̇ = f(ξ) = ϕ(ξ)α ξ ∈ C
ξ+ = g(ξ) = ψ(ξ)β ξ ∈ D

The maps ϕ, ψ are assumed to be known a priori.

The second assumption deals with the regularity of the
flow map.

Assumption 2. (Smoothness of the flow map). The follow-
ing properties hold for the flow map f :

1. f is globally Lipschitz continuous on C, i.e., there
exists a constant k ≥ 0 such that

∀ξ1, ξ2 ∈ C ‖f(ξ1)− f(ξ2)‖ ≤ k‖ξ1 − ξ2‖ .
k is referred as the Lipschitz constant ;

2. f is differentiable almost everywhere in C;
3. f admits a fixed point in the origin which is inside C,

i.e. f(0n) = 0n, {0n} ∈ C.

3. JUMP DETECTION

Definition 3. (Euler derivative norm). Given the hybrid
system H = (f, g, C,D) and a time interval δt > 0, the
norm of the Euler derivative of the state is defined as

Dδtξ(t) =
‖ξ(t)− ξ(t− δt)‖

δt
Definition 4. (Bounded-norm Euler derivative). The Eu-
ler derivative of a hybrid system H = (f, g, C,D) has
bounded-norm if there exists τ(t) ≥ 0 such that
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∀δt > 0,∀t > δt, ∀ξ ∈ C Dδtξ(t) ≤ τ(t)

Proposition 5. (Norm bound of the Euler derivative).
Consider the hybrid system H = (f, g, C,D). If f(ξ)
satisfies Assumption 2 1 and ξ(t) ∈ C ∀t ∈ [t− δt, t], then
H has bounded-norm Euler derivative with upper bound

τ(t) =
1

δt

∫ t

t−δt
k‖ξ(s)‖ds (2)

Proof. Since ξ̇ = f(ξ) ∀ξ ∈ C, integrating both sides of
the equation between t− δt and t, yields

ξ(t)− ξ(t− δt) =

∫ t

t−δt
f(ξ(s))ds

Therefore,

Dδtξ(t) =
1

δt
‖ξ(t)− ξ(t− δt)‖ =

1

δt

∥∥∥∥∫ t

t−δt
f(ξ(s))ds

∥∥∥∥
Considering the right hand side of the equation, it follows
that

1

δt

∥∥∥∥∫ t

t−δt
f(ξ(s))ds

∥∥∥∥ ≤ 1

δt

∫ t

t−δt
‖f(ξ(s))‖ds

Since f is globally Lipschitz in C and f(0n) = 0n,

1

δt

∫ t

t−δt
‖f(ξ(s))‖ds =

1

δt

∫ t

t−δt
‖f(ξ(s))− f(0n)‖ds

≤ 1

δt

∫ t

t−δt
k‖ξ(s)‖ds <∞

where k is the Lipschitz constant. Thus, there exists a
τ ≥ 0 such that, for all t, it holds

Dδtξ(t) ≤
1

δt

∫ t

t−δt
k‖ξ(s)‖ds , τ(t, δt)

The above integral is always limited since, from global
Lipschitz continuity of f(·), global existence of trajectories
ξ(t) is assured in C. It follows that on any compact time
interval, [t− δt, t], where the state does not leave the flow

set, the quantity
∫ t
t−δt ‖ξ(s)‖ds is limited, providing the

result.
�

From now on let us refer to τ(t) as the smoothness bound.

Example 6. Consider an hybrid system with the flow de-
scribed by

ξ̇ = f(ξ) = sin(ξ) ξ ∈ C
where C := [0, 2π]. f clearly satisfies Assumption 2 and its
Lipschitz constant k can be found as

k = sup
ξ∈C
‖df
dξ
‖ = sup

ξ∈C
‖ cos(ξ)‖ = 1

Furthermore, the solution of the ordinary differential equa-
tion with ξ(0) = ξ0 is

ξ(t) = 2 tan−1(et−ln(cot(ξ0/2)))

Since f(0) = 0 ({0} ∈ C) Proposition 5 holds and, for any
δt > 0 yields

Dδtξ(t) =
1

δt
‖ξ(t)− ξ(t− δt)‖ ≤ 1

δt

∫ t

t−δt
‖ξ(s)‖ds = τ(t)

Figure 2 shows in a numerical example with ξ0 = 10−2

and δt = 0.5.
1 Notice that Assumption 2.2 is not necessary for Proposition 1.
However, it will become of fundamental importance later on.

2 4 6 8 10
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2
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t

ξ(
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δ
t
ξ(
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τ
(t

)

ξ(t)

Dδtξ(t)

τ(t)

Fig. 2. Time evolution of ξ(t), Dδtξ(t), τ(t) for ξ0 = 10−2 and
δt = 0.5.

Thanks to Assumption 2 and the criteria provided by
Proposition 5, any jump, i.e. state discontinuities, can be
detected from a series of state measurements by inspecting
the norm of the Euler derivative. In particular, the system
can be considered to be jumping if Dδtξ(t) is above
an empirically estimated smoothness bound τ̂(t) and the
following assumption is always satisfied.

Assumption 7. (Discontinuities and sampling time).
For the chosen δt and τ̂ , it holds:

1. g(ξ) ∈ C ∀ξ ∈ D;
2. ∃s ∈ [t, t− δt] : ξ(s) ∈ D ⇒ s is unique.
3. Let ξ(s) ∈ D, s ∈ (t− δt, t). Then,

Dδt ξ(t) ≥ τ̂(t).

Therefore, a jump detection function can be defined as

γ(t) ,

{
0 ‖ξ(t)− ξ(t− δt)‖/δt ≤ τ̂(t)
1 otherwise

which is zero during the flows of the system and assumes
the value 1 during the jumps.

At any instant of time γ(t) allows to determine whether
the system is jumping of flowing ; τ̂ can be adaptively
changed as function of the state and/or time. Note that
γ(t) = 1 indicates that the jump just happened and thus
the system’s state had been inside the jump set D during
the time interval [t− δt, t].
Remark 8. Assumption 7 ensures two important proper-
ties. Firstly, that only one jump is possible between two
samples of the state. Secondly, that the discontinuities
created by jumps always make the Euler derivative norm
to exceed the estimated smoothness bound for the chosen
sampling time. Note that this latter assumption is quite
reasonable for any smooth f and sufficiently small δt.
However, presence of noise on the state’s observations
could indeed break this assumption.

4. IDENTIFICATION PROCEDURE

4.1 Approximation of the Smoothness Bound

In order to estimate on-line the smoothness bound (2), it
is necessary to approximate the Lipschitz constant k and
then numerically integrate the norm of the state between
two sampling instants. At any time instant t, the estimated

flow map f̂t is defined as

f̂t(ξ) = ϕ(ξ)α̂(t)

where α̂(t) is the estimated vector of flow parameters at
time t. Thanks to Assumption 2, f is differentiable (and so
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is f̂t) and globally Lipschitz on C, the Lipschitz constant
will bound from above the supremum of the norm of the
Jacobian of f in the flow set C:

k ≥ sup
ξ∈C
‖∂f
∂ξ
‖

Since f is not known a priori (α is unknown), the esti-
mation of k must be carried out employing the estimated

flow map f̂t. In this paper, as an estimate of the Lipschitz
constant, the following quantity is considered:

k̂ = r sup
ξ∈C
‖∂f̂t
∂ξ
‖ r > 1

Therefore, the estimated smoothness bound τ̂(t) is given
by

τ̂(t) =
k̂

δt

∫ t

t−δt
‖ξ(s)‖ds =

r

δt
sup
ξ∈C
‖∂f̂t
∂ξ
‖
∫ t

t−δt
‖ξ(s)‖ds

Notice that the integral below must be computed numer-
ically. A possible simple choice is to use the first order
Newton-Cotes formula (trapezoidal rule). This would yield
to the following approximation of τ̂(t)

τ̂(t) =
r

δt
sup
ξ∈C
‖∂f̂t
∂ξ
‖
∫ t

t−δt
‖ξ(s)‖ds

≈ r

2
sup
ξ∈C
‖∂f̂t
∂ξ
‖ [‖ξ(t)‖+ ‖ξ(t− δt)‖] (3)

It worths to be observed that with this numerical integra-
tion algorithm the estimated smoothness threshold does
not explicitly depends on δt. Other empirical methods for
computing the Lipschitz constant of multivariable func-
tions are presented in Mladineo [1986], Wood and Zhang
[1996]. Notice that we do not have any a priori knowledge

of C and thus, in equation (3) an approximated flow set Ĉ
should be employed.

Remark 9. The tuning of the multiplicative constant r
should be addressed empirically. In fact, it has to be chosen
considering a trade off between robustness (high r ensures
that τ̂(t) ≥ τ(t) ∀t) and accuracy (low r let τ̂ stay below
the peaks ofDδtξ(t) during jumps, i.e. Assumption 3 would
be violated).

4.2 Parameters Estimation

Let us assume to observe the system and measure the state
ξ with a sampling time δt. Suppose to collect Nf samples
during the flows of the system. It holds:

ξ̇(t1)

ξ̇(t2)
...

ξ̇(tNf
)

 =


ϕ(ξ(t1))
ϕ(ξ(t2))

...
ϕ(ξ(tNf

))

α (4)

Similarly, if Nj samples of the states are collected during
jumps, i.e., if γ(ti) = 1 for all i = 1, . . . , Nj , yields

ξ(t1)
ξ(t2)

...
ξ(tNj )

 =


ψ(ξ(t1 − δt))
ψ(ξ(t2 − δt))

...
ψ(ξ(tNj − δt))

β (5)

However, in practice, measurements are always affected
by noise and, thus, relations (4) and (5) do not hold. In

particular, let’s assume that an additive noise, ξ̃(ti), with

zero-mean affects the system, i.e., ξ(ti) = ξ̄(ti) + ξ̃(ti),
where ξ̄(t) is the true value of the state variable.

Thanks to Assumption 1, the parameters in α and β can
be estimated by linear identification techniques. In fact,
both equations, (4) and (5) belong to the error-in-variables
(EIV) models:

y ≈ Xa (6)

where y = ȳ + ỹ is an output’s measurements vector and
X = X̄ + X̃ is an observation matrix, both comprise of a
noiseless part (ȳ, X̄), and a noisy part (ỹ, X̃). In this linear
model, the vector of parameters a could be estimated by
mean of a standard linear estimator Ljung [1987]. The
choice of the proper estimation scheme should be done
considering how the measurement noise is distributed on
the possible state–nonlinearities of ϕ and ψ. The overall
identification experiment is carried out as follows: at each
sampling time, the jump detection function is computed.
If the system is considered to be flowing, the estimated

flow parameter α̂ is updated and the jump parameter β̂
remains unchanged. On the contrary, if a jump state is

detected γ(t) = 1, the jump parameter β̂ will be updated
and the flow parameters α̂ will be unchanged.

Notice that, in order to update the flow parameters α̂
according to the chosen linear estimation scheme, the
knowledge of the derivative of the state, ξ̇(t), is needed.
Since we assume to be able of collecting only samples of
the state, this quantity has to be computed numerically
(Euler derivative, sliding mode, etc.). This cumbersome
calculation can be avoided by considering that the linear
relation holds even if it is integrated in an interval of time.
In fact,

ξ̇(t) = ϕ(ξ(t))α

⇔ ξ(t)− ξ(t− δt)︸ ︷︷ ︸
∆ξ(t)

=

[∫ t

t−δt
ϕ(ξ(s))ds

]
︸ ︷︷ ︸

Φ(t)

α

⇔ ∆ξ(t) = Φ(t)α (7)

This propriety has been exploit in the identification exper-
iments by employing the model (7). Note that, since the
value of ξ is available only at t and t−δt, the above integral
must be computed by some explicit numerical scheme An
overview of the procedure used to update the parameters
at time t is presented in Algorithm 1.

Algorithm 1 Identification of the Hybrid System

1: Input: α̂(t− δt), β̂(t− δt), ξ(t), ξ(t− δt),

2: Compute τ̂(t) =
r

2
sup
ξ∈Ĉ
‖∂f̂t
∂ξ
‖ [‖ξ(t)‖+ ‖ξ(t− δt)‖]

3: Compute γ(t)
4: if γ(t) = 0 then

5: ∆ξ(t) = ξ(t)− ξ(t− δt), Φ(t) =
∫ t
t−δt ϕ(ξ(s))ds

6: Update α̂(t) (Linear Estimator)

7: β̂(t)← β̂(t− δt)
8: else
9: Update β̂(t) (Linear Estimator)

10: α̂(t)← α̂(t− δt)
11: Output: α̂(t), β̂(t),
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4.3 Reduced Order Identification

Let ξ̇ = f(ξ) = ϕ(ξ)α. Suppose that some parameters
in α are known before the identification experiment. In
particular, let us assume that all the ml parameters of the
first l components of f are known

α = [α1, α2]
>

where α1 ∈ Rml are the known parameters and α2 ∈
Rmf−ml . In this case, ϕ(ξ) can be partitioned as

ϕ(ξ) =

[
ϕ1(ξ) 0

0 ϕ2(ξ)

]
with ϕ1(ξ) ∈ Rl×ml and ϕ2(ξ) ∈ R(n−l)×(mf−ml). There-
fore, the identification experiment should be applied only
to the subsystem

ξ̇2 = ϕ2(ξ)α2 (8)

This is justified in many physical systems described by a
set of second order differential equations (see Example 10).

Notice that the same situation might happen for a jump
map. In this case,

ψ(ξ) =

[
ψ1(ξ) 0

0 ψ2(ξ)

]
, β = [β1, β2]

>

and the model considered for the identification would be

ξ+
2 = ψ2(ξ)β2 (9)

Example 10. Let the flows of the hybrid system be de-
scribed by the following differential equation

ẍ = aẋ+ b sin(x)

Define ξ = [ξ1, ξ2]> = [x, ẋ]>. The canonical first order
state space equation becomes

ξ̇ =

[
ξ2

aξ2 + b sin(ξ1)

]
=

[
ξ2 0 0
0 ξ2 sin(ξ1)

] [1
a
b

]
It is clear that we are interested only in the parameters
a and b. Therefore it is convenient to consider only the
subsystem

ξ̇2 = [ξ2 sin(ξ1)]

[
a
b

]
in the identification experiment.

4.4 Flow and Jump Sets Approximation

The method to approximate the flow and jump sets
proposed in this paper is developed from the following
idea. Since it is possible to determine the “state” of the
system, i.e. whether the system is flowing or it has jumped,
it is possible to subdivide the samples of the state in
two different sets, a set Λ containing the state’s samples
during flows and a set Γ containing the state’s samples
corresponding to jumps. Then, the approximated flow set
Ĉ and jump set D̂ are obtained by computing the convex
hull of Λ and Γ respectively. The detailed procedure is
reported in Algorithm 2.

Remark 11. In case C and D are assumed convex sets, the
approximation results offer an accurate representations of
them, consistent with the regions explored by the state
of the system. Otherwise, Ĉ and D̂ will be a redundant
representation of the flow and jump sets. In this case, other
techniques might be implemented for a better approxi-
mation, e.g. machine–learning–related methods. However,

Algorithm 2 Approximation of the flow and jump sets

1: Input: α̂(t− δt), ξ(t), ξ(t− δt), Λ(t− δt), Γ(t− δt)

2: Compute τ̂(t) =
r

2
sup
ξ∈Ĉ
‖∂f̂t
∂ξ
‖ [‖ξ(t)‖+ ‖ξ(t− δt)‖]

3: Compute γ(t)
4: if γ(t) = 0 then
5: Λ(t)← Λ(t− δt) ∪ {ξ(t)}
6: Γ(t)← Γ(t− δt)
7: else
8: Λ(t)← Λ(t− δt) ∪ {ξ(t)}\{ξ(t− δt)}
9: Γ(t)← Γ(t− δt) ∪ {ξ(t− δt)}

10: Ĉ(t) = conv(Λ(t))

11: D̂(t) = conv(Γ(t))

12: Output: Ĉ(t), D̂(t), Λ(t), Γ(t)

these further investigations fall out of the scope of this
paper and will be treated in future work.

5. SIMULATION EXPERIMENTS

5.1 Case of Study: Impact Mass-Spring-Damper System

Let us consider an impact mass-spring-damper system
represented in Fig. 3. Assume the mass to be unitary and
the rest position of the spring to be at the origin (x = 0).

Model of the Flows When the ball is not touching
the floor, the system behaves as a simple damped linear
oscillator. Let ξ = [ξ1, ξ2]> = [x, ẋ]>. The flows of the
system are described by

ξ̇ =

[
ξ2

−aξ1 − bξ2

]
=

[
ξ2 0 0
0 −ξ1 −ξ2

][1
a
b

]
where a and b are the spring stiffness and the damping
coefficient, respectively. The corresponding flow set flow
set is

C = {ξ : ξ1 ≥ 0} \ {ξ : ξ1 = 0, ξ2 < 0}

Model of the Jumps It is clear that during the collision
between ball and the floor (x = 0) there is a discontinuity
in the velocity. In this example, collisions are considered
partially inelastic while the ball is modeled as a rigid
body. The selected jump map to model the collisions is
the following:

ξ+ =

[
ξ1

−λξ2 + µ

]
=

[
ξ1 0 0
0 −ξ2 1

] [1
λ
µ

]
where λ is the restitution coefficient and µ is introduced to
consider possible unmodeled impact dynamics. The jump
set is therefore,

D = {ξ : ξ1 = 0, ξ2 ≤ 0}

m

a b
x

Fig. 3. Impact mass-spring-damper system
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Fig. 4. Time evolution of the position and velocity of the system.
The gray dots correspond to system’s jumps while dotted blue
lines highlight the change of state which creates discontinuities.

Model Identification In order to estimate the system’s
parameters, a reduced order identification has to be per-
formed for both the flow and the jump as in (8) and (9).

Let α = [α1, α2]
>

= [a, b]
>

and β = [β1, β2]
>

= [λ, µ]>

The reduced model for the flow is

ξ̇2 = [−ξ1 −ξ2]

[
α1

α2

]
and the one for the jump is

ξ+
2 = [−ξ2 1]

[
β1

β2

]
The approximation of the smoothness bound can be de-
rived by computing the supremum of the norm of the
estimated flow map Jacobian. Hence, the estimated flow
map will be

f̂t(ξ) = −α̂1(t)ξ1(t)− α̂2(t)ξ2(t)

Therefore,

∂f̂t
∂ξ

=

[
−α̂1(t)
−α̂2(t)

]
⇒ sup

ξ∈Ĉ
‖∂f̂t
∂ξ
‖ = ‖α̂(t)‖

5.2 Numerical Simulation

To validate the proposed identification method, numerical
simulations have been performed. The simulation exper-
iments have been carried out using Hybrid Equations
(HyEQ) Toolbox Sanfelice et al. [2013] for the MATLAB
environment. The parameters of the system have been
chosen as a = 5, b = 0.1, λ = 0.99, µ = 0. The
initial condition and the time span of the simulation have
been set to ξ(t0) = [20, 0]> and 20 seconds, respectively.
Furthermore, the sampling time δt has been chosen to be
0.5·10−3 s, the multiplicative constant r in the smoothness
bound has been set to 220 and the estimated smoothness
bound has been initialized to 105.

Here, as both the flow and jump maps result linear in the
state, the chosen estimation scheme is the recursive least
squares (RLS) Ljung [1987]. However, due to how noise
would influence the system, i.e. it affects the observation
matrix, alternative results might be achieved with a re-
cursive generalized total least squares Rhode et al. [2014]
or a recursive Frisch scheme Massaroli et al. [2018, 2019].
The resulting time evolution of the system is represented
in Fig. 4. It can be noticed that the behavior of the system
is similar to the one of a bouncing ball under the effect of
constant gravitational acceleration. However, in this case,
the ball is pulled to the ground by the force of the spring.

Along the trajectory, the norm of the Euler time derivative
Dδtξ(t) and the estimated smoothness bound τ̂(t), have
been computed. These quantities have been employed
to evaluate the function γ(t) and thus, to identify the
parameters α and β through the RLS. Initially, to test
the overall procedure in nominal conditions, no additive
noise has been added to the measurements of the states.
The trend of Dδtξ(t) during the simulation, is shown
in the upper part of Fig. 5. The figure also shows the
comparison between the approximated τ̂ and the true
smoothness bound τ (scaled by an arbitrary constant r).
The approximation error of the smoothness bound, defined
as eτ (t) = ‖τ̂(t) − r · τ(t)‖, it is plotted in the lower part
of Fig. 5. It can be noticed that after just few iterations
the estimated smoothness bound τ̂ can accurately track
the scaled nominal bound τ . At the same time, as the
estimation of the parameters becomes more accurate, the
tracking error decreases. The performance of the system
in the identification of the parameters has been evaluated
by defining the absolute estimation errors eα(t) = ‖α −
α̂(t)‖ and eβ(t) = ‖β − β̂(t)‖. The time evolution of the

components of α̂ and β̂, and the one of the estimation
errors eα(t) and eβ(t), are plotted in Fig. 6. As expected,
in the nominal case, the estimation error decreases with
the number of iterations. A zero-mean Gaussian noise with
standard deviation σ̃ξ = 0.25 has successively been added
to the state observations and the experiment repeated
The results are shown in Figs. 7 and 8. The tracking
error of the smoothness quickly converges to a values
oscillating around 103 which correspond to a mean relative
error of about 2.5%, Fig. 7. This proves a certain level
of robustness to noise in the approximation of τ(t). This
result is also pictured in Fig. 8 where good estimates are
achieved for both, the flow and the jump parameters.
Besides, it must be mentioned that, in case of excessive
noise, the approximation of the smoothness becomes less
accurate and the difference of Dδtξ(t) during flows and
jumps less prominent, making the detection of the jumps
difficult. In fact, the system is sensitive to the choice of
the multiplicative constant r and δt, which should be
empirically made. To ensure a clear separation between
the Euler derivatives and thus, increase the robustness
to noise, a small value should be assigned to δt. Indeed,
this would also help to enforce the validity of Assumption
3. A major drawback of the proposed approach is that
the erroneous classification of some of the states as flows
or jumps inevitably introduce errors in the estimation
process. This might be due to a poor choice of the scalar
r or, in the firsts iterations of the identification algorithm,
to rough estimates of the flow parameters. However, the
problem might be partially solved introducing a forgetting
term in the estimation scheme Söderström [2018] allowing
a quick recover of the estimates together with a method to
retroactively re–classify the wrong sample. These further
investigations are left for future work.

6. CONCLUSIONS

In this paper a new methodology for the identification
of a class of hybrid dynamical systems, which evaluates
the unknown parameters by employing a linear recursive
estimator, has been proposed. The developed procedure
is able to identify the state of the system and explicitly
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Fig. 5. Nominal experiment (no measurement noise). [Above] Norm
of the Euler derivative Dδtξ(t), (dotted black line and circe
marker), estimated smoothness bound τ̂(t) (blue solid line)
and nominal smoothness bound τ(t) scaled by the arbitrary
constant r. [Below] smoothness bound approximation error
eτ (t) (log scale).

Fig. 6. Nominal experiment (no measurement noise): parameters
estimation results. [Left] Estimates of the parameters in α and
absolute estimation error eα(t) = ‖α − α̂(t)‖ (below). [Right]
Estimates of the parameters in β and absolute estimation error
eβ(t) = ‖β − β̂(t)‖ (below).

determine the flowing and jumping states. Here we have
derived a systematic approach for the identification of
hybrid dynamical systems, that to the best of authors’
knowledge, is the first application of system identifica-
tion methodologies to hybrid dynamical systems which
can be analytically represented by Equation 1. Further
development will include a more rigorous approach for
the estimation of the smoothness bound without the need
of any empirical coefficient, the exploration of alterna-
tive estimation schemes and a possible extension to the
identification of hybrid inclusions. Problems related to the
non–convex approximation of the the flow and jump sets
will also be regarded investigating new machine learning
strategies.
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