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Abstract: In this contribution, a cascaded control strategy is presented for a permanent magnet
synchronous motor (PMSM) that compensates for model nonlinearities and enables an accurate
as well as robust trajectory tracking. The proposed strategy comprises the combination of
an inversion-based current control, one of two alternative second-order sliding mode control
approaches (SMC) and an extended Kalman filter (EKF). The reference values for the inversion-
based current controllers are calculated by a Maximum Torque Per Ampere (MTPA) strategy in
an outer control loop. As second-order SMC approaches are investigated: one design based on an
integrator extension of the control input, whereas the other is given by a hybrid twisting control.
Both alternatives mitigate undesired chattering while the EKF yields smooth estimates for
both the state variables and a lumped disturbance torque from noisy measurements. Moreover,
the robustness of the overall control structure is increased, chattering effects are reduced and
unknown disturbances as well as parameter uncertainty are addressed by combining second-
order sliding mode control with estimator-based disturbance compensation. The potential of
the proposed nonlinear control strategy is pointed out by successful simulation studies.

Keywords: PMSM, Extended Kalman Filter, Torque Control, Sliding Mode Control, Control
Applications.

1. INTRODUCTION AND MOTIVATION

Due to their high power density, permanent magnet syn-
chronous motors (PMSMs) are frequently used in appli-
cations with limited space for actuators. For this reason,
they often have to be used in the high power region with
large currents. As such a operation is related to several
nonlinear effects, the choice of an appropriate control
strategy is crucial and has a huge impact on the efficiency
of these electrical machines. Control of PMSMs is a con-
solidated field of research, offering already many control
strategies in different industrial branches. Most of them
use linear approaches – like proportional-plus-integral (PI)
and proportional-plus-integral-plus-derivative (PID) con-
trollers – and nonlinear ones – like sliding mode control
(SMC) as proposed in Zwerger and Mercorelli (2019),
Zwerger and Mercorelli (2018). A reason for the popularity
of SMC, see Y. Shtessel and Levant (2014), is the inherent
robustness of SMC against parameter uncertainty, which
is also beneficial for the control of the PMSM. One of the
most crucial aspects to be addressed in SMC applications
is the reduction of the chattering phenomenon. In this
context, two alternative second-order schemes are adopted
and compared to each other. In the field of PMSM control,
the realization of a sensorless control, which intends to
reduce the number of measured states and, hence, the

number of sensors, is a challenging problem, cf. Bolognani
et al. (1999). This reduction may be obtained using a
state observer as a virtual sensor, see Mercorelli (2017),
Mercorelli (2014) and Mercorelli (2015). For an effective
sensorless control, an accurate system model is required,
which poses problems in the case of model uncertainty.
Recently, by means of an analytical sensitivity analysis,
the contributions of Bolognani et al. (2018) and Soricellis
et al. (2017) have addressed the influence of model un-
certainty on the observed position and the robustness of
a proportional-integral observer in the current control of
PMSM drives. Aschemann et al. (2018) presented an inte-
gral sliding mode control in combination with a reduced-
order disturbance observer for a permanent magnet linear
actuator. In this paper, an innovative control approach of
PMSM drives is presented. The main contributions are as
follows:

• A combination of second-order SMC and an extended
Kalman filter (EKF) for both state and disturbance
estimation minimizes the tracking error even in the
presence of disturbances and parameter uncertainty.
Two alternative solutions are compared to each other.

• The EKF-based disturbance compensation enables a
reduction of the switching height of the discontinuous
control part and, consequently, a further reduction
of the chattering phenomenon is obtained. Moreover,
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also the impact of parameter uncertainty on the
motor torque can be counteracted efficiently.
• In the underlying inversion-based current control, the

estimated rotor velocity is employed for a model-
based compensation of the induced voltage.

The given paper is structured as follows: In Sect. 2,
the physical system modelling of the PMSM is described
briefly. Sect. 3 deals with the cascaded nonlinear con-
trol design. Here, Subsect. 3.1 presents an inversion-based
current control to determine the desired input voltages
ud(t) and uq(t) of a d/q-model of the PMSM. The desired
currents id(t) and iq(t) are calculated by means of the well-
known maximal torque per Ampere (MTPA) method, as
described in Subsect. 3.2. The desired torque is determined
using second-order sliding mode control (SOSMC) – either
a variant based on an integrator extension of the input or
a hybrid twisting controller –, see Sect. 3.3. In particu-
lar, SOSMC counteracts model uncertainty and external
disturbances and, hence, guarantees the robustness of the
control strategy. Both the state variables and a lumped
disturbance are estimated by an extended Kalman filter
(EKF) presented in Sect. 4. They are employed subse-
quently for compensation purposes. Thereby, the SMC
is relieved and undesired chattering is reduced. Simula-
tion results in Sect. 5 indicate tracking accuracy even in
the presence of unknown disturbances. Finally, the paper
closes with conclusions.

2. DYNAMIC MODELLING OF THE PMSM

The two-axis dq-model of the PMSM, obtained by using
Park’s dq-transformation, is the most widely used among a
variety of models in the literature, especially for variable-
speed control applications, see M.A. Rahman and King-
Jet (2003) and Khaburi and Shahnazari (2003). Park’s dq-
transformation represents a nonlinear coordinate transfor-
mation that converts the three-phase stationary variables
into variables of a rotating coordinate system. A PMSM
with interior magnets is subject to saturation and cross
coupling effects, where both are load-dependent. The flux
linkages

ψd(t) = Ld(id(t))id(t) + ψp ,

ψq(t) = Lq(iq(t))iq(t) (1)

act simultaneously and interfere within the stator. In this
paper, cross couplings and saturation effects are not in-
cluded in the model, and linear equations employed for the
flux linkage. Nevertheless, the impact of parameter uncer-
tainty on the motor torque is counteracted by disturbance
estimation and compensation. The permanent flux acts in
the same direction as ψd. The permanent magnetic flux
from the rotor over the air gap and the stator is denoted
by ψp. The other portion of magnetic flux which is present
in the rotor is not considered in ψp. The voltage balances
result in

ud(t) = Ld
did(t)

dt
+Rsid(t)− Lqpωr(t)iq(t) ,

uq(t) = Lq
diq(t)

dt
+Rsiq(t) + Ldpωr(t)id(t) + ψpp ωr(t) .

(2)

These equations can be stated in a compact matrix-vector
form as follows

[
ud(t)
uq(t)

]
︸ ︷︷ ︸

u(t)

=

[
−Lqpωr(t)iq(t)

Ldpωr(t)id(t) + ψppωr(t)

]
︸ ︷︷ ︸

up(t)

+

[
Ld 0
0 Lq

]
︸ ︷︷ ︸

L

 did(t)

dt
diq(t)

dt


︸ ︷︷ ︸

di(t)
dt

+

[
Rs 0
0 Rs

]
︸ ︷︷ ︸

R

[
id(t)
iq(t)

]
︸ ︷︷ ︸

i(t)

(3)

Here, id(t), iq(t), ud(t) and uq(t) are the dq-components
of the stator currents and voltages in a synchronously
rotating rotor-fixed reference frame, and ωr(t) is the rotor
angular velocity. Given the number of permanent mag-
net pole pairs p, the electrical angular velocity becomes
ωel(t) = pωr(t). The other system parameters Rs, Ld, and
Lq stand for the stator resistance and the inductances of
the d-axis and q-axis, respectively. The dynamic electrical
model of the synchronous motor in dq-coordinates can now
be stated in state-space form did(t)

dt
diq(t)

dt

 =


−Rs
Ld

Lqpωr(t)

Ld

−Ldpωr(t)
Lq

−Rs
Lq


︸ ︷︷ ︸

A

[
id(t)
iq(t)

]
︸ ︷︷ ︸

i(t)

+


1

Ld
0

0
1

Lq


︸ ︷︷ ︸

B


[
ud(t)
uq(t)

]
︸ ︷︷ ︸

u(t)

−
[

0
ψppωr(t)

]
︸ ︷︷ ︸

ep(t)

 , (4)

with the induced voltage vector ep(t). The motor torque,
which represents the controlled output, is given by

MM (t) =
3

2
p
{
iq(t)ψd(t)− id(t)ψq(t)

}
, (5)

where the term (iq(t)ψd(t) − id(t)ψq(t)) defines the cross
coupling within the PMSM dynamics, which also leads
to the effect that a variation of the current id(t) has an
impact on the current iq(t) in the q-axis and vice versa. By
introducing the inductances according to (1), the torque
can be expressed alternatively in the form

MM (t) =
3

2
p
{

(Ld − Lq)id(t)iq(t) + ψpiq(t)
}
. (6)

This drive torque affects the angular velocity of the rotor
described by the mechanical equation of motion

J
dωr(t)

dt
= MM (t)− dωr(t)−M0(t) . (7)

In addition to viscous damping, characterized by the coef-
ficient d, a lumped disturbance torque M0(t) – accounting
for nonlinear friction, an external load torque and the
impact of parameter uncertainty – are considered. J rep-
resents the mass moment of inertia of the rotor.

3. CONTROL STRUCTURE

Starting from the outer loop, the structure of the control
strategy consists of a combination of an external second-
order SMC and an internal MTPA module that calculates
optimal currents, see the block diagram in Fig. 1. In the
inner loop, an inversion-based current control (IBCC) is
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employed that generates the desired input voltages. An
EKF is applied to reconstruct the states of the system and
in particular to estimate an unknown lumped disturbance
torque acting on the rotor.

Fig. 1. Block diagram of the overall control structure.

3.1 Inversion-Based Current Control

For the current control, an inversion-based design is suit-
able and allows for a linear first-order error dynamics.
For this purpose, the right-hand side should be equal to
the sum of the time derivatives d(id(t))/dt of the desired
currents and a feedback term given by the product of
a diagonal matrix Λ = diag[λ, λ] and the tracking error
id(t)− i(t). This results directly in

di(t)

dt
= A i(t) + B [u(t)− êp(t)]

=
did(t)

dt
+ Λ[id(t)− i(t)]. (8)

Equation (8) can be solved for the desired input vector
u(t), which results in

u(t) = L

[
did(t)

dt
+ Λ[id(t)− i(t)]

]
+ R i(t) + êp(t). (9)

To compensate for the induced voltages in the current
dynamics, a model-based estimate êp(t) is determined
according to (4) – evaluated with the estimated rotor
angular velocity ω̂r(t) provided by the EKF.

3.2 Maximum Torque Per Ampere (MTPA)

The losses in the machine depend on the copper losses and
increase quadratically with the machine currents. Given
the desired motor torque MM (t), the MTPA method pro-
vides optimal values for the desired dq-currents idd(t) and
iqd(t). These currents are subsequently used as reference
inputs in the inner loop of the cascaded control structure.
The aim of maximizing the motor torque with minimal
dq-currents leads to a equality-constrained optimization
problem, which can be addressed symbolically by an aug-
mented Lagrangian. The torque determined in the outer
control loop for the angular velocity represents the desired
torque

Md(t) = MM (t) =
3

2
p[iq(t)ψp + (Ld − Lq)id(t)iq(t)] ,

(10)

that should be realized with the smallest currents possible
and in compliance with a side condition for the currents

i(t) =
√
i2d(t) + i2q(t) → i2(t)− i2d(t)− i2q(t) = 0 (11)

The Lagrangian is then

L = −3

2
p[iq(t)ψp + (Ld − Lq)id(t)iq(t)]

+ λ(i2(t)− i2d(t)− i2q(t)), (12)

where λ is a Lagrange multiplicator for the side condition.
The necessary optimality condition is given by vanishing
first partial derivatives with respect to iq(t), id(t), and λ(t).
In addition to (11), this leads to

∂L
∂iq(t)

= −3

2
p[ψp + (Ld − Lq)id(t)]− 2λiq(t), (13)

∂L
∂id(t)

= −3

2
p[iq(t)(Ld − Lq)]− 2λid(t). (14)

Equations (13) and (14) are set to zero and solved to find
the optimal solutions for id(t) and iq(t)

id1/2(t) = − ψp
2(Ld − Lq)

± 1

2

√(
ψp

Ld − Lq

)2

+ 4i2q(t). (15)

For a local minimum, the second derivatives are required to
show the positive definiteness of the Hessian. They become

∂2L
∂i2q(t)

=
∂2L
∂i2d(t)

= −2λ(t), (16)

∂2L
∂id(t)∂iq(t)

= −3

2
p[Ld − Lq]. (17)

A positive definite Hessian is obtained if λ is chosen
negative. Then, the currents id1/2(t) of (15) have to be

inserted in the solution for (13) or (14). If Ld 6= Lq holds,
e.g. in the case of an anisotropic machine and, especially
Ld < Lq, then the current id(t) follows for any given
current iq(t) (iq(t) > 0 for motor mode and iq(t) < 0
for generator mode) as

id(t) = − ψp
2(Ld − Lq)

− 1

2

√(
ψp

Ld − Lq

)2

+ 4i2q(t). (18)

3.3 Second-Order Sliding Mode Tracking Control

In this section, two alternative solutions for a second-order
SMC are discussed for a tracking control of the angular
velocity ωr(t).

Asymptotic Second-Order SMC (SOSMC) For
the design of the tracking control, the equation of motion
(7) for the rotor is stated in state-space form and extended
by an integrator at the input according to

d

dt

[
ωr(t)
MM (t)

]
=

[
MM (t)− dωr(t)−M0(t)

J
u(t)

]
. (19)

Here, u(t) = ṀM (t) represents the new control input.
To simplify the notation, the time argument is omitted
in the following derivation. For the second-order sliding
mode control, a classical integral sliding surface is defined

s = ˙̃ωr + α0ω̃r + αI

∫ t

0

ω̃rdτ,

where ω̃r = ωd − ωr denotes the tracking error w.r.t. the
angular velocity. The coefficients α0 > 0 and αI > 0 are
chosen as positive values. Here, steady-state accuracy is
guaranteed by the integral part, which also contributes to
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the robustness of the position tracking. Accordingly, the
first time derivative ṡ becomes

ṡ = ¨̃ωr + α0
˙̃ωr + αI ω̃r. (20)

Then, a quadratic Lyapunov function

V (s) =
1

2
s2 (21)

is introduced and the corresponding reaching condition is
chosen

V̇ (s, ṡ) = sṡ ≤ −η |s| = −η s sign(s). (22)

With the choice η̃ > η > 0, which corresponds to a slightly
increased switching height, and the first time derivative of
(20), the reaching condition results in

ω̈rd − ω̈r︸︷︷︸
υ

+α0
˙̃ωr + αI ω̃r = −η̃ sign(s). (23)

Here, the highest derivative is chosen as a stabilizing
control input, i.e., ω̈r = υ. The corresponding stabilizing
control law follows as

υ = ω̈rd + α0
˙̃ωr + αI ω̃r + η̃ sign(s). (24)

A useful measure towards a further reduction of chattering
is given by a regularisation of the switching part according
to

υ = ω̈rd + α0
˙̃ωr + αI ω̃r + η̃ tanh

(s
ε

)
. (25)

As a result, however, a perfect sliding mode, see Slotine
and Li (1991), is no longer possible. Instead, a real sliding
mode occurs characterized by a small boundary layer
around s = 0 with a thickness determined by a small
parameter ε. The time derivative of desired motor torque

ṀM (t) = Jυ + dω̇r(t) +
˙̂
M0(t) (26)

follows from inserting this control law into the time deriva-
tive of the equation of motion for the rotor. Here, however,
the time derivative of the disturbance estimate M̂0(t)
provided by the EKF would be needed. Note that the
switching control parts does not affect the drive torque
but its time derivative. For the implementation, the con-
tinuous part is integrated beforehand – which avoids a
differentiation of the disturbance estimate according to

MM (t) = J [ω̇rd(t) + α0ω̃r(t)] + dωr + M̂0(t) (27)

+

∫ t

0

[
JαI ω̃r(τ) + η̃ tanh

(
s(τ)

ε

)]
dτ. (28)

Hybrid Twisting SMC (HTSMC) As an alternative
higher-order sliding mode control approach the hybrid
twisting algorithm is discussed, which is based on both
the twisting as well as the super-twisting algorithms, see
Friedland (1996) and Levant and Pridor (2000). For this
purpose, a modified sliding surface is employed for the
equation of motion (7) according to

s(t) = ω̃r(t) + αI

∫ t

0

ω̃r(τ)dτ,

which allows for computing the equivalent controlMM,eq(t)
by setting ṡ = 0 according to

MM,eq(t) = J [ω̇rd(t) + αI ω̃r(t)] + dωr(t) + M̂0(t). (29)

The inverse dynamics results in

MM (t) = MM,eq(t)− Jν, (30)

where ν represents an additional term that is determined
by one of the three twisting algorithms presented subse-
quently.

Twisting Algorithm The basic twisting algorithm corre-
sponds to the control law

ν̇ =


− ν, |ν| > 1

− αmsign(s), sṡ ≤ 0, |ν| ≤ 1

− αM sign(s), sṡ > 0, |ν| ≤ 1

, (31)

where the parameters αM and αm satisfy the conditions

αM > αm , αm > 4ΓM

s0
, αM > Φ

Γm
,

ΓmαM − Φ > ΓMαm + Φ .
(32)

Super-Twisting Algorithm The super-twisting algorithm
comprises the combined control law

νi,2 =

{− λ |s0|ρ sign(si), |si| > s0

− λ |si|ρ sign(si), |si| ≤ s0
,

ν̇i,1 =

{
− νi, |νi| > 1

−W sign(si), |νi| ≤ 1
,

νi = νi,1 + νi,2 ,

(33)

with the corresponding sufficient conditions for the control
design parameters W , λ and ρ

W > Φ
Γm

, λ2 ≥ 4ΦΓM (W+Φ)
Γ3
m(W−Φ) , 0 < ρ ≤ 0.5 . (34)

In the case of |s| < s0, the positive constants Γm and ΓM
represent the lower and upper bounds of the total time
derivative ṡ, whereas the variable Φ denotes the upper
bound of the second time derivative s̈, see Levant and
Pridor (2000) for more details.

Hybrid Twisting Algorithm In this paper, a hybrid
controller is employed that combines the twisting and
the super-twisting algorithm. It offers a high robustness
and a faster convergence rate in comparison to the SMC
controllers (31) and (33), see Levant and Pridor (2000).
The hybrid twisting sliding mode control (HTSMC) is
described by

ν2 =

{− λ |s0|ρ sign(s), |s| > s0

− λ |s|ρ sign(s), |s| ≤ s0
,

ν̇1 =


− ν, |ν| > 1

− αmsign(s), sṡ ≤ 0, |ν| ≤ 1

− αM sign(s), sṡ > 0, |ν| ≤ 1

,

νi = ν1 + ν2 .

(35)

For a further reduction of high frequency chattering the
switching function sign(s) can be replaced by the smooth
function tanh

(
s
ε

)
, ε > 0.

4. COMBINED STATE AND DISTURBANCE
ESTIMATION

In the given application, only selected measurements are
available to implement the nonlinear control structure:
the rotor angle θr(t) and well as the currents id(t) and
iq(t). Unfortunately, all these measurements are affected
by errors like deterministic offsets and stochastic distur-
bances, e.g. white noise processes. Given the nonlinear sys-
tem model, a discrete-time extended Kalman filter (EKF)
can be advantageously employed and provides estimates
with minimum covariances. The typical design is based
on uncorrelated process noise and measurement noise that
are assumed to be Gaussian, white and with a zero mean
value. Despite the fact that in practice these assumptions
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may not be completely true, the estimator usually provides
meaningful state and disturbance estimates.

The design of the EKF is based on the dynamics of the
dq-currents, the equation of motion for the rotor and,
in addition, an integrator disturbance model Ṁ0(t) = 0
for the unknown disturbance torque M0(t). The extended
state-space representation becomes

xKF (t) = [id(t) iq(t) θr(t) ωr(t) M0(t)]T ,

ẋKF (t) = fKF (xKF (t)) + BKFuin(t), (36)

−Rs
Ld

id(t) +
Lqpωr
Ld

iq(t)

−Ldp
Lq

ωr(t)id(t)−
Rs
Lq
iq(t)−

ψpp

Lq
ωr(t)

ωr(t)
3p

2J
[(Ld − Lq)iq(t)id(t) + ψpiq(t)]−

d

J
ωr(t)−

1

J
M0(t)

0


︸ ︷︷ ︸

fKF (xKF (t))

BKF =


1

Ld
0 0 0 0

0
1

Lq
0 0 0


T

, (37)

with inputs uin(t) = [ud(t) uq(t)]
T . The disturbance

torque M0(t) is estimated as well to compensate for it in
the cascaded controller and corresponds to zero element
in the vector fKF (xKF (t)), which is evaluated in each
time step with the last estimate. The corresponding model
uncertainty is addressed by a large diagonal entry in the
covariance matrix QKF .

In the prediction step of the EKF algorithm, the a-priori
estimates are calculated according to

x̂−
KF (k + 1) = x̂+

KF (k) + TsfKF (x̂+
KF (k)) + TsBKFuin(k),

(38)
which is the result of an explicit Euler discretisation with
the sampling time Ts. For the first step, initial values
x̂+
KF (0) can be either specified by the user or simply set

to zero. The same applies to the initial uncertainty P+(0)
in the following equation. With the Jacobian AKF,d, the
a-priori estimate of the covariance matrix is

P−(k + 1) = AKF,dP
+(k)AT

KF,d + QKF , (39)

where QKF represents a R5×5 matrix quantifying the
covariance matrix of the process noise. The Kalman gain
can now be calculated as

K(k+1) = P−(k+1)CT (CP−(k+1)CT +RKF )−1, (40)

with the measurement matrix C according to xm(t) =
CxKF (t). Here, the vector xm(t) = [id(t) iq(t) θr(t)]

T

characterises the measured states, and the measurement
covariance matrix RKF is chosen a diagonal matrix

C =

[
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

]
, RKF =

[
ri1 0 0
0 ri2 0
0 0 rx

]
. (41)

In the correction step of the Kalman filter algorithm, the
a-posteriori estimates for covariance and states become

P+(k + 1) = (I5×5 −K(k + 1)C) P−(k + 1), (42)

x̂+
KF (k + 1) = x̂−

KF (k + 1) + ∆xKF (k + 1), (43)

where the correction term ∆xKF (k+1) is weighted by the
Kalman gain K(k + 1)

∆xKF (k + 1) = K(k + 1)
(
xm(k + 1)−Cx̂−

KF (k + 1)
)
.

(44)
The estimated states are used in the cascaded control
design.

Apart from velocity-proportional damping, a repeated
pulse-like load torque ML(t) with an amplitude of 0.5 Nm
is employed in addition to a LuGre friction torque
MLuGre(t) in the simulation model. The simplified LuGre
model is given in a well-known standard form

ż(t) = ωr(t)− σ0z(t)
|ωr(t)|

Mc + (Ms −Mc)e
−
(

ωr(t)
ωs

)2 , (45)

MLuGre(t) = σ0z(t) + σ1ż(t) + σ2ωr(t) . (46)

Its parameters are described in detail, for example, in
Åström and de Wit (2008). The LuGre friction model
involves an additional state variable z(t), which can be
interpreted as the deflection of a stiff virtual bristle.
For feedback control purposes, the EKF described in
Sect. 4 is used to determine the estimate M̂0(t) for the
lumped disturbance torque that may comprise nonlinear
friction, an external disturbance torque and the impact of
parameter uncertainty on the motor torque. The torque
requested from MTPA has to be increased accordingly by
the estimated disturbance torque to achieve an accurate
tracking of the angular velocity.

5. SIMULATION RESULTS

The simulation scenario focusses on the tracking of a
polynomial change of the angular velocity from 0 rad/s to
100 rad/s in 0.2 sec, see Fig. 2. For the simulation study,
the control and estimation algorithms were implemented
in Simulink, while the PMSM was simulated – with and
without parameter uncertainty – using the system model
presented in Sec. 2. Note that this model is standard in
the control-oriented literature and corresponds to the Sim-
scape block supplied with the Simscape Electrical toolbox
by MathWorks. Overall, the following 16 combinations are
considered and compared to each other:

• SOSMC or HTSMC as control approaches
• two different initial conditions: ωr(0) = 5 rad/sec or
ωr(0) = 0 rad/sec

• with or without disturbance compensation (DC)
• with or without parameter uncertainty in the induc-

tances: Lq is enlarged by 40 %, whereas Ld is reduced
by 40 %

The numerical values for the root-mean-squared error
(RMSE) are stated in SI units in Table 1. Obviously, both
approaches perform almost similarly well.

5.1 Simulation Results Without Parameter Uncertainty

In the sequel, the controllers employ the same inductances
as in the PMSM simulation model. In Fig. 2, a compar-
ison of desired and simulated values are presented for
both SOSMC and HTSMC. As they could almost not
be differentiated from the desired ones, the corresponding
tracking errors are depicted in Fig. 3. In the case with-
out parameter uncertainty, the estimate for the lumped
disturbance corresponds to the sum of nonlinear friction
as well as the external disturbance torque, see Fig. 4. The
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Table 1. Performance of the SMC variants

Controller
variant

SOSMC HTSMC

Parameter
error

3 7 3 7

Disturbance
compensation

3 7 3 7 3 7 3 7

RMSE
ωr(0) = 5

0
.1
4
1
7

0
.1
4
1
9

0
.1
4
0
7

0
.1
4
0
7

0
.1
5
5
4

0
.1
5
5
5

0
.1
5
6
6

0
.1
5
6
6

RMSE ×10−3

ωr(0) = 0

1
1
.7
2

1
4
.5
1

0
.8
6
9

1
.0
6
3

1
1
.4
7

1
3
.1
4

0
.6
8
5

0
.8
3
0

Fig. 2. Comparison of desired and simulated angular
velocities using SOSMC and HTSMC.

Fig. 3. Comparison of the tracking errors w.r.t. the angular
velocities using SOSMC and HTSMC.

Fig. 4. Comparison of the simulated and estimated distur-
bance torques.

necessary control input for the case without DC is shown
in Fig. 5 for the case without disturbance compensation
(DC). Here, the noise level is similar for both SOSMC and
HTSMC. The control inputs for an active DC can be seen
in Fig. 6. To complete the investigation, simulation results
are provided for the underlying inversion-based current
control, see Fig. 7 and Fig. 8 The simulation results

Fig. 5. Control input for the case without DC.

Fig. 6. Control inputs for the case with DC.

Fig. 7. Desired and simulated d-currents with SOSMC.

Fig. 8. Desired and simulated q-currents with SOSMC.

indicate the high tracking accuracy achieved in the inner
loop.

5.2 Simulation Results With Parameter Uncertainty

The corresponding tracking errors are shown for both con-
trol approaches in Fig. 9 for the case with large deviations
in the inductances. The benefits of DC become obvious
because the corresponding tracking errors with an active
DC are smaller than in the case without DC. Fig. 10
shows the disturbance estimation error and illustrates the
high quality of the disturbance estimation by the EKF.
As the comparison with the simulated disturbance shows,
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Fig. 9. Tracking error for the angular velocity for the cases
with and without disturbance compensation.

nonlinear friction, an external disturbance torque and the
impact of the uncertain inductances – which is relevant
during tracking in the phase between 0.2 s up to 0.4 s
– are significant and estimated quite well by the lumped
disturbance variable. The resulting tracking error increase

Fig. 10. Comparison of the simulated and estimated dis-
turbance torques.

only a little as reflected by the numerical values in Ta-
ble 1. This points out clearly that the proposed structure
combining estimator-based disturbance compensation and
second-order SMC is robust and allows for an accurate
tracking despite these large uncertainties.

6. CONCLUSIONS

The paper presents a nonlinear cascaded control concept
for a permanent magnetic synchronous motor (PMSM).
Here, two different second-order sliding mode control ap-
proaches are compared to each other: the first one –
SOSMC – includes an integrator extension of the input,
whereas the other is given by a hybrid twisting sliding
mode control (HTSMC). Thereby, the switching part does
not affect the control inputs directly. This outer loop pro-
vides the reference currents based on an approach kwown
as maximum torque per ampere (MTPA), where an ac-
curate tracking of the reference values is achieved by an
inversion-based current control. A dedicated discrete-time
extended Kalman filter (EKF) estimates state variables
as well as a lumped disturbance force from noisy mea-
surements. Successful simulation results indicate that the
proposed control structure consisting of a combination of
disturbance compensation and second-order SMC provides
a large robustness regarding parameter uncertainty and a
highly accurate tracking control of the angular velocity of
the PMSM.
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