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Abstract: A switching adaptive control algorithm for automating connected vehicles in a rigid
platoon pattern is proposed here. A second-order nonlinear model for the follower vehicles
running on the highways is adopted and it is assumed that the parameters of the vehicles’s
model, including the mass, aerodynamic drag and tire drag, are fully unknown and their
values cannot be used in arriving at the control laws. Furthermore, some uncertainties and
external perturbations are added to the model to consider the effects of always present modeling
errors, un-modeled dynamics and external time varying perturbations on the vehicles. Besides,
control input variations are inserted into the nonlinear model of the platoon to represent
actuator fluctuations. Subsequently, a robust adaptive control scheme is established so that the
asymptotic stability of each vehicle in the platoon is guaranteed, and this is demonstrated using
the Lyapunov stability criterion. A novel spacing error variable is also introduced to achieve
the global string stability for the whole platoon. Following a comprehensive mathematical
analysis, a computer simulation example is presented to illustrate the effectiveness as well as
the performance of the proposed control system.

Keywords: Autonomous vehicle platooning, Adaptive controller, Control input fluctuation,
String stability.

1. INTRODUCTION

With the penetration of electronics and software in vehic-
ular/highway systems, automatic vehicle technology uti-
lizing onboard sensing, computing, and communication
devices is developing rapidly in recent years. Smart vehicle
platooning is an intelligent transportation approach that
aims to organize a finite number of automatic vehicles
into a rigid string on a highway with short distance and
harmonized velocity to track the path of a leader agent.
Platooning with small inter-vehicle spacing can bring sev-
eral important benefits to the smart cities. Reduction in
carbon emissions, improvement of the traffic flow conges-
tion, reduction of the aerodynamic drag for lessening fuel
consumption, safety increase of the driver and passenger
by omitting the effects of human factors, journey time re-
duction and avoiding fatigue from driving especially during
long travels are just some examples of the benefits of smart
platooning systems Li et al (2017). Accordingly, during
the last decade, a variety of control algorithms, such as
nonlinear consensus-based control Li et al (2018), adaptive
control Harfouch et al (2018), sliding mode control Li et
al (2019), model predictive control Tuchner and Haddad
(2017) and neuro-fuzzy control Lin and Nguyen (2019),
have been utilized to make sure that the connected vehicle

platoons have a correct performance for forming a fully
automatic intelligent transportation system.

However, most of the above-mentioned works have trusted
on a linear dynamical model for the vehicles appeared in
the platoons without considering the effects of modeling
errors and un-modeled dynamics. Wu et al (2019) have
derived a distributed variable structure control algorithm
for platoon control of nonlinear heterogeneous vehicles
with a class of generic topologies. Gao et al (2018) have
introduced an adaptive sliding mode control technology for
stabilization of error dynamics of the nonlinear vehicular
platooning systems considering uncertainties. Although,
these works have adopted a nonlinear model for vehicles in
the platoons, they have ignored a complete guarantee for
the string stability for the whole platoon. In fact, the con-
cept of the string stability for an interconnected dynamical
system indicates the uniform boundedness of the state of
all the connected agents. In our case, for connected vehicle
platooning problems, the string stability implies that the
tracking (spacing) errors should not amplify downstream
from vehicle to vehicle for safety purposes. As a result,
in vehicular platooning applications, each vehicle in the
interconnected system should be controlled to maintain
the desired space and velocity between the vehicles and
to guarantee the overall stability of the whole system (i.e.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 14073



the string stability). Furthermore, it is known that the
string stability of the platooning system cannot be ensured
even when the desired space and velocity are kept among
the platoon vehicles and a stable platoon can be string
unstable Swaroop and Hedrick (1996).

As a matter of fact, when a controller is implemented
in practical situations, limitations of the actuators cause
some unknown nonlinearities in the control input. Such
nonlinearities can be modeled using a control variation
part. Ma et al (2019) have designed robust distributed
sliding mode controllers for smart vehicular transportation
systems with uncertainties. However, that research has
neglected the compensation of the control input variations.
Platoon control of vehicular systems with dead-zone non-
linearity in the control input without string stability anal-
ysis has been investigated in Guo et al (2017). In Guo et al
(2018a) and Guo et al (2018b), two adaptive controllers
have been developed for connected vehicles in a platoon
with input saturation. The problem of longitudinal control
of vehicle platoons with control gain uncertainties has been
solved via an adaptive intelligent backstepping output
recurrent cerebellar model articulation controller in Peng
(2010). Nonetheless, there are always some steady state
errors in the spacing errors of the previous approaches
Guo et al (2017)-Peng (2010) and the spacing errors
are guaranteed to precisely converge to zero.

Generally speaking, in practice, it is hard to exactly deter-
mine the values of the parameters of the vehicular systems
as some of them may be uncertain and even time varying.
Reference Kwon and Chwa (2014) proposed adaptive slid-
ing mode controllers for platooning of vehicular systems
with unknown parameters. Also, Zhu and Zhu (2019) pro-
vided an adaptive backstepping control scheme for the pla-
toon control of connected vehicles with uncertain param-
eters. An adaptive neuro-fuzzy controller for automatic
vehicular platoon systems was derived by Lin and Nguyen
(2019) for some connected vehicles with unknown param-
eters. Two adaptive Lyapunov-based control algorithms
were developed by Chehardoli and Ghasemi (2019) and
Zhu and Zhu (2018) to achieve the asymptotic stability for
the spacing errors of the vehicle platooning transportations
under the existence of some unknown parameters. How-
ever, there are a number of shortcomings with most of the
aforementioned works as they either did not consider the
effects of control input uncertainties, they are not robust
against uncertain terms and external disturbances, they
have used the derivative of the accelerations in control
inputs which its computation might bring some noises to
the computations, they have failed to provide a rigorous
proof for the string stability of the overall platoon or their
approaches are complex to be implemented in practice.

Inspired by the above discussions, the main purpose of this
article is to propose an adaptive efficient robust control
scheme for connected vehicles in a platoon. First, we
propose a new spacing error variable to construct a string
stable structure. The proposed spacing error variable not
only uses the position errors of the vehicles, but also it
utilizes the velocity errors of the vehicles to result in a more
effective approach. The effect of modeling uncertainties,
unknown parameters and external perturbations as well as
control gain variations are fully taken into account. Also,
there is no need for any information about the bounds of

the uncertain terms and external fluctuations. Contrary
to some previous works, the proposed control strategy
in this research does not use the acceleration derivative
in the control input which makes it more convenient
for implementation. After analyzing the robust stability
as well as the string stability of the platooning model,
computer simulations verify the robustness and efficacy
of the introduced vehicle platooning automatic control
strategy.

The reminder of this study is structured as follows. In
Section 2, the vehicle model is described briefly and the
platooning problem is formulated along with the necessary
assumptions. Section 3 gives the details of the proposed
robust adaptive control technique. Section 4 provides an
illustrative computer example for the control platform.
Finally, concluding remarks and future perspectives are
presented in Section 5.

2. PROBLEM FORMULATION

A platoon of N follower vehicles and a leader are organized
in a line to drive on a straight road in a string (see Fig. 1).
The longitudinal motion dynamics of the follower vehicles
with uncertain parts and control input fluctuations is con-
sidered as a second-order nonlinear differential equation as
follows:

Fig. 1. Connected vehicles in string running on a road Gao
et al (2018)

ẍi =
(ui + ∆ui)− ciẋ2i − Fi + ∆fi(Xi, t)

Mi
(1)

where xi presents the position of the ith vehicle in the
platoon with respect to an inertial frame, ui stands for
the control torque to be designed later, ∆ui is the control
input variations, cix

2
i shows the aerodynamic drag force

of the vehicle, Fi presents the mechanical drag of the ith
vehicle, Mi is the mass of the vehicle, ∆fi(Xi, t) stands for
a time varying uncertainty and external disturbance term
and Xi = [xi, ẋi, ẍi]

T .

Assumption 1. Without loss of generality, we consider the
term ∆fi(Xi, t) + ∆ui as a lumped uncertainty and we
suppose that it is bounded as follows.

‖∆fi(Xi, t) + ∆ui‖ ≤ αi‖Xi‖+ βi (2)

where αi and βi are two unknown positive constants.

Assumption 2. We assume that the constant parameters
ci, Fi and Mi of the vehicle dynamics (1) are unknown.

Assumption 3. It is assumed that the communication
topology of the platoon enables vehicle i to have access
to the lead vehicle position (x0), velocity (v0) and acceler-
ation (a0). Also, the information of the position, velocity
and acceleration of the (i − 1)th vehicle is assumed to be
available for the ith vehicle via proper communications.
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According to the communication policy mentioned above,
and assuming that the length of the ith vehicle in the
platoon is Li with Pi as the desired vehicle spacing between
the vehicles i and (i− 1), we propose a new spacing error
formation for the platooning organization as follows:

zi = exi + λie
x
i,0 + γie

v
i (3)

where exi = xi−xi−1+Li+Pi is the spacing error between

ith and (i− 1)th vehicle, exi,0 = xi − x0 +
∑i

j=1 (Lj + Pj)
presents the spacing error between ith and leader vehicle,
evi = vi − v0 stands for the velocity error between ith and
the leader vehicle, the subscripts i and 0 stand for the ith
vehicle and the leader, respectively, and λi and γi are two
positive constants representing the coupling strengths of
the position and velocity errors, respectively.

3. MAIN RESULTS

3.1 Adaptive Controller Design

This section presents a Lyapunov-based adaptive control
strategy to guarantee the stability of the platoon system
without having any prior knowledge about the parame-
ters of the vehicles as well as the bounds of the lumped
uncertainty. It is well-known that the main idea of the
direct adaptive control theory is to introduce some proper
adaptation rules for the unknown parameters of the system
so that the overall stability of the system can be ensured
without explicit usage of the values of the unknown param-
eters in the control signals. Since there are three unknown
parameters in the vehicle dynamics (i.e. ci, Fi and Mi)
as well as two unknown parameters in the bounds of the
lumped uncertainty term (i.e. αi and βi), we should define
five corresponding adaptation laws for compensating their
effects. Before proceeding to the derivation of the adapta-
tion rules, the dynamics of the proposed spacing errors (3)
are obtained as follows.

Taking time derivative of (3), one obtains

żi = ẋi − ẋi−1 + λiẋi − λ0v0 + γiv̇i − γ0v̇0 (4)

It is clear that the above equation can be rewritten as
follows.

żi = (λi + 1)ẋi − ẋi−1 + γiẍi − λ0v0 − γ0a0 (5)

It is noted that, in general, every constant parameter in
the system can be written as a coefficient of a nonlinear
function Ai(Xi) (e.g. Ai(Xi) for the parameter ci is ẋ2i
and for the parameter βi is 1). Noting this, and in order
to select some intelligent adaptation rules for the control
signal, we propose the Ai(Xi) functions of the unknown
parameters multiplied by the spacing error variable zi as
the adaptation rules. The utilization of the spacing error
in the adaptation rules will guarantee that the adaptation
parameters will converge to some fixed values as the
spacing errors reach zero. Based on the above discussion,
the proper adaptation rules are:

˙̂ci = −riziv2i , ĉi(0) = ci0
˙̂
Fi = −nizi, F̂i(0) = Fi0
˙̂αi = si‖zi‖2, α̂i(0) = αi0
˙̂
βi = wi‖zi‖, β̂i(0) = βi0
˙̂
Mi = qizi[(λi + 1)vi − vi−1 − λiv0 − γia0], M̂i(0) = Mi0

(6)

where ri, ni, si, wi and qi are positive constants acting
as learning factors for the corresponding adaptation rules
and ci0, Fi0, αi0, βi0 and Mi0 are initial states for the
adaptation parameters.

It is now possible to propose a suitable control law to as-
sure the asymptotic stability for the spacing error dynam-
ics (3). Here, a switching adaptive control law is proposed
as follows.

ui = −{
1

γi

˙̂
MiM̂i + ˙̂ciĉi +

˙̂
FiF̂i + ˙̂αiα̂i +

˙̂
βiβ̂i + kisign(zi)} (7)

where ki is a positive constant switching gain and if zi = 0,
then sign(zi) = 0.

It is noted that the term sign(zi) in the control input will
guarantee the fast convergence of the spacing errors to
zero. On the other hand, to evade the possible shocks on
the control signals, one can replace it by a smooth function
like tanh(zi).

Theorem 1. Consider the platoon spacing error dynamics
(3) with the Assumptions 1-3. If this system is controlled
via the switching control signal (7) along the adaptation
laws in (6), then the spacing errors will converge to zero
asymptotically.

Proof. Choose a Lyapunov function candidate for each
vehicle in the platoon in the form of

Vi =
1

2
(Miz

2
i +

γic̃
2
i

ri
+
γiF̃

2
i

ni
+
γiα̃

2
i

si
+
γiβ̃

2
i

wi
+
M̃2

i

qi
) (8)

where c̃i = ĉi− ci, F̃i = F̂i−Fi, α̃i = α̂i−αi, β̃i = β̂i−βi
and M̃i = M̂i −Mi are estimation errors for the unknown
parameters ci, Fi, αi, βi and Mi, respectively.

Taking time derivative of the Lyapunov function with
respect to time, one obtains

V̇i = Miziżi +
γic̃i ˙̂ci

ri
+
γiF̃i

˙̂
F i

ni
+
γiα̃i

˙̂αi

si
+
γiβ̃i

˙̂
βi

wi
+
M̃i

˙̂
M i

qi
(9)

Inserting the spacing error dynamics in (5) into the above
equation, this yields

V̇i = Mizi((λi + 1)ẋi − ẋi−1 + γiẍi − λiv̇0 − γia0)

+
γic̃i ˙̂ci
ri

+
γiF̃i

˙̂
F i

ni
+
γiα̃i

˙̂αi

si
+
γiβ̃i

˙̂
βi

wi
+
M̃i

˙̂
M i

qi

(10)

Introducing the vehicle dynamics (1) to (10), one has

V̇i = Mizi((λi + 1)ẋi − ẋi−1 +
γi

Mi
ui −

γici

Mi
v2i −

γi

Mi
Fi

+
γi

Mi
(∆fi(Xi, t) + ∆ui)− λ0v0 − γ0a0

+
γic̃i ˙̂ci

ri
+
γiF̃i

˙̂
F i

ni
+
γiα̃i

˙̂αi

si
+
γiβ̃i

˙̂
βi

wi
+
M̃i

˙̂
M i

qi

(11)

Simplifying the above equation, we will have

V̇i = zi{Mi((λi + 1)vi − vi−1 − λ0v0 − γ0a0)
+γiui − γiciv2i − γiFi + γi(∆fi(Xi, t) + ∆ui)}

+
γic̃i ˙̂ci
ri

+
γiF̃i

˙̂
F i

ni
+
γiα̃i

˙̂αi

si
+
γiβ̃i

˙̂
βi

wi
+
M̃i

˙̂
M i

qi

(12)

It is obvious that
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V̇i ≤ zi{Mi((λi + 1)vi − vi−1 − λ0v0 − γ0a0)
+γiui − γiciv2i − γiFi}+ γi‖zi‖‖∆fi(Xi, t) + ∆ui‖

+
γic̃i ˙̂ci
ri

+
γiF̃i

˙̂
F i

ni
+
γiα̃i

˙̂αi

si
+
γiβ̃i

˙̂
βi

wi
+
M̃i

˙̂
M i

qi

(13)

Based on Assumption 1, one gets

V̇i ≤ zi{Mi((λi + 1)vi − vi−1 − λ0v0 − γ0a0)
+γiui − γiciv2i − γiFi}+ γi‖zi‖(αi‖Xi‖+ βi)

+
γic̃i ˙̂ci
ri

+
γiF̃i

˙̂
F i

ni
+
γiα̃i

˙̂αi

si
+
γiβ̃i

˙̂
βi

wi
+
M̃i

˙̂
M i

qi

(14)

Inserting the adaptation rules in (3) into the above in-
equality, one obtains

V̇i ≤ zi{Mi((λi + 1)vi − vi−1 − λ0v0 − γ0a0)
+γiui − γiciv2i − γiFi}+ γi‖zi‖(αi‖Xi‖+ βi)

−γi(ĉi − ci)ziv2i − γi(F̂i − Fi)zi + γi(α̂i − αi)‖zi‖2
+γi(β̂i − βi)‖zi‖+ (M̂i −Mi)zi×
((λi + 1)vi − vi−1 − λiv0 − γia0)

(15)

After some mathematical simplifications, we have

V̇i ≤ ziγiui − γiĉiziv2i − γiF̂izi + γiα̂i‖zi‖2 + γiβ̂i‖zi‖
+M̂izi((λi + 1)vi − vi−1 − λiv0 − γia0)

(16)

Introducing the switching control input in (7) into the
above equation, one has

V̇i ≤ −ziγi{
1

γi

˙̂
MiM̂i + ˙̂ciĉi +

˙̂
FiF̂i + ˙̂αiα̂i +

˙̂
βiβ̂i

+kisign(zi)} − γiĉiziv2i − γiF̂izi + γiα̂i‖zi‖2 + γiβ̂i‖zi‖
+M̂izi((λi + 1)vi − vi−1 − λiv0 − γia0)

(17)

Noting to the fact zisign(zi) = |zi| and based on the
adaptation rules in (6), the above inequlity becomes

V̇i ≤ −ki|zi| ≤ 0 (18)

Therefore, using a final Lyapunov function as
∑N

i=1 Vi the

conclusion
∑N

i=1 V̇i ≤
∑N

i=1−ki|zi| ≤ 0 is made. Thus,
according to the Lyapunov stability theory, the error states
of the platoon will attain zero asymptotically. �

3.2 String Stability Analysis

String stability ensures each vehicle in the platoon main-
tains a desired safety distance from its leading vehicle and
avoids collision. The (strong) string stability definition is
given below Kwon and Chwa (2014).

Definition 1. (strong) String stability: Origin ei = 0, with
i ∈ N with the dynamics in (1), is string stable in
the strong sense if error propagation transfer function

Hi(s) = Ei+1(s)
Ei(s)

satisfies ‖Hi(s)‖ ≤ 1 for all i ∈ N ,

where Ei(s) stands for the Laplace transform of ei. Then,
it can be shown that the tracking error of the platoon
system is uniformly bounded. It is noted that although the
considered vehicles’ dynamics in this work are nonlinear,
the proposed spacing errors are linear. So, one can use the
string stability concept for the model.

Theorem 2. The connected vehicle platooning system
with spacing error dynamics (3) is string stable under the

robust adaptive controller (6) and (7), if the parameter λi
is chosen greater than zero.

Proof. First it is noted that according to the definition
of the spacing error in (3) one can reach the following
relations.

exi,0 = exi +

i−1∑
j=1

exj = exi−1,0 + exi (19)

ėxi = ẋi − ẋi−1 = vi − vi−1 (20)

Subsequently, according to the stability of the origin for
the spacing error dynamics provided by the proposed
adaptive controller and proved in Theorem 1, we have

zi = exi + λie
x
i,0 + γie

v
i = 0⇒ λie

x
i,0 = −exi − γievi (21)

zi−1 = exi−1 + λi−1e
x
i−1,0 + γi−1e

v
i−1 = 0 (22)

Inserting (21) to (19), one can conclude

λi−1e
x
i,0 = −(1 + λi)e

x
i − γievi (23)

Introducing the above equation to (22), one gets

exi−1 − (1 + λi)e
x
i − γievi + γi−1e

v
i−1 = 0 (24)

Using evi = vi−v0 and evi−1 = vi−1−v0, the above equation
turns into

exi−1 − (1 + λi)e
x
i − (vi − vi−1) = 0 (25)

Taking time derivative of exi = xi − xi−1 + Li + pi, one
reaches ėxi = ẋi− ẋi−1 = vi− vi−1. Adopting this result in
(25), one can get

exi−1 − (1 + λi)e
x
i − ėxi = 0 (26)

Taking the Laplace transform of (26), we have

Ex
i−1(s) = (1 + λi)E

x
i (s) + sEx

i (s) (27)

It follows from (27)

Hi(s) =
1

1 + λi + s
(28)

One can easily check that for s = jω, λi > 0 the maximum
magnitude of this transfer function will be always less than
1. Thus, the string stability of the platoon is guaranteed.�

4. SIMULATION RESULTS

This section provides some illustrative numerical simula-
tions to validate the effective performance of the developed
adaptive switching controller for platoon formation of au-
tonomous connected vehicles. We consider a platoon of five
follower vehicles indexed by 1, 2, 3, 4 and 5 to track the
path of a leader indexed by 0. Without loss of generality
and for simplicity, we choose an identical vehicle length
of 8 for all the followers with a desired spacing distance
of 2. The parameters of the vehicles’ dynamics are set
as ci = 0.008, fi = 0.001 and Mi = 1100. The time
varying model uncertainties and external disturbances are
chosen as ∆fi(Xi, t) = 0.5sin(xi) + 0.3cos(t). Further-
more, the control input variations are selected as ∆u1 =
0.3cos(u1), ∆u2 = 0.35sin(5u2), ∆u3 = −0.35tanh(5u3),
∆u4 = 0.4cos(0.1u4) and ∆u1 = −0.3tanh(2u5). The
parameters of the proposed control scheme are set as

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14076



ki = 0.1, λi = 0.9, γi = 0.5, ri = 1 and ni = si =
wi = qi = 10. The initial conditions of the adaptation
parameters are all set to zero. To implement a more
practical situation, non-zero initial states are given for
the platoon spacing error variables. As a result, the initial
conditions for the vehicles’ positions and velocities are se-
lected as follows: (x0, v0) = (70, 18), (x1, v1) = (60, 17.5),
(x2, v2) = (50, 17), (x3, v3) = (40, 16.5), (x4, v4) = (30, 16)
and (x5, v5) = (20, 15.5) . And, the time evolution of the
leader vehicle’s acceleration is adopted as follows.

a0 =



0 for t < 5
−0.3(t− 5) for 5 ≤ t < 8
−0.8 for 8 ≤ t < 11
0.3(t− 11)− 0.8 for 11 ≤ t < 17
0.8 for 17 ≤ t < 20
0.3(20− t) + 0.8 for 20 ≤ t < 23
0 for 23 ≤ t ≤ 30

(29)

Fig. 2 illustrates the time evolutions of the positions of
the vehicles controlled via the proposed robust adaptive
switching controller. Obviously, the developed controller is
successful in providing safe paths for the follower vehicles
without colliding with each other while tracking the leader.
Also, a desired inter-vehicle spacing between the vehicles
are ensured. The time histories of the velocities of the
vehicles in the platoon are shown in Fig. 3. It can be
seen that the desired velocity of the leader vehicle is
tracked by the follower vehicles within a reasonable time
range. The time histories of the vehicles’ accelerations
appear in Fig 4. It is clear that the connected follower
vehicles track the time varying desired acceleration (29)
via successful implementation of the introduced switching
adaptive controller. Fig. 5 shows the time evolutions of the
spacing errors. One sees that the spacing errors converge to
zero which implies that the string stability of the platoon
is indeed guaranteed in spite of the lumped uncertainties
as well as control input fluctuations. The time evolutions
of the adopted adaptation parameters are depicted in Fig.
6. One can observe that the adaptation parameters are
bounded and converge to some fixed values. It means that
the internal stability of the derived control system is not
destroyed using the adaptation scheme.

Fig. 2. Time evolutions of the vehicles’ positions

Fig. 3. Time evolutions of the vehicles’ velocities

Fig. 4. Time evolutions of the vehicles’ accelerations

Fig. 5. Time evolutions of the spacing errors

5. CONCLUDING REMARKS

This study addressed the design of a robust and adaptive
control algorithm for autonomous intelligent connected
vehicles to follow a leader in a highway transportation sys-
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Fig. 6. Time evolutions of the adaptation parameters

tem. Without knowing the exact values of the parameters
of the vehicles, the main idea was to develop a switching
control methodology such that the stability of the platoon
was guaranteed. Moreover, the effects of modeling errors
and control input uncertainties were taken into account
without requiring any prior information about the bounds
of the uncertain terms. This is more realistic compared
to reported ideal situations considered in the previous
studies. Accordingly, a novel spacing error was introduced
to not only realize an efficient approach for individual
vehicle’s performance in the platoon, but also to guarantee
strong string stability of the overall system. After rigorous
stability analysis, some illustrative numerical simulations
were given to show that the proposed adaptive controller
is an effective approach for platooning of the connected ve-
hicles with no needs for the derivatives of the accelerations
in which it avoids the possible noises captured while taking
time derivatives of the variables. Development of a fault
tolerant robust controller for the same problem as well
as adding saturation nonlinearities for the accelerations of
the vehicles are of interest of the authors to be remained
as future works.
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