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Abstract: Model Predictive Control is a well consolidated technique to design optimal control
strategies, leveraging the capability of a mathematical model to predict a system’s behavior
over a time horizon. However, building physics-based models for complex large-scale systems
can be cost and time prohibitive. To overcome this problem we propose a methodology to
exploit Regression Trees technique in order to build a Markov Jump System model of a large-
scale system using historical data, and apply Model Predictive Control. A comparison with an
optimal benchmark and related techniques is provided on an energy management system to
validate the performance of the proposed methodology.

Keywords: Regression Trees, Model Predictive Control, Switching Systems, Markov Jump
Systems, Data-driven.

1. INTRODUCTION

Control of complex cyber-physical systems received an
increasing attention in the last years (Lun et al., 2019).
Model Predictive Control (MPC) is a well known control
strategy used to design optimal control actions to optimize
a performance metric while guaranteeing a desired system
behavior. To provide such an optimal control strategy,
MPC leverages a mathematical model to predict system’s
behavior over a finite time horizon. However, creating a
physics-based model for large-scale systems is often cost
and time prohibitive (Smarra et al., 2018a). To overcome
this issue a possibility is to use identification techniques
to create models using historical data available from the
system. Several works deal with this problem, and use both
system identification from control theory and machine
learning algorithms from computer science to construct
models to be used for control applications. To the best of
the authors’ knowledge, the use of Regression Trees (RT)
with predictive control purposes has been addressed for
the first time in (Behl et al., 2016), and then extended
in (Jain et al., 2017, 2018), where the authors proposed
a RT-based strategy that implements Model Predictive
Control (MPC) over a horizon of arbitrary length. The
aforementioned approaches make use of data-driven static
models, where the input-output relation is represented by
static affine functions instead of dynamical models: such
modeling framework neglects the presence of the internal
state evolution and loses the information of the past in-
puts applied to the system over the predictive horizon.
In (Smarra et al., 2018b) the authors propose a method to
identify a (deterministic) Switching Affine dynamical mod-
eling of a system using historical data, by appropriately
adapting the RT algorithm. In (Smarra et al., 2018a) the
authors also show on a building automation experimen-
tal setup that, in such modeling framework, the knowl-
edge of the forecast of the future disturbance signal can

greatly improve the MPC performance. In that case the
disturbance consists of weather conditions, which clearly
affect the thermal dynamics of a building. However, in
many applications the disturbance forecast is not available.
Thus, as the main contribution of this paper, we provide a
novel methodology to build a Markov Jump System (MJS)
(Costa et al., 2006) that identifies the dynamics of the
disturbance as a Markov Chain model exploiting histori-
cal data. The resulting model can be used to implement
Stochastic MPC via standard techniques (Bernardini and
Bemporad, 2012). We validate our approach on a bench-
mark consisting of a bilinear model of a building with 12
states, 4 inputs and 8 disturbances, whose parameters were
identified using experiments on a building in Switzerland
(Oldewurtel, 2011). We compare the performance of our
technique with a baseline method for switching ARX iden-
tification (k-LinReg) (Lauer, 2013), with the deterministic
approach in (Smarra et al., 2018b) (which considers both
the cases of full and no knowledge of the disturbance), and
with an oracle with perfect knowledge of both the building
bilinear dynamical model in (Oldewurtel, 2011) and the
future disturbance variables (i.e. perfect weather forecast).
Simulations show that our approach outperforms, in terms
of model accuracy and control performance the k-LinReg
and the deterministic methodologies with no knowledge
of disturbance. Paper organization. Section 2 defines
the problem formulation. Section 3 provides a background
on the RT-based deterministic modeling framework devel-
oped in (Smarra et al., 2020). Section 4 presents our novel
methodology to derive a Markov Jump System model
using RT, and setup a Model Predictive Control problem.
Section 5 provides simulation results.

2. PROBLEM FORMULATION

Let a dataset D be collected from a physical system, where
D = {(y(k), u(k), d(k))}`k=1 is a finite set of cardinality
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|D| = ` samples obtained from measurements of, respec-
tively, output signals y(k) ∈ Rn, control signals u(k) ∈ Rm
and disturbance signals d(k) ∈ Rp. The contribution of this
paper is to identify a black-box switching model driven by
a Markov chain, i.e. a Markov Jump System, with the
aim of applying stochastic MPC. In (Smarra et al., 2018b,
2020) we proposed a procedure to derive a predictive
model for the future time horizon j = 0, . . . , N − 1 as
follows:

x(k + j + 1) = Aσj(x(k),d(k))x(k + j)+

+Bσj(x(k),d(k))u(k + j) + fσj(x(k),d(k)) (1)

where x(k)
.
= [y>(k) · · · y>(k− δy) u>(k−1) · · · u>(k−

δu)]> is an extended state to characterize an ARX model,
σj : Rn(δy+1)+mδu+p → Mj ⊂ N associates (via a rect-
angular partition, as will be illustrated in the following
sections) to each pair (x(k), d(k)), and each future time
step j, an operating mode in a finite set Mj , and δy, δu
are nonnegative scalars denoting the number of autoregres-
sive terms used for the corresponding variables. Since the
switching sequence of σj(x(k), d(k)), being a function of
(x(k), d(k)), is available at step k for any j = 0, . . . , N−1,
Equation (1) can be used in the standard formulation of
N -steps linear MPC. The optimal solution at each step
k can be computed via Quadratic Programming (QP).
This approach has also been validated on a Structural
Health Monitoring case study Di Girolamo et al. (2020).
In many practical cases, the knowledge/forecast at each
time k of the future disturbance signal (d(k+1), . . . , d(k+
N − 1)) can greatly improve the MPC performance, as in
the building automation setup we addressed in (Smarra
et al., 2018a) where the disturbance consisted of weather
conditions. As discussed in (Smarra et al., 2020), it is
straightforward to derive the predictive model (1) with
σj(x(k), d(k), . . . , d(k + j)), j = 0, . . . , N − 1: using the
forecast (d(k+1), . . . , d(k+N−1)) it is possible to predict
the future switching sequence and solve MPC via QP.
However, if the forecast of the disturbance signal is not
available, the sequence σj(x(k), d(k), . . . , d(k + j)), j =

0, . . . , N − 1, can arbitrarily assume
N−1∏
j=0

|Mj | values, and

the MPC problem turns into a MILP. As the main contri-
bution of this paper we address such problem in Section
4, where we propose an optimization algorithm to derive
transition probabilities that characterize the switching se-
quence as a Markov Chain: this makes the solution of the
MPC problem computationally feasible leveraging the the-
ory of Markov Jump Systems (Bernardini and Bemporad,
2012).

Due to space limitation, we refer the reader for more
details on the CART algorithm of RT to the Appendix of
Smarra et al. (2020), and for more details to the original
book Breiman (2017).

3. SWITCHING ARX IDENTIFICATION USING RT

Let a dataset D = {(y(k), u(k), d(k))}`k=1 be given as de-
fined in Section 2. Let us assume, without loss of generality
and for simplicity of presentation, that we wish to predict
the value of the scalar variable y1(k + 1) given measure-
ments at time k of the vector [y>(k) u>(k) d>(k)]> ∈
Rn+m+p. The RT algorithm creates a tree structure T by
partitioning the set D into subsets Di. Let |T | denote the

number of leaves obtained from the partitioning, then each
leaf i = 1, . . . , |T | contains a certain number of samples
from D belonging to the hyper-rectangular region Ri, i.e.
Di = {(y(k1), u(k1), d(k1)), . . . , (y(kε), u(kε), d(kε))}, at
time instants k1, . . . , kε that are not necessarily adjacent.
The algorithm associates to each leaf Di a prediction

ŷ1,i(k + 1) =

∑
(y(k),u(k),d(k))∈Di

y1(k + 1)

|Di|
(2)

as the average of the response values associated to each
sample in Di.
From now on, for ease of reading, we remove the
“hat” from the estimated model variables such as ŷ in (2).
The difference with the measured variables y in the dataset
will be clear from the context. The idea is to create nN
predictive trees Tι,j , ι = 0, . . . , n, j = 0, . . . , N − 1, each
one to predict yι(k+j+1) over the N steps of the horizon,
and replace the average response given by (2) associated
to each leaf of each tree with an LTI model in order to
obtain the following predictive model ∀ j = 0, . . . , N − 1
to describe the dynamics’ evolution over the horizon

x(k + j + 1) = Aσj(x(k),d(k))x(k + j)+

+Bσj(x(k),d(k))u(k + j) + fσj(x(k),d(k)), (3)

where x(k)
.
= [y>(k) · · · y>(k− δy) u>(k−1) · · · u>(k−

δu)]> is an extended state to characterize a switching ARX
model, and σj : Rn(δy+1)+mδu+p → {1, . . . , |Tι,j |} is a
switching signal that associates to each pair (x(k), d(k))
n leaves of Tι,j , ι = 1, . . . , n.

To this aim, we first construct an extended dataset X .
=

{(x(k), u(k), d(k))}`k=1. We partition such dataset in two
disjoint sets: Xc = {u(k)}`k=1 of data associated to the
control variables, and Xnc = {(x(k), d(k))}`k=1 of data
associated to non-control variables. Then, we apply the
CART algorithm only on Xnc; thus, we create nN trees
{Tι,j}, each constructed to predict the variable yι(k+j+1).
In particular, we associate to each leaf ι, ij , corresponding
to the partition Xnc,ι,ij , of each tree Tι,j the following affine
model

xι(k + j + 1) = A′ι,ijx(k) +

j∑
α=0

B′ι,ij ,αu(k + α) + f ′ι,ij , (4)

where the coefficients of matrices A′ι,ij , B
′
ι,ij ,α

and f ′ι,ij
are obtained in each leaf ι, ij by fitting the corresponding
set of samples via the classical Least Squares method, as
illustrated in Problem 2 of (Smarra et al., 2020). From (4)
we can easily construct the following affine model to be
used in the MPC formulation by combining for ι = 1, . . . , n
the matrices of each leaf ι, ij , i.e. ∀ij , ∀j

x(k + j + 1) = A′ijx(k) +

j∑
α=0

B′ij ,αu(k + α) + f ′ij . (5)

The following proposition shows how, given a model as
in (5), it is possible to construct a model as in (3) that
is equivalent to it for any initial condition, any switching
sequence, and any control sequence.

Proposition 1. (Smarra et al., 2020) Let A′ij , B
′
ij ,α

and f ′ij ,

α = 0, . . . , j, j = 0, . . . , N −1, be given. If A′ij is invertible

for j = 0, . . . , N − 1, then there exists a model in the form

x̄(k + j + 1) = Aij−1,ij x̄(k + j)+Bij−1,iju(k + j)+fij−1,ij
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such that for any initial condition x̄(k) = x(k) = xk, any
switching sequence i0, . . . , iN−1 and any control sequence
u(k), . . . , u(k + N − 1), then x̄(k + j + 1) = x(k + j +
1), ∀j = 0, . . . , N − 1.

Remark 2. To be precise, in Smarra et al. (2020), we
have shown that Proposition 1 holds in the particular
case of δu = 0. However, this is without any loss of
generality, since in the case of δu 6= 0 we can still make
use of the switching ARX model (5) in the MPC problem
formulation.

The obtained model can be used to formalize the following:
Problem 3. (Model Predictive Control)

minimize
u

x>k+NQNxk+N +

N−1∑
j=0

(
x>k+jQxk+j + u>k+jRuk+j

)
subject to xk+j+1 = Aij−1,ijxk+j +Bij−1,ijuk+j + fij−1,ij

xk+j ∈ O, uk+j ∈ U , xk+N ∈ ON
xk = x(k), j = 0, . . . , N − 1,

where O,U ,ON are polyhedra that specify the variables
constraints. At any time k we can use the measure-
ments (x(k), d(k)) to determine the switching sequence
i0, . . . , iN−1, hence characterizing Aij−1,ij , Bij−1,ij , fij−1,ij
in Problem 3, which can be solved as in classical MPC.

4. MARKOV SARX IDENTIFICATION USING RT

In many practical cases, the knowledge at each time k of
the future disturbance signal (d(k+1), . . . , d(k+N−1)) can
greatly improve the MPC performance, as in the building
automation setup we addressed in (Smarra et al., 2018a),
where the disturbance consisted of weather conditions.
In that case, we assumed to have knowledge of weather
forecast, and derived a dynamical model where the switch-
ing signal also depended on the future disturbance sig-
nal, i.e. σj(x(k), d(k), . . . , d(k + j)),∀j = 0, . . . , N − 1. In
the technique described in Section 3, this can be easily
done be appropriately redefining the dataset as X =
{(x(k), u(k), d(k), . . . , d(k + N − 1))}`k=1. At each time
k of the run-time solution of Problem 3, the switching
sequence i0, . . . , iN−1 depends on the future disturbances:
if these are known, Problem 3 can still be solved using
QP; if the future disturbances are unknown, the sequence
i0, . . . , iN−1 can (non-deterministically) assume any value
within a finite set, and Problem 3 becomes a MILP. To
tackle this problem, one can extract a predictive model of
the switching signal i0, . . . , iN−1 by means of a Markov
Chain, exploiting the historical data. In the following, we
illustrate how to modify the algorithm proposed in Section
3 to derive a Markov Jump System (Costa et al., 2006) that
takes into account the probabilistic jumps between leaves.
The resulting model can be used to implement Stochastic
MPC via standard algorithms (Bernardini and Bemporad,
2012).

Let us consider a predictive horizon equal to N , and our
dataset X .

= {(x(k), u(k), d(k), . . . , d(k + N − 1))}`k=1.
Using the technique illustrated in the previous section,
we create a model as in (3) using, for each predictive
step j, the dataset Xnc,j

.
= {sj(k)}`k=1, with sj(k)

.
=

(x(k), d(k), . . . , d(k+ j)): in fact, by causality, the switch-
ing signal at time k + j can only depend on the distur-
bance up to time k + j, i.e. σj(x(k), d(k), . . . , d(k + j)).

As illustrated above, when using such model to solve the
MPC problem at time k, the switching sequence depends
on future unknown disturbances: to overcome this problem
we derive predictive models for j = 0, . . . , N − 1 by

x(k+ j+ 1) = A′θ(k+j)x(k) +

j∑
α=0

B′θ(k+j),αu(k + α) + f ′θ(k+j), (6)

where θ(k) is a Markov Chain that drives the switching
rule among the leaves of all trees. Note that, given model
(6) and using the same approach as in Proposition 1, it is
straightforward to derive a Markov Jump System model
for j = 0, . . . , N − 1 by

x(k + j + 1) = Aθ(k+j)x(k + j) +Bθ(k+j)u(k + j) + fθ(k+j). (7)

To fully characterize θ(k) we need to define the initial
state θ0 and a transition probaility matrix (TPM) P . The
initial state is given by θ0 = i0, i.e. by the leaf i0 such
that s0(k) ∈ Ri0 : this assignment can only be done in
run-time at any time step k using the measurement of
s0(k) = (x(k), d(k)).

To define the TPM P we need to compute, for any pair
of trees Tj and Tj+1, with j = 0, . . . , N − 2, the transition
probability p(ij , ij+1) from each leaf ij of Tj to each leaf
ij+1 of Tj+1. We propose two methods to derive P : the
first one is a naive method which leverages the trees used
to construct the predictive models. Let us denote, with
a slight abuse of notation, by Tj(sj(k)) the leaf of Tj
that contains the sample sj(k). Let |ij | be the number of
samples in the leaf ij of Tj and n(ij , ij+1) be the number of
samples that jump from leaf ij to leaf ij+1, i.e. the number
of samples sj(k) ∈ ij such that Tj+1(sj+1(k)) = ij+1 (we
recall that sj+1(k) = (x(k), d(k), . . . , d(k + j), d(k + j +
1)) = (sj(k), d(k + j + 1))). Then we define

p(ij , ij+1)
.
= n(ij , ij+1) · |ij |−1. (8)

The problem of this approach is that, even thought the
jump probabilities are necessarily given by (8), the trees
Tj partition the dataset to minimise the estimation error of
a deterministic prediction of x(k+ j+ 1), j = 0, . . . , N − 1
given by (5), and not to minimise the expected value of
(6), which involves the jump probabilities:

E[x(k + j + 1) | x(k), d(k), u(k), . . . , u(k + j)] (9)

=
∑
θ

P[θ(k + j) = θ | θ(k) = T0(s0(k))]·

· (A′θx(k) +

j∑
α=0

B′θ,αu(k + α) + f ′θ)

To address this problem we propose a different approach
where, on the basis of the trees Tj+1, j = 0, . . . , N − 2
derived as described in the previous section, we construct
N − 1 new trees Πj , j = 0, . . . , N − 2. We will provide a
construction technique of the trees Πj by appropriately
extending the dataset and choosing the variable to be
predicted: we will show that, if the computation of the
transition probabilities p(πj , ij+1) from each leaf πj of
Πj to each leaf ij+1 of Tj+1 is done as in Equation (8),
we minimize the mean square estimation error w.r.t. the
conditional expectation (9).

Let us first define a new data set Zj = {zj(k)}`k=1,
extracted from X , for j = 0, . . . , N − 2, as follows:

zj(k)
.
= A′Tj(sj(k))x(k) +

j∑
α=0

B′Tj(sj(k)),αu(k) + f ′Tj(sj(k)).
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Basically, zj(k) is the prediction of x(k + j + 1) given
sj(k), u(k), . . . , u(k+ j) given by (5), which coincides with
the conditional expectation (9) where we also assume
knowledge of future disturbances, i.e. zj(k) = E[x(k+ j +
1) | sj(k), u(k), . . . , u(k+j)]: indeed the knowledge of sj(k)
allows to deterministically determine Tj(sj(k)).

Let us now consider the dataset Zj ∪ X and assume to
grow N − 1 trees Πj , each applying the CART algorithm
restricted to Xnc,0, and choosing zj(k) as the variable
to predict. In each leaf πj of Πj , the CART solves the
following optimization problem (see CART algorithm de-
scription in the Appendix of Smarra et al. (2020)):

min
,ξ

min
cL

∑
s0(k)∈RL(,ξ)

(zj(k)− cL)2 + min
cR

∑
s0(k)∈RR(,ξ)

(zj(k)− cR)
2


(10)

Given the optimal choice of ∗ and ξ∗, the inner mini-
mization in Equation (10) splits the original leaf into two
leaves RL and RR up to the end of the CART algorithm.
Let cπj be the optimal estimation obtained via (10) in any
leaf πj of the tree Πj obtained from the CART algorithm.
We show that, if the transition probabilities p(πj , ij+1)
are computed as in Equation (8), then cπj is equal to the
conditional expectation of the prediction given by (9), i.e.
E[x(k + j + 1) | s0(k), u(k), . . . , u(k + j)]:

cπj =

∑
s0(k)∈πj

zj(k)

|πj |

=

∑
s0(k)∈πj

A′Tj+1(sj(k))
x(k) +

∑j

α=0
B′Tj+1(sj(k)),α

u(k + j) + f ′Tj+1(sj(k))

|πj |

=

∑
ij+1

∑
s0(k) ∈ πj ,
sj(k) ∈ ij+1

A′ij+1
x(k) +

∑j

α=0
B′ij+1,α

u(k + j) + f ′ij+1

|πj |

=

∑
ij+1

∑
s0(k) ∈ πj ,

sj+1(k) ∈ ij+1

E[x(k + j + 1) | sj+1(k), u(k), . . . , u(k + j)]

|πj |
(11)

=

∑
ij+1

n(πj , ij+1)

|πj |
· E[x(k + j + 1) | sj+1(k), u(k), . . . , u(k + j)] (12)

=

∑
ij+1

p(πj , ij+1) · E[x(k + j + 1) | sj+1(k), u(k), . . . , u(k + j)] (13)

∼= E[x(k + j + 1) | s0(k), u(k), . . . , u(k + j)]. (14)

Note that in Equations (11), (12) and (13) the terms inside
the expectation are deterministic: we use the conditional
expectation formulation just to emphasise the dependence
on the variables assumed to be known. In (14) we as-
sume that the dataset X consists of independently drawn
observations, and that the number of samples in each
region of the tree is large enough to neglect the Standard
Error of the sample Mean (SEM): as a consequence, the
expectation can be assumed approximately equal to the
sample mean. In conclusion, running the CART algorithm
on our extended dataset minimizes the square of the error
between the samples of the dataset X and the correspond-
ing conditional expectation of the predictive model (6).

Using the previous two approaches, we can construct a
transition probability matrix P as in (15)

P =


0 P0,1 0 · · · 0
0 0 P1,2 · · · 0
...

...
...

. . .
...

0 0 0 · · · PN−2,N−1

0 0 0 · · · I

 , (15)

where Pj,j+1 = [p(ij , ij+1)] or Pj,j+1 = [p(πj , ij+1)],
according to the used methods as discussed above. Note
that such model only provides the system’s dynamics for
a future horizon of N time steps, which is enough to
implement an MPC with predictive horizon of N steps.
For this reason the transition probabilities starting from
the leaves of TN are irrelevant for the solution of the MPC
optimization problem, and can thus be chosen arbitrarily,
as for example the identity matrix in the last row of (15).

4.1 Stochastic MPC setup via RT

The Markov Jump System model (7) can be thus used to
formalize the following MPC problem.

Problem 4.

minimize
u

E

[
x>k+NQNxk+N +

N−1∑
j=0

(
x>k+jQxk+j + u>k+jRuk+j

)]
subject to xk+j+1 = Aθ(k+j)xk+j +Bθ(k+j)uk+j + fθ(k+j)

E[xk+j ] ∈ O, uk+j ∈ U ,E[xk+N ] ∈ ON
xk = x(k), j = 0, . . . , N − 1,

where O,U ,ON are polyhedra that specify the variables
constraints. Note that, differently from the previous sec-
tions, in this case we do not need to determine the future
switching sequence at step k, but only the initial state θ0 of
θ(k) and its transition probability matrix P . The solution
of Problem 4 can be computed via standard algorithms
(Bernardini and Bemporad, 2012). Algorithm 1 summa-
rizes the whole procedure illustrated in this section.

Remark 5. As discussed in the previous section, an addi-
tional outcome of our method is that important properties
of the dynamical systems (7) can be characterized and ver-
ified using several classical techniques available in the lit-
erature, e.g. for stability, stabilizability, controllability and
observability (Costa et al., 2006), as well as for stability
and recursive feasibility related to Problem 4 (Bernardini
and Bemporad, 2012).

5. CASE STUDY

In this section we compare the proposed stochastic ap-
proaches with their deterministic counterparts both in
terms of model accuracy and control performance. As a
benchmark we consider a bilinear building model devel-
oped at the Automatic Control Laboratory at ETH Zurich.
It captures the essential dynamics governing the zone-level
operation while considering the external and the internal
thermal disturbances. By Swiss standards, the model used
for this study is of a heavyweight construction with a
high window area fraction on one facade and high internal
gains due to occupancy and equipments (Gyalistras and
Gwerder, 2010). As mentioned above, our methodology fits
well for large-scale systems where identifying a physics-
based mathematical model can be prohibitive. However,
in order to validate our methodology, we provide a com-
parison with an optimal MPC benchmark considering the
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Algorithm 1 Data-driven Stochastic MPC with RT
1: Design time: Offline
2: Input: dataset X = {(x(k), u(k), d(k)), . . . , d(k + j)}`k=1
3: procedure Training LTI models in leaves
4: Compute matrices Aij−1,ij , Bij−1,ij , fij−1,ij , ∀ (ij−1, ij) of

Proposition 1;
5: Generate dataset Zj = {zj(k)}`k=1, j = 0, . . . , N − 2;
6: Build N − 1 trees Πj using Xnc,0;
7: for all j = 0, . . . , N − 2 do
8: Compute p(ij , ij+1) (resp. p(πj , ij+1)) using the trees Tj

(resp. Πj) and Tj+1 using the naive (resp. optimal) method;
9: end for

10: Compute transition probability matrix P using (15);
11: end procedure
12:
13: Run time: Online
14: Input: matrices Aij−1,ij , Bij−1,ij , fij−1,ij , ∀ (ij−1, ij), ma-

trix P , constraint sets O, U , ON , weight matrices QN ,
Q, R

15: procedure Stochastic MPC via SA
16: while k ≥ 0 do
17: Using (x(k), d(k)) determine initial state θ0 = i0 of θ(k);
18: Using θ0, P , and Aij−1,ij ,Bij−1,ij ,fij−1,ij , ∀ (ij−1, ij)

solve Problem 4 to determine optimal inputs u∗k, . . . , u
∗
k+j ;

19: Apply the first input u(k) = u∗k;
20: end while
21: end procedure

bilinear model for which the physics-based dynamics are
known a priori. To this end, we build 4 types of dynamical
models – deterministic Switching Affine with knowledge
of disturbance forecast (SA w/ forecast), deterministic
Switching Affine without any knowledge of disturbance
forecast (SA w/o forecast), naive Markov Jump System
(nMJS), and optimal Markov Jump System (oMJS) – by
generating data using the bilinear model. In the model
validation procedure, we also compare the prediction accu-
racy of such models against a baseline method for Switched
ARX identification (Lauer, 2013), showing better perfor-
mance of our methods in the considered case study.

Model description. The bilinear model has 12 internal
states including the inside zone temperature Tin ∈ R, the
slab temperatures Tsb ∈ R5, the inner wall Tiw ∈ R3 and
the outside wall temperature Tow ∈ R3. The state vector
is defined as x := [Tin T>sb T>iw T>ow]>. There are 4 control
inputs including the blind position B, the gains due to elec-
tric lighting L, the evaporative cooling usage factor C, and
the heat from the radiator H such that u := [B L C H]>. B
and L affect both room illuminance and temperature due
to heat transfer, whereas C and H affect only the tempera-
ture. The model is subject to 5 weather disturbances: solar
gains with fully closed blinds Qsc and with open blinds Qso,
daylight illuminance with open blinds Io, external dry-bulb
temperature Tdb and external wet-bulb temperature Twb.
The hourly weather forecast, provided by MeteoSwiss, was
updated every 12 hrs. Therefore, to improve the forecast,
an autoregressive model of the uncertainty was considered.
Other disturbances come from the internal gains due to
occupancy Qio and due to equipments Qie which were
assumed as per the Swiss standards (Merkblatt, 2006).
We define d := [Qsc Qso Io Qio Qie Tdb Twb]>. For further
details, we refer the reader to (Oldewurtel, 2011). The
model dynamics are given below, where the bilinearity
is present in both input-state and input-disturbance, and
A ∈ R12×12, Bxu,i ∈ R12×12, Bdu,i ∈ R12×7, ∀i = 1, 2, 3, 4:

Fig. 1. Controlled temperature from January 2nd to Jan-
uary 23rd.

x(k + 1) = Ax(k) + (Bu +Bxu[xk] +Bdu[dk])u(k) +Bdd(k) (16)

Bxu[xk] = [Bxu,1x(k), Bxu,2x(k), . . . , Bxu,4x(k)] (17)

Bdu[dk] = [Bdu,1d(k), Bdu,2d(k), . . . , Bdu,4d(k)], (18)

Training. The output variable for training is the inside
zone temperature, i.e. Tin. To train the trees Tι,j we
consider weather disturbances, external disturbances due
to occupancy and equipments, and autoregressive terms of
the inside room temperature, i.e.

X = {Tin(k), . . . ,Tin(k − δx), u(k), d(k + δ̄d), . . . , d(k − δd)}, (19)

where δx and δd represent the orders of the auto-regressive
terms, and we have chosen δu = 0. The training dataset
was generated by simulating the bilinear model with rule-
based strategies for 10 months in 2007, while the testing
dataset was generated for 3 weeks of January. For the
training we chose δd = N − j + 1, δx = 6, where N is the
predictive horizon, and either δ̄d = j − 1 in the case with
perfect forecast knowledge or δ̄d = 0 in the case without
forecast knowledge.

Validation. In Figure 2 we validate the prediction ac-
curacy for horizon N = 1, . . . , 6 (i.e. 6-hour ahead) for 3
weeks of January using SA w/ forecast (i.e. with perfect
knowledge of future disturbance), SA w/o forecast (i.e.
without any knowledge of future disturbance), and nMJS
and oMJS (of course without any knowledge of future
disturbance). We also compare the validation results with
a baseline approach to switching regression, i.e. the k-
LinReg algorithm. The Normalized Root Mean Squared

N
R

M
S

E
*
1
0
0
 [

%
]

Fig. 2. Model validation on the testing dataset.

Error (NRMSE) behavior shows that, as expected, all RT-
based methods provide exactly the same prediction quality
at step 1, as the future disturbance has no effect. SA w/
forecast and oMJS always provides the best prediction,
except for step 2 where the prediction of SA w/ forecast is
slightly worse than nMJS due to model identification un-
certainties. The oMJS and SA w/ forecast are instead com-
parable, since the optimized Markov chain can compensate
the uncertainties induced by the disturbance on the model.
nMJS works better than SA w/o forecast up to step 4: this
shows that the stochastic information introduced by the
Markov Chain identification process improves the quality
of our prediction. However, after step 4, SA w/o forecast
works better than nMJS: our interpretation is that, after
4 hours, the prediction error introduced by the Markov
Chain model grows significantly making the overall ac-
curacy worse than the case without any knowledge of
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future disturbance. This does not happen in the case of the
optimized Markov chain. Also, the RT-based models (both
deterministic and stochastic) outperform the predictive
models obtained by means of the k-LinReg method.

Closed-loop simulations. Our objective is minimizing
the energy usage, i.e. c>u, while maintaining a desired
level of occupant comfort. The solution obtained from
MPC with the bilinear model sets the optimal benchmark,
since it uses the exact knowledge of the plant nonlinear
dynamics and of the future disturbances. In what follows,
we will call this solution the oracle where, at time step
k, we solve the following continuously linearized MPC
problem to determine the optimal sequence of inputs u∗:

Problem 6.

minimize
u

N−1∑
j=1

((
xk+j − xref

)>
Q
(
xk+j − xref

)
+ u>k+j−1Ruk+j−1 + c>uk+j−1 + λεj

)
subject to xk+j = Axk+j−1 +Buk+j−1 +Bddk+j−1

B = Bu +Bxu[xk] +Bdu[dk+j−1]

xk+j ∈ [xmin − εj , xmax + εj ], εj ≥ 0,

uk+j−1 ∈ [umin, umax]

xk = x(k), j = 1, . . . , N − 1,

where Q ∈ R12×12, R ∈ R4×4, c> ∈ R1×4 is proportional
to the cost of using each actuator, and λ penalizes state
bound violations εj . At each time step, only the first
optimal input of the sequence is applied to the system. In

Fig. 3. Cumulative cost over 3 weeks of January.

Figures 1 and 3, we simulate the closed-loop system where
the controller solves the MPC Problem 6 (considering the
expected value in the stochastic cases) with prediction
horizon N = 6 (i.e. 6 hours) for 5 different cases: SA
w/ forecast, SA w/o forecast, nMJS, oMJS, and finally
the oracle. The performance is compared for 3 weeks of
January. The cooling usage factor C is constrained in [0, 1],
the heat input in [0, 23] W/m2, and the room temperature
in [21, 23] oC during the day. The optimization is solved
in MATLAB using CPLEX. The reference temperature
xref is chosen to be 22 oC. The cost function parameters
are setup as q11 = 102, R = diag(10−3), λ = 103, and
c> = [0, 3.32, 7.47, 1.107] as a constant cost of the
electricity taken from (Gyalistras and Gwerder, 2010).
The room temperature profile is shown in Figure 1. The
plots show that oMJS and SA w/ forecast are the ones
that provide less spikes, and are closer to the smooth
temperature regulation of the oracle. We recall that the
sampling time of our system is 1 hour, which explains the
spiky behaviour of the temperature plot. The optimized
cost function is shown in Figure 3. The plots show that,
SA w/ forecast provides the best control performance,
followed by oMJS that is quite close, nMJS, and finally
SA w/o forecast. The oracle we compare to shows the best
achievable control performance.

6. CONCLUSIONS AND FUTURE WORK

This paper provides a novel technique to identify a stochas-
tic switching affine model from a dataset, combining RT
with ARX system identification: this represents a further
step towards bridging machine learning to control theory.
Our novel modeling framework based on Markov Jump
System models allows, when no disturbance forecast is
available, to obtain prediction accuracies and control per-
formance that are comparable to the case where perfect
knowledge of the future disturbance is assumed. As an
additional contribution, our framework allows to formally
define and characterize important properties, e.g. such as
stochastic stability and stabilizability. This will be in-
vestigated in future work leveraging preliminary results
in De Iuliis et al. (2020). We also plan to validate our
techniques to real experimental setups, and to validate our
models on control systems where modeling a disturbance
characterized by fast dynamics with a Markov Chain can
be even more effective, e.g. when the disturbance is a
communication channel in a networked control system.
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