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Abstract: We consider a linear-quadratic-Gaussian optimal control problem where the sensor
and the controller are remotely connected over a communication channel. The communication
of the measurement from the sensor to the controller requires a certain cost which is augmented
with the quadratic control cost. We formulate a control and communication co-design problem
where we solve for the joint optimal pair of controller and transmitter. We emphasize on the
fact that absence of measurement communication at any time instance also conveys certain
information to the controller, and such implicit information should be taken into account
while designing a controller. We decompose the problem into two subproblems to construct the
optimal controller and the optimal transmitter. While the optimal controller can be constructed
by solving a certain Riccati equation, the optimal transmitter can be found solving a certain
dynamic programming problem. We first characterize a sub-optimal solution for this dynamic
program and then design an iterative algorithm to further improve the sub-optimal solution.

Keywords: LQG systems, Optimal Control, Intermittent-feedback Control, co-design of
Control and Communication

1. INTRODUCTION

Increasingly many control systems are becoming net-
worked where the plant, the controller, and the sensors
are not geographically collocated, rather connected by
some communication network. Often times, many sub-
systems are connected through a shared communication
network, and hence, the performance of the overall system
is dictated by the limits on the available communication
resources. Such resource limitations must explicitly be
considered while designing a controller, and thus, leading
to a co-design problem of control and communication.

Traditionally, the controls community has majorly focused
on synthesizing closed-loop feedback controllers where it is
assumed that sensors measurements are always available
at the controller for computing the control input. On the
other end of the spectrum, attention has also been given
to synthesize controllers when no information is available,
i.e., open-loop controllers. An intermittent-feedback is a
scenario where the sensor measurements are transmitted
to the controller in a sporadic manner in order to balance
the trade-off between the control performance and the
communication costs. A major challenge in the co-design
of a controller and a transmitter (a decision-maker that
decides the optimal instances to send sensory measure-
ments to the controller) lies in the fact that the absence
of the arrival of a measurement at the controller-site also
implicitly communicates some information. Such implicit
flow of information in absence of communication renders
the problem difficult to solve, and often times intractable.
A few approximate solutions to some related problems
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have been recently discussed in Xu and Hespanha (2004);
Molin and Hirche (2009, 2012).

In this work, we revisit the classical linear-quadratic-
Gaussian (LQG) control problem with an added constraint
that the availability of the measurements is decided by an
active decision-maker. Transmission of each measurement
requires a (communication) cost, and therefore, measure-
ments must be transmitted sporadically. However, inter-
mittent absence of measurements causes degradation in
the control performance and increases the control perfor-
mance cost. Therefore, a balance must be kept between
the control cost and the communication cost by simulta-
neously designing a controller and a transmitter.

1.1 Related Work

Our work is along the lines of Molin and Hirche (2009,
2012); Soleymani et al. (2018) where the authors have
considered a similar co-design problem. In Molin and
Hirche (2009), the authors show that such a joint co-design
problem can be decoupled for the LQG case, however,
the the work does not provide any characterization on
the transmitter’s policy. In Soleymani et al. (2018), the
authors make an assumption that the implicit information
carried by observing an absence of information is discarded
at the controller. Similar lines of work have been performed
in Lafortune (1985); Aoki and Li (1969); Sawaragi et al.
(1978); Olgac et al. (1985); Cooper and Hahi (1971) where
they consider the cost for operating a sensor to obtain
measurements.

Recent developments in control have led to a frame-
work where sensor measurements or control commands
are only transmitted when an event has occurred. In this
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framework, Aström (2008); Heemels et al. (2008); Arzén
(1999) and others have considered reducing the amount
of communication in order to reduce the usage of the
communication resources. These methods are primarily
known as event-triggered control as discussed in Astrom
and Bernhardsson (2002); Maity and Baras (2019, 2015),
as self-triggered control in Velasco et al. (2003); Lem-
mon et al. (2007), and as periodic-time control in Bian
and French (2005); Nešić et al. (1999). In the majority
of these works, the authors propose an event-generating
function a priori, and the measurements are transmitted
according to the predefined event-generating functions.
Thus, in essence, these works are not co-design problems,
rather they (quantitatively) study how much reduction in
communication happens by using event-triggered commu-
nication protocol. Applications of this framework in the
context of LQG optimal control can be found in Demirel
et al. (2016); Goldenshluger and Mirkin (2017) and the
references therein.

Distantly related to our problem, Shi et al. (2012) and
others also have studied LQG problems where the con-
troller and the actuator are connected over a communica-
tion channel; and whether to send a control signal at the
actuator at time t is a design variable. The problems in
such scenarios boil down to jointly determining the role of
the actuator in absence of a control input and determining
the conditions for sending a control update to the actua-
tor. Interested readers may confer Dolgov et al. (2013);
Antunes and Heemels (2014); Quevedo et al. (2007) and
the references therein. Another line of somewhat related
works is the event-based remote estimation considered by
Sijs and Noack (2017) and others, where the estimator
takes into account the information encoded when a mea-
surement is not sent. Contrary to this approach where the
measurement transmission (event-triggering) condition is
predefined, we design the optimal measurement transmis-
sion condition in this work.

1.2 Contributions

In this work we consider a minimal feedback LQG opti-
mal control problem. The minimality is in the number of
transmissions of the sensory data to the remote controller.
We cast this problem as a co-design problem of control
and communication, where,
i) We first show that under an innovation based transmis-
sion scheme, the controller and communication strategy
can be decoupled into two problems, a result similar to
Molin and Hirche (2009, 2012); Soleymani et al. (2018).
ii) Next, using the decoupled structure of the problem we
construct a controller that is certainty-equivalence type,
but the controller structure depends on the communication
strategy from the sensor to the controller.
iii) We formulate a dynamic programming problem whose
solution provides the optimal measurement transmission
strategy from the sensor to the controller. While the
dynamic programming is difficult to solve in general, we
derive bounds on the value function which lets us construct
a sub-optimal solution for the transmission strategy.
iv) Finally, we construct an algorithm that iteratively im-
proves a sub-optimal solution to produce a solution which
is at least a local optimal if not the global optimal solution
for the transmission strategy.

C TPlant

Communication Channel

Xt Ut Xt

θt

Fig. 1. Schematic of an intermittent-feedback control sys-
tem. The transmitter T determines whether a mea-
surement is sent to the controller C.

1.3 Outline

We formally define the problem in Section 2, Section 3
solves the co-design problem, and describes the structure
of the optimal controller and the optimal transmitter, and
finally, the paper is concluded in Section 4.

2. PROBLEM FORMULATION

Let us consider the following Linear-Quadratic-Gaussian
optimal control problem where equation (1) represents the
dynamics of the state,

Xt+1 = AXt +BUt +Wt, (1)

where Xt ∈ Rn, Ut ∈ Rm and {Wt}t∈N0
is an i.i.d.

sequence of Gaussian noise with W0 ∼ N (0,W), and X0 ∼
N (µ0,ΣX0

) is the initial state which is independent of the
noise sequence {Wt}t∈N0

. For notational compactness, we
will denote X0 = µ0 +W−1 where W−1 ∼ N (0,ΣX0

).

The control objective function that needs to be minimized
is the following quadratic cost

J = E

[
T−1∑
t=0

(
XT
t QXt + UT

t RUt
)

+XT
TQXT

]
. (2)

The observation available at the controller C is determined
by a decision-maker T located at the sensor’s side as
shown in Figure 1. We assume that the sensor has the
perfect state measurement, and at each time instance t, the
decision-maker decides whether to send the sensed state
value to the controller. In the event when the decision-
maker decides not to send the state value, the controller
receives a null symbol ∅; otherwise, the controller receives
the perfect state measurement Xt without any delay or
distortion. The action of this decision-maker at time t is
a binary variable representing the decision to send or not
to send the state measurement to the controller. Let us
denote the action of this decision maker by θt ∈ {0, 1}
such that

θt =

{
0, measurement is not sent,

1, measurement is sent.

Thus, the observation arriving at the controller follows the
pattern

Yt =

{
∅, if θt = 0,

Xt, if θt = 1.

For each state-measurement Xt that is sent to the con-
troller, a cost C(Xt) is incurred that accounts for the
transmission cost. Thus, the expected transmission cost

over the horizon is E[
∑T−1
t=0 θtC(Xt)]. In a network control
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system with limited communication budget, the decision-
maker at the sensor side aims to minimize the commu-
nication related cost over the horizon [0, T ]. In this work
we assume that the transmission cost does not depend on
the state value, and hence, C(x) = c for all x ∈ Rn. The
controller (C) and the decision-maker (T ) at the sensor
side jointly try to optimize the weighted cost function Jβ
that combines the control and the communication cost

Jβ =E
[ T−1∑
t=0

(
XT
t QXt + UT

t RUt
)

+XT
TQXT

]
+βE

[ T−1∑
t=0

θtc
]
,

(3)

where β ≥ 0 is the weight, and c > 0 is the given
transmission cost. By defining λ = βc, we rewrite Jβ as

Jλ = E
[ T−1∑
t=0

(
XT
t QXt + UT

t RUt + λθt
)

+XT
TQXT

]
. (4)

This is a two-agent decision making problem where the
agents collaboratively try to find the joint optimal strate-
gies for each of them. Such a formulation is atypical in
optimal control where only the controller directly affects
the state. In this case, the decision-maker at the sensor’s
side does not directly affect the state evolution, but it im-
pacts the controller’s performance and hence is eventually
affecting the state. In most of the previous works in the
field of event-based control, a rigid decision-making rule is
preassigned, and according to that rule, the measurements
are transmitted. In those works, when the controller does
not receive any measurement, the controller does not take
into consideration the fact that the state value must belong
to some particular set (in Rn) which led to the absence
of transmission. Rather, the absence of a measurement is
merely treated as an absence of new information. However,
in such a two agent scenario, an absence of transmission
can also convey certain information; and this is one of the
crucial aspects to be discussed in this paper.

2.1 Information Structures of the Decision Makers

Let us denote the state, control, observation, and θ his-
tories at time t as Xt = {X0, . . . .Xt}, Ut = {U0, . . . , Ut},
Yt = {Y0, . . . , Yt}, and Θt = {θ0, . . . , θt}. The informa-
tion available at the controller at time t is denoted as
Ict = {Yt,Θt,Ut−1}, and the information available at the
decision-maker is denoted as Idt = {Xt,Θt,Ut}.

It is natural to ask that measurements must only be
sent if such measurements contain new information which
cannot be inferred otherwise. Consequently, the decision
θt will be taken based on the new information present in
Idt \ Idt−1. Thus, the decision of whether to transmit the
measurement or not at time t, is made based on a signal
ξt = I(Idt ) that captures this new information. Therefore,
this entails a sequential structure of the decision-making
process. Precisely, the transmitter will be divided into two
parts, namely, the one that will generate the signal ξt based
on the information Idt and, the other that will generate θt
from the signal ξt ∈ Rn. Let us denote γθt : Rn → {0, 1} to
be the strategy for deciding whether to transmit or not.
Thus, the strategy at the decision-maker (T ) is given by
the combination of the mappings γθt : Rn → {0, 1} and
I : Idt → Rn as follows

ξt = I(Idt ), θt = γθt (ξt). (5)

Therefore, the overall strategy at the decision-maker is
given by the composition mapping γθt ◦ I : Idt → {0, 1}.

Notice that, one may aim for directly designing a function
γ̃θt such that θt = γ̃θt (Idt ). Such an approach may not
necessarily reveal the structure of the new information
based on which θt is designed. Thus, we explicitly represent
γ̃θt (Idt ) as γθt ◦I. Although, both γθt and I are the decision
variables for the decision-maker, we will adhere to a
specific structure for the mapping I that extracts the new
information. Particularly, in this work we will consider
that, for all t ∈ N,

I(Idt ) = Xt −AXt−1 −BUt−1 = Wt−1, (6)

and I(Id0) = X0 − µ0 = W−1. The motivation behind
this particular structure for I is due to the fact that the
decision regarding the transmission of the measurement is
based on the amount of innovations, captured by Wt−1,
present in the measurement. If the realization of Wt−1 has
a small value then Xt does not differ much from AXt−1 +
BUt−1 and hence the transmitter may wish not to send
this measurement 1 . One may adopt a different structure
for I based on mutual-information or other information-
theoretic metrics, however, as an initial attempt to this
problem, we will consider this approach. Since the struc-
ture of I(Idt ) is given in (6), therefore the optimization
over the strategies of the decision-maker is equivalent to
the optimization over γθt (·).

The admissible control strategies at any time t is a
measurable function from the Borel σ-algebra generated
by Ict to Rm. Let us denote such strategies by γut (·) and
the space they belong to by Γut . Similarly, an admissible
strategy for the transmitter is a measurable function from
the Borel σ-algebra generated by Wt−1 to {0, 1}. Let us
denote such strategies by γθt (·) and the space they belong
to by Γθt . Since γθt (·) maps Rn to {0, 1}, then γθt (·) is of
the form 2

γθt (x) = 1St(x) (7)

for some St ∈ B(Rn) where B(Rn) is the space of Borel
sets of Rn, and 1S(·) is the indicator function of the set
S. Therefore, if Wt−1 ∈ St, then the state measurement is
transmitted, otherwise, no communication occurs. We seek
to find the optimal sequence of the sets {S0, · · · ,ST−1}
that minimizes the cost (4) where each St is a Borel
measurable set of Rn.

Let γΘ denote the entire sequence {γθ0(·), γθ1(·), · · · ,
γθT−1(·)} and let ΓΘ denote the space where γΘ belongs.

Similarly, γU and ΓU are defined as well. Therefore, for a
given strategy pair (γU , γΘ), the cost (4) is re-written as

1 Although probabilistically unlikely, but it may happen that the
realizations of Wt−k,Wt−k+1, . . . ,Wt−1 all have small values and
hence the transmitter did not send measurements in the whole
interval [t − k, t]. However, the cumulative noise

∑k

i=1
Ai−1Wt−i

will have a large value for high k. Therefore, instead of looking at
the quantity Wt−1, it is generally desired to look into the quantity∑k

i=1
Ai−1Wt−i (where t−k is the last time instance before t when

a measurement was sent) to make a decision on the transmission.
2 In this case we consider deterministic strategies for the ease of
this exposition; one can consider probabilistic strategies as well using
similar steps.
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Jλ(γU , γΘ) = E
[ T−1∑
t=0

(
XT
t QXt + UT

t RUt + λθt
)

(8)

+XT
TQXT |Ut = γut (Ict), θt = γθt (I(Idt ))

]
.

3. DECISION MAKING AT CONTROLLER AND
TRANSMITTER

In this section we find the optimal γU∗ and γΘ∗ that
minimizes the cost (8) amongst all admissible strategies,
i.e.,

(γU∗, γΘ∗) = arg min
γU∈ΓU ,γΘ∈ΓΘ

Jλ(γU , γΘ). (9)

Before starting the analysis for finding the optimal strate-
gies, let us define certain filtering processes which are
fundamental elements in our subsequent analysis.

3.1 Estimation under Intermittent Feedback

Let us define the estimate of the state at the controller
side by X̂t = E[Xt|Ict ]. If, at time t, θt = 1, then X̂t = Xt,

otherwise X̂t = E[Xt|Ict−1, Ut−1, θt = 0]. In a compact
form,

X̂t = θtXt + (1− θt)E[Xt|Ict−1, Ut−1, θt = 0]

The term E[Xt|Ict−1, Ut−1, θt = 0] can be expanded as:

E[Xt|Ict−1, Ut−1, θt = 0]

= E[AXt−1 +BUt−1 +Wt−1 |Ict−1, Ut−1, θt = 0]

(a)
= AE[Xt−1 |Ict−1] +BUt−1 + E[Wt−1|θt = 0]

= AX̂t−1 +BUt−1 + E[Wt−1|θt = 0] (10)

where (a) holds due to the fact that θt is a measurable
function of the random variable Wt−1 which is indepen-
dent of {Ict−1, Ut−1}, and hence, the event {θt = 0} is
independent of Xt−1.

An interesting observation lies in the term E[Wt−1|θt = 0]
which reflects the fact ‘communication in absence of com-
munication’. θt = 0 implies that there will be no commu-
nication of the state value from the decision-maker to the
controller, or in other words, the amount of information
in Wt−1 is not large enough to trigger a communication.
However, this absence of communication reveals some in-
formation to the controller about the realization of Wt−1.
Precisely, since θt = γθt (Wt−1), then from (7), it is evident
that Wt−1 ∈ Sct where Sct is the complement of the set
St ⊆ Rn. Since the events {θ = 0} and {Wt−1 ∈ Sct } are
equivalent, then

E[Wt−1|θt = 0] = E[Wt−1|Wt−1 ∈ Sct ]

=
1

Pt(Sct )

∫
Sct
wPt(dw). (11)

Under the assumption that Wt−1 ∼ N (0,W), (for all
t = 1, . . . , T ) we have

Pt(dw) =
1√

(2π)ndet(W)
e−

wTW−1w
2 dw,

and since, W−1 ∼ N (0,ΣX0
), we have

P0(dw) =
1√

(2π)ndet(ΣX0
)
e−

wTΣ
−1
X0

w

2 dw.

In the subsequent analysis, we will suppress the subscript
t in Pt and simply write it as P.

Although, Wt−1 ∼ N (0,W), the event {θt = 0} updates
the distribution of Wt−1 at the controller side. The poste-
rior distribution, P(dw|θt = 0), of Wt−1 has as support Sct
and is given by P(dw|θt = 0) = P(dw)

P(Sct ) . One may further no-

tice that, for certain choices of Sct (e.g., Sct = {‖x‖ ≤ 1}),
E[Wt−1|θt = 0] = 1

P(Sct )

∫
Sct
wP(dw) = 0 = E[Wt−1]. Thus,

for these choices of St (or equivalently Sct ), although the
posterior distribution of Wt−1 changes, some statistics are
unchanged, such as the posterior mean.

In absence of communication, let us denote the posterior
noise mean by Ŵt−1 , E[Wt−1|θt = 0]. Furthermore, let

us denote the estimation error by et , Xt − X̂t which
satisfies the dynamics

et+1 =Xt+1−
(
θt+1Xt+1+(1− θt+1)(AX̂t +BUt + Ŵt)

)
=(1− θt+1)

(
Aet +Wt − Ŵt

)
=(1− θt+1)

(
Aet + W̃t

)
(12)

where W̃t , Wt − Ŵt. Note that, although not expressed
explicitly, W̃t depends on the choice of the set St. The
initial condition for (12) is given by e0 = (1 − θ0)(X0 −
E[X0|θ0 = 0]) = (1− θ0)(W−1 − Ŵ−1) = (1− θ0)W̃−1.

Let us denote the posterior noise covariances of W̃t at time
t+ 1 by Mt|t+1 = E[W̃tW̃

T
t |θt+1 = 0]. Therefore,

Mt|t+1 =E[W̃tW̃
T
t |θt+1 = 0]

=E[WtW
T
t |θt+1 = 0]− ŴtŴ

T
t

=E[WtW
T
t |Wt ∈ Sct+1]− ŴtŴ

T
t

=
1

P(Sct+1)

∫
Sc
t+1

wwTP(dw)− ŴtŴ
T
t . (13)

Since Mt|t+1 can be computed by knowing St+1 and the
distribution of Wt, this computation can be performed
offline if St+1 and P(dw) are known a priori. We also define

M−1|0 = P0(Sc0)

(
1

P0(Sc0)

∫
Sc0
wwTP0(dw)− Ŵ−1Ŵ

T
−1

)
=

∫
Sc0
wwTP0(dw)

− 1

P0(Sc0)

(∫
Sc0
wP0(dw)

)(∫
Sc0
wP0(dw)

)T
.

where P0(dw) ∼ N (0,ΣX0
). The conditional error covari-

ance Σt , E[ete
T
t |Ict ] has the following dynamics

Σt+1 =(1− θt+1)(AΣtA
T +Mt|t+1), (14)

Σ0 =(1− θ0)M0|−1

=(1− θ0)

(
1

P(Sc0)

∫
Sc0
wwTP(dw)− Ŵ−1Ŵ

T
−1

)
.

where Ŵ−1 = E[W−1|θ0 = 0]. Note that Σt is a random
variable, and the randomness is induced by {θ0, θ1, . . . , θt}.
Let us define

Σ̄t , E[Σt] = E[ete
T
t ] (15)

After defining Σ̄−1 = 0, the dynamics of Σ̄t can compactly
be written as,

Σ̄t+1 =P(Sct+1)(AΣ̄tA
T +Mt|t+1), (16)

Σ̄−1 =0; (17)
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and therefore, Σ̄t is a function of all the sets S0, . . . ,St. By
solving the dynamics (16), we can write the solution as

Σ̄t =

t∑
k=0

(
t∏

`=k

P(Sc` )

)
At−kMk−1|kA

t−kT. (18)

3.2 Optimal Strategies for Controller-Transmitter Pair

In order to proceed with the optimization of Jλ(γU , γΘ) in
(8), let us define the value function

Vk(x) = min
{γut }

T−1
t=k

,{γθt }
T−1
t=k

E
[ T−1∑
t=k

(XT
t Q1Xt + UT

t RUt + λθt)

+XT
TQ2XT

∣∣ Ut = γut (Ict), θt = γθt (I(Idt )),

Xk = x, t = k, · · · , T − 1
]
. (19)

By the dynamic programming principle,

Vk(x) = min
γu
k
∈Γu

k
,γθ
k
∈Γθ

k

E
[
(XT

kQ1Xk + UT
k RUk + λθk)

+ Vk+1(Xk+1)
∣∣ Uk = γuk (Ick), θk = γθk(I(Idk)),

Xk = x
]
. (20)

If γu∗k and γθ∗k minimize the right-hand-side of (20), then
the optimal decision on the transmission of the state at
time k is given by θ∗k = γθ∗k (I(Idk)) and the optimal control
is U∗k = γu∗k (Ick). From the definition of the value function
in (19), we have

min
γU∈ΓU ,γΘ∈ΓΘ

J(γU , γΘ) = E[V0(X0)], (21)

where the expectation is over the random variable X0 ∼
N (µ0,ΣX0

). The main results are given in the following
Theorem.

Theorem 1. (Certainty Equivalence Controller). Given the
information Ict to the controller, the optimal control strat-

egy {γu∗k }
T−1
k=0 that minimizes (8) is given by

U∗k = γu∗k (Ick) = −LkE[Xk|Ick], (22)

where for all k = 0, 1, . . . , T − 1, Lk and Pk are obtained
by

Lk = (R+BTPk+1B)−1BTPk+1A, (23a)

Nk = LT
k (R+BTPk+1B)Lk, (23b)

Pk = Q1 +ATPk+1A−Nk, (23c)

PT = Q2. (23d)

Proof. The full proof has been omitted due to space
constraints. We provide below some key steps.

The proof of this theorem is based on the dynamic pro-
gramming principle on the value function defined in (19).
Let us hypothesize that the value function has the form

Vk(x) = xTPkx+ rk + Ck (24)

where Pk is defined in (23c), and for all k = 0, 1, . . . , T −1,

Ck = min
{γθt }

T−1
t=k

E

[
T−1∑
t=k

(‖et‖2Nt + λθt)
∣∣∣ θt = γθt (I(Idt )),∀t

]
,

(25)

and rk ∈ R is given by

rk =

T∑
t=k+1

tr(PtW). (26)

Using dynamic program principle, Ck can be written as

Ck= min
γθ
k
∈Γθ

k

E[‖ek‖2Nk+λθk+Ck+1 | θk = γθk(I(Idk))]. (27)

Since et does not depend on the control input, Ck does
not depend on the controller strategy γU . One may verify
that VT−1 is indeed of the form (24). By assuming that
the hypothesis (24) holds for some k ≤ T −1, we can show

Vk−1(x)

= min
γu
k−1
∈Γu

k−1
,γθ
k−1
∈Γθ

k−1

E
[
(XT

k−1Q1Xk−1 + UT
k−1RUk−1

+ λθk−1) +XT
k PkXk + Ck + rk

∣∣ Uk−1 = γuk−1(Ick−1),

θk−1 = γθk−1(I(Idk−1)), Xk−1 = x
]
.

= min
γu
k−1
∈Γu

k−1
,γθ
k−1
∈Γθ

k−1

E
[
XT
k−1Pk−1Xk−1

+ ‖Uk−1 + Lk−1Xk−1‖2R+BTPkB
+ λθk−1 + Ck

+ rk + tr(PkW)
∣∣ Uk−1 = γuk−1(Ick−1),

θk−1 = γθk−1(I(Idk−1)), Xk−1 = x
]
.

Since E[‖Uk−1 + Lk−1Xk−1‖2R+BTPkB
] is the only term in

the last equation that depends on Uk−1, the Ick−1 measur-

able function minimizing E[‖Uk−1 +Lk−1Xk−1‖2R+BTPkB
]

is −Lk−1E[Xk−1| Ick−1]. Therefore, we have

U∗k−1 = γu∗k−1 = −Lk−1E[Xk−1|Ick−1].

After substituting the optimal control in the expression for
Vk−1(x), we obtain

Vk−1(x) =xTPk−1x+ rk−1 + Ck−1.

Thus, using induction, the hypothesis (24) is true for all
k. This completes the sketch of the proof. 2

From Theorem 1 we have

V0(x) = xTP0x+ r0

+ min
{γθt }

T−1
t=0

E

[
T−1∑
t=0

(‖et‖2Nt + λθt) | θk = γθk(I(Idk)),∀k

]
The optimal strategy for θ can be found by performing the
optimization

min
{γθt }

T−1
t=0

E

[
T−1∑
t=0

(‖et‖2Nt + λθt) | θk = γθk(I(Idk)),∀k

]
.

Thus, the new optimization problem to find the optimal
transmission strategy is

min
{γθt }

T−1
t=0

E

[
T−1∑
t=0

(‖et‖2Nt + λθt) | θt = γθt (I(Idt )), ∀t

]
s.t. et+1 = (1− θt+1)(Aet + W̃t). (28)

Problem (28) is reminiscent of a Markov-Decision-Process
(MDP) with state e and action θ, along with deterministic
initial state e−1 = 0. Even though the cost function of this
MDP is quadratic, however, due to the bi-linear dynamics
of et and the binary nature of θt, obtaining a closed form
solution of this MDP is a distant reality. From the theory
of MDP, it is sufficient to look for Markovian policies of the

form γθ,Markov
t (et). Although (28) is difficult to solve, but

when solved, it produces the optimal transmission strategy
γθ∗t (·) = 1S∗t (·). Using the definition (15), an equivalent
formulation of (28) is given in the following Theorem.
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Theorem 2. (Optimal Transmission Strategy). The optimal
transmission strategy γθ∗t (·) = 1S∗t (·) can be found by
optimizing the following problem

min
{St}T−1

t=0

T−1∑
t=0

tr(Σ̄tNt) + λP(St) (29)

s.t. Σ̄t+1 = P(Sct+1)(AΣ̄tA
T +Mt|t+1),

Mt|t+1 =
1

P(Sct+1)

∫
Sc
t+1

wwTP(dw)− ŴtŴ
T
t .

Ŵt = E[Wt|Wt ∈ Sct+1]

Σ̄−1 = 0, t = −1, . . . , T − 2.

Proof. From the previous discussion we have

min
γU∈ΓU ,γΘ∈ΓΘ

J(γU , γΘ) = E[V0(X0)]

= r0 + tr(P0E[X0X
T
0 ])

+ min
{γθt }

T−1
t=0

E

[
T−1∑
t=0

(‖et‖2Nt + λθt) | θk = γθk(I(Idk)),∀k

]
.

At this point, one may verify that the dynamic program
(29) is equivalent to the one in (28), and this completes
the proof. 2

Solving the dynamic program (29) is equally computation-
ally expensive as solving (28), and therefore, we resort to
find an approximate solution(s). First, we will provide an
upper and lower bound on the value function Ck in Lemma
3. Then, based on these bounds, we construct an approxi-
mate solution {S◦0 , . . . ,S◦T−1} which will be shown to per-
form better than both continuous feedback and open-loop
scenarios. Finally we will provide an algorithm to further
improve the initial solution {S◦0 , . . . ,S◦T−1} and construct
a solution {S∗0 , . . . ,S∗T−1} which is at least locally optimal
if not globally optimal.

Lemma 3. For all k = 0, . . . , T , Ck ≤ Ck ≤ Ck where

Ck =(T − k)λ+ tr(Σ̄k−1Υk)

+

T−1∑
t=k

∫
‖w‖2

Υt+1+Nt
≤λ

(‖w‖2Υt+1+Nt − λ)P(dw) (30a)

Ck =(T − k)λ+

T−1∑
t=k

∫
‖w‖2

Nt
≤λ

(‖w‖2Nt − λ)P(dw) (30b)

and

Υt = AT(Υt+1 +Nt)A, (31)

ΥT = 0.

Proof. The proof has been omitted due to limited space,
but one may verify it through mathematical induction. 2

Given the bounds on the value function Ck, we will
construct an approximate solution for the strategies γθt .
Precisely, in the proof of Lemma 3 one may notice that
St = {s ∈ Rn |sT(Nt + Υt+1)s ≥ λ} minimizes the upper
bound of the value function. In the following Lemma we
will show that this strategy is indeed better than having
perfect open-loop or perfect closed-loop operation.

Lemma 4. For all k,

γθk(·) = 1Sk(·),
Sk = {s ∈ Rn | sT(Υk+1 +Nk)s ≥ λ}

is a sub-optimal strategy that performs better than perfect
closed-loop or perfect open-loop strategy.

Proof. The proof is straightforward and hence omitted
due to page limitation. 2

3.3 Algorithmic Solution for the Transmission Strategy

In this section, we will provide an algorithm which will
take any S̄ (we will take the one as defined in Lemma
4) and improves S̄ until it converges to a better solution
S∗. Before presenting the algorithm, let us revisit the cost
expression and illustrate some salient features which will
help developing the algorithm. With a slight abuse of
notation, let us denote C(S) to be the cost incurred by
an transmission strategy S = {S0, . . . ,ST−1}, i.e,

C(S) =

T−1∑
t=0

tr(Σ̄tNt) + λP(St) (32)

After some simplifications, (32) can be written as

C(S) =

T−1∑
t=0

∫
Sct

[
‖w − E[Wt−1|Sct ]‖2Ft − λ

]
P(dw) + λT

(33)

where Ft satisfies the dynamics

Ft−1 = Nt−1 + P(Sct )ATFtA, FT−1 = NT−1.

Using standard inductive argument, it is trivial to verify
that Ft � Nt + Υt+1 for all t = 0, . . . , T − 1 where
Υt is defined in (31). Let us notice from (33) that the

cost function is of the form C(S) = λT +
∑T−1
t=0 G(t,S)

where G(t,S) =
∫
Sct

[
‖w − E[Wt−1|Sct ]‖2Ft − λ

]
P(dw) and

G(t,S) only depends on St,St+1, . . . ,ST−1. Thus, S0 only
affects the term G(0,S), and S1 affects two terms G(0,S)
and G(1, S), and so on. This observation leads to a
construction of an iterative algorithm in the following way:
Let at the end of iteration i, the obtained solution be
Si = {Sit}T−1

t=0 . For iteration i+ 1, we first find Si+1
0 as

Si+1
0 = argmin

S0

C(S0, {Sit}T−1
t=1 )

= argmin
S0

G(0, (S0, {Sit}T−1
t=1 )).

After finding Si+1
0 , Si+1

1 is found by performing

Si+1
1 = argmin

S1

C(Si+1
0 ,S1, {Sit}T−1

t=2 )

= argmin
S1

G(0, (Si+1
0 ,S1, {Sit}T−1

t=2 )) +G(1, (S1, {Sit}T−1
t=2 )).

In this way, having computed Si+1
j−1, Si+1

j is computed by
performing

Si+1
j = arg min

Sj

j∑
t=0

G(t, {Si+1
k }j−1

k=t ,Sj , {S
i
k}T−1
k=j+1).

From the construction of the Algorithm, C(Si+1) ≤ C(Si)
and thus, each iteration produces a solution which is at
least as good as the previous one. Since from Lemma 3
we have that the value function is lower bounded, we
are guaranteed that the optimal solution S∗ will have
C(S∗) ≥ C0 and hence C(Si) ≥ C(S∗) for all i. Thus,
convergence of the algorithm is guaranteed. In general,
one may use a termination condition such as improvement
is less than ε over an iteration, i.e., C(Si)− C(Si+1) ≤ ε.
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Algorithm 1 Algorithm for Transmission Strategy

S0 ← S (from Lemma 4),
i← 1,
while termination condition is not met do
for all j = 0, . . . , T − 1 do

Si+1
j ←argmin

Sj

j∑
t=0

G(t, {Si+1
k }j−1

k=t ,Sj , {S
i
k}T−1
k=j+1),

end for
i← i+ 1,

end while

4. CONCLUSION

In this work, we considered a co-design problem of optimal
control and optimal measurement transmission strategy
between a remote sensor and a controller. We propose
an innovation based structure of the measurement trans-
mission. Under this framework, we show that the joint
design problem can be performed sequentially where a
controller is designed first which implicitly depends on the
measurement transmission strategy. Such a controller is
shown to be linear where the gains of the controller can be
computed through Riccati equations, and the estimation
of the state depends on the measurement transmission
strategy. The measurement transmission strategy can be
found by solving a certain dynamic programming problem
whose approximate solution is constructed as well. Finally,
we also provide an iterative algorithm that can improve
any approximate solution until that iterative process leads
to a local/global optimal solution.
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