
State Observer Design Method for a Class
of Nonlinear Systems

H. Arezki ∗ A. Zemouche ∗∗ F. Bedouhene ∗ A. Alessandri ∗∗∗

M.T. Laleg-Kirati ∗∗∗∗
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Abstract: In this paper, we develop a new high gain observer design method for nonlinear
systems. This new structure provides a lower gain compared to both the high gain and the
enhanced high gain observer. The idea is to combine the improved high gain methodology with
the LMI-based observer design technique to build a more general observer that allows us to
exploit the benefits of both approaches.
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1. INTRODUCTION

Observer design for nonlinear systems have been inves-
tigated for many decades. This is due to its important
role in control design systems, diagnosis, health monitor-
ing, and other modern applications like synchronization
of multi-agent systems and cyber-attacks detection. There
are several methods developed in the literature which we
may classify in three categories: Extended Kalman Filter;
Luenberger observer; high-gain observer methodology; and
LMI-based techniques. However, this paper focuses on
high-gain observers only.

The design of high gain observers was essentially motivated
by its simplicity to implement due to the use of only single
tuning parameter. However, there are three limitations
that make high gain observer weak and difficult to be used
in sensitive industrial applications. The first limitation
is related to numerical issues concerning large systems
as high values of the observer gain are required. The
second limitation is the sensitivity to measurement noise
because high values of the observer gains amplify the noise.
The third and last limitation is the peaking phenomenon
characterized by large amplitudes of the estimated states
in the transient.

To overcome this restrictions, several solutions have been
proposed in the literature. The main solutions are gener-
ally based on a time-varying gain that is appropriately
updated by taking into account the stability and con-
vergence requirements (Ahrens and Khalil, 2009), (Boizot
et al., 2010), (Oueder et al., 2012), (Sanfelice and Praly,
2011) and (Alessandri and Rossi, 2015). Recently, a new
high gain observer, called a low power high gain observer,

has been proposed in Astolfi and Marconi (2015). Their
contribution consists in limiting the power of the tuning
parameter to 2. However, the dimension of the observer
is equal to 2(n − 1) where n is the dimension of the
original system, and the power n is only distributed be-
tween different additional state variables injected in the
observer. Then this power n reappears in the bound of the
estimation error when the system is subject to measure-
ment noise. This particular design has been reconsidered
in Astolfi et al. (June 2016) and in Teel (2016) by including
saturations to avoid the peaking phenomenon. Another
recent high gain observer with the same dimension as the
original system and where the observer’s gain power is
limited to 1 was proposed in Khalil (2017) for the same
class of systems considered in Astolfi et al. (June 2016).
As in Astolfi et al. (June 2016) and in Teel (2016), nested
saturation functions have been used to limit the peaking
phenomenon. In Zemouche et al. (2019) a new structure
of observers, called HG/LMI observer, has been developed
by combining the standard high-gain methodology with
the LPV/LMI technique (Zemouche and Boutayeb, 2013).
This new observer has the advantage to provide lower
tuning parameter compared to the previous high-gain ob-
servers, without using saturation functions or filtering.

In this paper, we develop a new state observer design
for systems with multi-nonlinearities in triangular form
or any system that can be transformed into a triangu-
lar structure. The proposed observer has the advantage
of allowing more possibilities of choosing the design pa-
rameters. The idea consists in combining the enhanced
high gain methodology (Alessandri and Zemouche, 2016)
with the LPV/LMI methodology in order to reduce more
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the value of the observer gains. This structure has the
advantage to use multiple tuning parameters. Indeed, the
observer in Zemouche et al. (2019) becomes a particular
case of the proposed observer in this paper by a special
choice of the design parameters. It is shown through a
simple example that the proposed technique reduces the
peaking phenomenon and decreases the sensitivity to high-
frequency measurement noise as compared with the high
gain observer.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Preliminaries

Before formulating the problem, we introduce some useful
preliminaries for the developed approach. We will recall
two lemmas, which are necessary for the mathematical
developments given in the next section.

Lemma 1. (Alessandri and Zemouche (2016)). Let X and
Y be two matrices of adequate dimensions. Then the fol-
lowing inequality holds for any symmetric and nonsingular
matrix S of appropriate dimension:

X>Y + Y >X ≤ 1

2
(X + SY )>S−1(X + SY )

This lemma will be with great helpful to linearize bilinear
matrix inequalities encountered during the observer syn-
thesis.

As for the next lemma, it will be used to decompose any
Lipschitz nonlinear function in a convenient way. Such
decompositions play an important role in the observer
synthesis and allow enhancing the standard high-gain
observer. However, before stating the lemma, the following
definition is needed.

Definition 1. (Zemouche and Boutayeb (2013)). Consider
two vectors

X =

x1

...
xn

 ∈ Rn and Z =

z1

...
zn

 ∈ Rn.

For all i = 0, ..., n, we define an auxiliary vector XZi ∈ Rn
corresponding to X and Z as follows:

XZi =



z1

...
zi
xi+1

...
xn


for i = 1, ..., n

XZ0 = X.

(1)

Lemma 2. (Zemouche and Boutayeb (2013)). Consider a
function Ψ : Rn −→ Rn. Then, the two following claims
are equivalent:

• Ψ is γΨ-Lipschitz with respect to its argument, i.e.:∥∥∥Ψ(X)−Ψ(Z)
∥∥∥ ≤ γΨ

∥∥∥X − Z∥∥∥, ∀ X,Z ∈ Rn; (2)

• for all i, j = 1, ..., n, there exist functions

ψij : Rn × Rn −→ R

and constants γ
ψij
≤ 0, γ̄ψij ≥ 0, so that ∀ X,Z ∈

Rn,

Ψ(X)−Ψ(Z) =

i=n∑
i=1

j=n∑
j=1

ψijHij

(
X − Z

)
, (3)

and
−γΨ ≤ γψij ≤ ψij ≤ γ̄ψij ≤ γΨ, (4)

where

ψij , ψij

(
XZj−1 , XZj

)
and Hij = en(i)e>n (j).

2.2 Problem formulation

Let us consider the class of nonlinear systems described by
the set of equations:{

ẋ = Ax+ f(x),
y = Cx.

(5)

Where x ∈ Rn is the state vector and y ∈ R is the
measured output. The matrices A ∈ Rn×n, C ∈ R1×n,
and the nonlinear function f : Rn → Rn are defined as
follows:

A ,


0 1 0 · · · 0
0 0 1 0
...

...
...

. . .
...

0 0 · · · 0 1
0 0 · · · 0 0

 , C , [ 1 0 · · · 0 ],

f(x) ,


f1(x1)

f2(x1, x2)
...

fn−1(x1, x2, · · · , xn−1)
fn(x1, x2, · · · , xn)

 .
As usually done for this class of systems, we introduce the
following Lipschitz assumption on f .

Assumption 1. The function f satisfies the global Lips-
chitz condition, i.e., there exists L ∈ Rn≥0 such that

|fi(x1 + w1, x2 + w2, · · · + xi + wi)

− fi(x1, x2, · · · , xi)| ≤
i∑

j=1

Li|wj |

for all x, w ∈ Rn, where Li is the ith component of L.

Instead of standard high-gain observer structure, we use
in this paper the enhanced structure previously proposed
in Alessandri and Zemouche (2016). This structure has the
advantage to use multiple tuning parameters.

Consider the following state observer Alessandri and Ze-
mouche (2016):

˙̂x = Ax̂+ f(x̂) +G(γ, K)
(
y − Cx̂

)
(6)

where x̂ ∈ Rn is the estimate of x and

G(γ, K) ,


γ1k1

γ2k2

...
γnkn

 , T(γ)K

with
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γ ,


γ1

γ2

...
γn

 ∈ Rn>0, K ,


k1

k2

...
kn

 ∈ Rn

and
T(γ) = diag(γ1, γ2, . . . , γn).

As usually in the high-gain methodology, we consider the
transformed error

x̃ , T−1(γ)e, (7)

where e(t) , x(t) − x̂(t) is the estimation error vector.
After developing the computations, it follows that

˙̃x = γ1

(
A−KC + Ω(γ)

)
x̃

+ T−1(γ) [f(x)− f (x− T(γ)x̃)] (8)

where

Ω(γ) ,


0 z1 0 · · · 0
0 0 z2 0
...

...
...

. . .
...

0 0 · · · 0 zn−1

0 0 · · · 0 0

 ,
with

zi ,
γi+1

γ1γi
− 1, i = 1, 2, . . . , n− 1. (9)

The aim consists in synthesizing the observer parameters
γi and ki such that the error x̃ converges exponentially to
zero. Usually, this problem is solved by using the standard
high-gain observer methodology Gauthier et al. (1992).
However, in some situations (for instance larger Lipschitz
constants, high dimension of the systems), it leads to
extremely high values of the gains, which render the ob-
server very sensitive to high frequency measurement noise
and causes the picking phenomenon in the transient. To
overcome this obstacle, various improvements have been
established in the literature, proposing high-gain observers
with constant or time-varying gains. Limiting our study, in
this paper, to observers with constant gains, some recent
methods proposed considerable solutions (Alessandri and
Zemouche, 2016), (Astolfi and Marconi, 2015), (Zemouche
et al., 2019), nevertheless, the problem remains still open
for further improvements. In this paper, we will combine
between (Alessandri and Zemouche, 2016) and (Zemouche
et al., 2019) to propose a new approach. To tackle this
problem, a convenient decomposition of the nonlinearity
and introduction of additional parameters are required.
This is the goal of the next section.

Before stating the observer design methodology proposed
in this paper, let us define the set

Γ+ ,
{
γ = (γi)1≤i≤n ∈ Rn,

0 < γ1 ≤ γ2 ≤ . . . ≤ γn
}

(10)

for any fixed γ = [γ1, γ2, . . . , γn]>.

3. OBSERVER SYNTHESIS METHODOLOGY

3.1 Preliminary transformations

As stated above, the idea is to exploit the results
of Alessandri and Zemouche (2016) and Zemouche et al.

(2019) to improve the solution of the observer gains. Bor-
rowed from (Zemouche et al., 2019, Eq. (54)), the first
step consists in decomposing the nonlinearity of the system
into two parts. From Lemma 2 and after some rearrange-
ments, there exist functions ψij , scalars νψiki(j)

≤ 0 and

ν̄ψiki(j) ≥ 0 such that

f(x)− f (x− T(γ)x̃) = ∆f1 + ∆f2,

with

∆f1 ,
n∑
i=1

i−ji∑
j=1

γjψijen(i)x̃j ,

∆f2 ,
n∑
i=1

ji∑
j=1

γki(j)ψiki(j)en(i)x̃ki(j),

ki(j) , i− (ji − j), 0 ≤ ji ≤ i
and

νψiki(j)
≤ ψij ≤ ν̄ψiki(j) .

By analogy to Zemouche et al. (2019), the first term ∆f1

will be handled by the EHGO approach in Alessandri
and Zemouche (2016), while the second one, ∆f2, will
be associated to the linear part and will be processed by
the LPV/LMI method Zemouche and Boutayeb (2013) as
in Zemouche et al. (2019).

Notice that the term T−1(γ)∆f2 can be rewritten as:

T−1(γ)∆f2 =

n∑
i=1

ji∑
j=1

γki(j)

γi
ψiki(j)en(i)x̃ki(j),

Now, we will introduce some notations needed to rewrite
system (8) under a suitable structure to apply the ideas
of Zemouche and Boutayeb (2013) and Zemouche et al.
(2019). Let us introduce the following matrix function:

A(Ψγ) , A+

n∑
i=1

ji∑
j=1

ψγijen(i)e>n (ki(j)), (11)

where

Ψγ ,



ψγ11
...

ψγij1
...

ψγiji
...

ψγnji
...

ψγnjn


∈ Rd (12)

and

ψγij ,
γki(j)

γ1γi
ψiki(j), d ,

n∑
i=1

ji.

Consequently, system (8) can be expressed as follows:

˙̃x = γ1

(
A(Ψγ)−KC + Ω(γ)

)
x̃+ T−1(γ)∆f1. (13)
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3.2 Preliminary results

Before stating the observer design conditions ensuring the
exponential convergence of the proposed state observer,
we start by introducing some preliminary results, which
are necessary for the proposed design procedure. We first
define the convex set for any fixed γ ∈ Γ+:

H̃γ ,

{
Φ ∈ Rd :

γki(j)νψiki(j)
γ1γi

≤ Φij

≤
γki(j)ν̄ψiki(j)

γ1γi

}
. (14)

It is obvious that H̃γ is a bounded convex. Indeed, from the
fact that the function f is Lipschitz, the scalars νψiki(j)

and

ν̄ψiki(j) are bounded. On the other hand, since γ ∈ Γ+, we

have
γki(j)
γ1γi

≤ 1
γ1

. It follows that
νψiki(j)
γ1

≤ Φij ≤
ν̄ψiki(j)
γ1

.,

which means that Φij is bounded since γ1 > 0.

At this stage, the bounded convex set H̃γ is not exploitable
in an LMI framework because the set of vertices depends
on all the parameters γi, i = 1, . . . , n. In other word, it
depends on the decision variables zi, i = 1, . . . , n − 1. To
overcome this obstacle, we need to define a new bounded
and convex hyper-rectangle independent from all these
observer parameters. Before introducing such a set, we first
state the following lemma.

Lemma 3. Let γ ∈ Γ+ and zi given by (9). If zi satisfies
zi ≤ 0, then there exists α ∈]0, 1] such that inequality (15)
below holds:

γki(j)

γ1γi
≤ 1

(αγ1)1+(ji−j)
. (15)

Proof.

From the definition of the variables zi in Section 2.2 and
the assumption zi ≤ 0, we get

γi = γi1

i−1∏
k=1

(zk + 1), i = 2, ..., n

and

0 < 1 + zk ≤ 1, i = 1, ..., n− 1.

It follows that
γki(j)

γ1γi
≤ 1

γ
1+(ji−j)
1

i∏
k=i−(ji−j)

(zk + 1)

(16)

and from the Archimedean property, we deduce that there
exists α ∈]0, 1] so that

0 < α ≤ zk + 1 ≤ 1. (17)

Hence, by substituting (17) in (16) as

1

1 + zk
≤ 1

α

the inequality (15) is straightforwardly inferred.

Now we are ready to introduce a new bounded convex set
parameterized by two scalar variables, namely α given as
in Lemma 3 and a new tuning parameter σ > 0 to be
included later in the observer design procedure.

Let α and σ be two positive scalars. Then, we define the
bounded convex set

Hσα ,

{
Φ ∈ Rd :

νψiki(j)

(σα)1+(ji−j)
≤ Φij

≤
ν̄ψiki(j)

(σα)1+(ji−j)

}
. (18)

for which the set of vertices, Hσα, is given by:

VHσα ,

{
Φ ∈ Rd :

Φij ∈
{ νψiki(j)

(σα)1+(ji−j)
,

ν̄ψiki(j)

(σα)1+(ji−j)

}}
. (19)

The next lemma is useful and plays an important role in
the design procedure we proposed in this paper.

Lemma 4. Let γ ∈ Γ+ and σ > 0 such that γ1 ≥ σ.
Let α ∈]0, 1] be a positive scalar given by (17). Then the
following inclusion holds:

H̃γ ⊆ Hσα. (20)

Proof. The proof is straightforward by using Lemma 3
and the fact that the quantities νψiki(j)

and ν̄ψiki(j) are

negative and positive, respectively. The inequality 1
γ1
≤ 1

σ

is also used and substituted in (15).

The next section is devoted to the stability analysis of the
estimation error dynamics. By using Lyapunov arguments
and the preliminary results provided above, new high-gain
like synthesis conditions will be established.

3.3 Stability analysis

To investigate the stability analysis of the estimation error
dynamics, we consider the Lyapunov function

V (x̃) = x̃>Px̃

where P ∈ Rn×n is a symmetric and positive definite
matrix. First, let us consider the change of variable K̃ =
PK. Therefore, after developing the derivative of the
function V (x̃) along the trajectories of (13), we obtain

V̇ (x̃) = γ1x̃
>

[
A(Ψγ)>P + PA(Ψγ)− C>K̃> − K̃C

+ Ω>(γ)P + PΩ(γ)

]
x̃+ 2x̃>PT−1(γ)∆f1. (21)

Before presenting the stability conditions ensuring the
exponential convergence of the estimation error x̃ to zero,
we provide some informations on the term ∆f1. This term
will be handled by using the high-gain methodology.

Lemma 5. Assume that γ ∈ Γ+, and zi ≤ 0, i = 1, . . . , n−
1. Then there exist bounded scalars kf1 > 0 and α ∈]0, 1],
independent from γ, such that∥∥T−1(γ)∆f1

∥∥ ≤ 1

(αγ1)
jmin

kf1‖x̃‖ (22)

where
jmin = min

ji 6=i
ji.
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Proof. We have

∆f1 =

n∑
i=1

(
i−ji∑
j=1

γjψij x̃j

)
en(i)

T−1(γ)∆f1 =

n∑
i=1

(
i−ji∑
j=1

γj

γi
ψij x̃j

)
en(i).

Therefore

‖T−1(γ)∆f1‖2 =

n∑
i=1

(
i−ji∑
j=1

γj

γi
ψij x̃j

)2

.

Using Assumption 1 and Holder’s inequality, it follows
that:

‖T−1(γ)∆f1‖2 ≤
n∑

i=1

(
i−ji∑
j=1

Lj |x̃j |
γj

γi

)2

≤
n∑

i=1

( max
1≤j≤i−ji

Lj

)2 (
γi−ji

γi

)2

(
i−ji∑
j=1

|x̃j |

)2


≤ ( max
1≤j≤n

Lj)2
n∑

i=1

(i− ji)
(
γi−ji

γi

)2

‖x̃‖2

≤
[
kf1 max

1≤i≤n

γi−ji

γi

]2
‖x̃‖2

(23)

where

kf1 = L̄

√√√√(n(n+ 1)

2
−

n∑
i=1

ji

)
, L̄ = max

1≤j≤n
Lj .

Since zk ≤ 0,∀k = 1, . . . , n− 1, then from Lemma 3, there
exists α ∈]0, 1] such that:

γi−ji
γ1γi

≤ 1

(αγ1)1+ji
.

By putting jmin = min
1≤i≤n

ji, we get

max
1≤i≤n

γi−ji
γi
≤ 1

(αγ1)jmin
.

Then inequality (22) is inferred. This ends the proof.

Now we are ready to state the first theorem which provides
sufficient design conditions ensuring exponential conver-
gence of the estimation error to zero.

Theorem 6. Assume there exist P = P> > 0, λ > 0,
K̃ ∈ Rn, γ ∈ Γ+ and σ > 0 such that:{
A(Ψ)>P + PA(Ψ)− C>K̃> − K̃C

+ Ω>(γ)P + PΩ(γ)
}

+ λI < 0,∀Ψ ∈ VHσα
(24)

and

γ1 > max

(
σ,

[
2kf1λmax(P )

λαjmin

] 1
1+jmin

,
1

α

)
. (25)

Then the estimation error x̃(t) is exponentially stable.

Proof. From the convexity principle and the inclu-
sion (20) for γ1 ≥ σ, if (24) hold, we deduce that

V̇ (x̃) ≤ −γ1λ‖x̃‖2 + 2x̃>PT−1(γ)∆f1. (26)

Let α ∈]0, 1] satisfying (17). Then, from Lemma 5, we have

2x̃>PT−1(γ)∆f1 ≤ 2λmax

(
P
)
‖x̃‖

∥∥T−1(γ)∆f1

∥∥
≤

2λmax

(
P
)

(αγ1)
jmin

kf1‖x̃‖2. (27)

It follows that

V̇ (x̃) ≤ −

(
γ1λ−

2λmax

(
P
)

(αγ1)
jmin

kf1

)
‖x̃‖2. (28)

From the definition of V̇ (x̃) and after integrating from 0
to t, we obtain

‖x̃(t)‖ ≤

√
λmax

(
P
)

λmin

(
P
) ‖x̃0‖e

−

(
γ1λ−

2λmax

(
P

)
(αγ1)

jmin
kf1

)
t

(29)

which means that x̃(t) converges exponentially to zero if

γ1λ −
2kf1λmax

(
P
)

(αγ1)
jmin

> 0. On the other hand, to guarantee

γ ∈ Γ+, we need to have γ1 ≥ 1
α , since γ1 satisfies (17).

These conditions on γ1 lead to inequality (25). To sum up,
the conditions on γ1 are requird for the following reasons:

(1) γ1 ≥ σ is needed to ensure feasibility of the inequali-
ties (24). It is justified by the inclusion (20);

(2) γ1 >
1
α is needed to guarantee γ ∈ Γ+;

(3) γ1 >
[

2kf1λmax(P )

λαjmin

] 1
1+jmin is required to ensure x̃(t)

converges exponentially to zero, according to (29).

This ends the proof.

3.4 LMI formalization

Although Theorem 6 provides sufficient conditions to
guarantee the design of the observer parameters K and
γ, it still not fully exploitable at this stage because the
matrix inequalities (24) are not numerically tractable.
Indeed, (24) are not LMIs and depend on the parameter
γ multiplied by the Lyapunov matrix P . To linearize (24)
and to render it independent of γ, we should separate the
coupling PΩ(γ) and use some mathematical tools to make
γ vanish from inequality (24). To start the linearization
procedure, we consider the following decomposition of
Ω(γ):

Ω(γ) , Ω(Z) = A1ZA2,

where

Z = diag(z1, ..., zn−1) ∈ R(n−1)×(n−1)

and

A1 ,


1 0 · · · 0
0 1 0
...

...
. . .

...
0 · · · 0 1
0 · · · 0 0

 ∈ Rn×(n−1),

A2 ,


0 1 0 · · · 0
0 0 1 0
...

...
...

. . .
...

0 0 · · · 0 1

 ∈ R(n−1)×n.

Then a simple use of Lemma 1 leads to separate P from
Ω(Z). To satisfy (17), we should include the constraints:

Z ≤ 0, (30a)
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(α− 1)In−1 − Z ≤ 0. (30b)

Hence we are ready to state the following main theorem,
which provides LMI-based synthesis conditions ensuring
the exponential convergence of the observer.

Theorem 7. Assume that there exist positive scalars λ, α,
σ, and γ1, a symmetric positive definite matrix P , diagonal
matrices S > 0 and W ≤ 0, such that for all ψ ∈ VHσα the
following conditions are fulfilled:[

A(ψ)>P + PA(ψ)− C>K̃> − K̃C + λI (∗)

A>1 P +WA2 −2S

]
< 0 (31)

(α− 1)S −W ≤ 0 (32)

γ1 > max

(
σ,

[
2kf1λmax(P )

λαjmin

] 1
1+jmin

,
1

α

)
. (33)

Then, the estimation error e(t) converges exponentially to
zero if the observer parameters are selected as follows:

K = P−1K̃, Z = S−1W, (34a)

γi = γi1

i−1∏
k=1

(zk + 1), i = 2, . . . , n. (34b)

Proof. First, to get (31), we apply Lemma 1 on the
inequality (24) of Theorem 6. Indeed, from Lemma 1, we
have

Ω>P + PΩ = (A1P )>(ZA2) + (ZA2)>(A1P )

≤ 1

2
(A>1 P + SZA2)>S−1(A>1 P + SZA2).

Then, after using Schur lemma and the change of variables
W = SZ, K̃ = PK, we get (31). Also, condition W ≤ 0
comes from (30a). As for the inequality (32), it stems
from (30b) after multiplying by S. This ends the proof.

Remark 8. The proposed observer design method is more
general than those proposed in the literature and related
to high-gain methodology with constant observer gain.
Indeed, for particular cases, the design is reduced to some
recent methods. We summarize the particular cases in the
following items:

(1) If we take ji = 0 and zk < 0, we will get exactly
the enhanced high gain proposed in Alessandri and
Zemouche (2016). Indeed, in such a case, we have
jmin = 0, kf1 = kf , and A(ψ) ≡ A.

(2) Likewise, if we have ji = 0 (then jmin = 0) and zk = 0,
we get the standard high gain and Theorem 7 will be
reduced to the main theorem of the standard high-
gain observer Gauthier et al. (1992).

(3) Notice also that the HG/LMI observer proposed
in Zemouche et al. (2019) is a particular case of the
result in Theorem 7 corresponding to jmin ≥ 1 and
zk ≡ 0.

4. CONCLUSION

What we proposed in this paper is a general structure
that comprises many of methods discussed in the literature
that we can recover by making particular choices on the
observer design parameters. Especially, we generalized the

work presented in Zemouche et al. (2019) with more many
possibilities of choosing the design parameters of the gain.
The stability of the estimation error is shown using a
Lyapunov function after having successfully established
new high-gain like synthesis conditions.

As future work, we will investigate more the methodology
by adding illustrative examples and establish comparisons
with other existing methods in the literature. We mainly
aim to apply this methodology on estimation of key vari-
ables in an anaerobic digestion process with experimental
data and simulations. The experimentation will be inte-
grated in an Arduino-based experimental platform we will
create.
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