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Abstract: In this paper, a novel distributed model predictive control (MPC) scheme with asymmetric
adaptive terminal sets is developed for the regulation of large-scale systems with a distributed structure.
Similar to typical MPC schemes, a structured Lyapunov matrix and a distributed terminal controller,
respecting the distributed structure of the system, are computed offline. However, in this scheme, a
distributed positively invariant terminal set is computed online and updated at each time instant taking
into consideration the current state of the system. In particular, we consider ellipsoidal terminal sets as
they are easy to compute for large-scale systems. The size and center of these terminal sets, together
with the predicted state and input trajectories, are considered as decision variables in the online phase.
The efficacy of the proposed scheme is illustrated in simulation by comparing it to a recent distributed
MPC scheme with adaptive terminal sets.
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1. INTRODUCTION

Thanks to its flexibility, versatility and strong theoretical prop-
erties (Kouvaritakis and Cannon, 2016), Model Predictive Con-
trol (MPC) has been used over the past years in many practi-
cal applications such as robotics (Klančar and Škrjanc, 2007)
and energy management (Scherer et al., 2014). Besides, many
MPC variants have been developed including, but not limited
to, robust MPC (Bemporad and Morari, 1999) and stochas-
tic MPC (Mesbah, 2016). MPC is typically designed in a
centralized fashion with one optimization problem solved for
the whole controlled plant. For large-scale distributed systems
such as power systems and water networks, centralized MPC
may lead to communication and computational complications
(Christofides et al., 2013). To overcome these difficulties, dis-
tributed MPC schemes have been developed to decompose the
large-scale system into several smaller subsystems and design
a local controller for each.

Due to the increasing interest in MPC, various efforts have been
devoted to ensure the closed loop stability of plants controlled
using MPC (Mayne et al., 2000). A well-known method for
ensuring asymptotic stability and recursive feasibility is the
addition of a terminal cost and/or a terminal constraint. This
method has been extensively used for centralized MPC, see,
for example, Rawlings and Muske (1993). It has also been
extended to distributed MPC, by using a quadratic terminal
cost and an ellipsoidal terminal set (Conte et al., 2012, 2016).
In most cases, the terminal set is computed without taking the
system’s current state into account, possibly resulting in small
regions of attraction. Recently, a distributed MPC scheme with
? Research supported by the Swiss Innovation Agency Innosuisse under the
Swiss Competence Center for Energy Research SCCER FEEB&D.

adaptive terminal sets is proposed in Darivianakis et al. (2019).
In this scheme, an ellipsoidal terminal set is determined and
updated online based on the current state of the system, yielding
a larger domain of attraction.

In this work, a novel distributed MPC scheme with asymmetric
adaptive terminal sets is developed for regulating constrained
large-scale linear time-invariant systems. One advantage of this
approach over the one introduced in Darivianakis et al. (2019)
is that the terminal set is not centered at the origin. Instead, the
center of the terminal set, together with its size, are assumed
to be decision variables to be determined online. The online
computation of the terminal set center results generally in en-
larging the feasible region. The terminal set invariance and con-
straint satisfaction are guaranteed through the addition of extra
constraints formulated as linear matrix inequalities (LMIs) in
the online optimal control problem. Unlike Darivianakis et al.
(2019), the LMIs are derived using the linear state and input
constraints directly without converting them to quadratic con-
straints which are more conservative. The effectiveness of this
approach is evaluated by means of a simulation example.

In Section II, we formulate the distributed MPC problem. In
Section III, we present the distributed MPC scheme with asym-
metric adaptive terminal sets. In Section VI, we show how the
proposed MPC problem is solved using distributed optimiza-
tion techniques. Finally, a numerical simulation illustrates the
efficacy of the proposed scheme in Section V.

Notation: Let R, R+ and N+ be the sets of real numbers, non-
negative real numbers and non-negative natural numbers, re-
spectively. Denote the transpose of a vector v by v> and its norm
by ||v||. Let ||v||P =

√
v>Pv be the weighted norm of the vector

v using the matrix P. The matrix P = diag(P1, ...,PM) denotes
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a diagonal matrix with the submatrices Pi, i ∈ {1, ...,M}, along
its diagonal. Let X ×Y denote the cartesian product of the two
sets X and Y and×i∈{1,...,M}Xi the cartesian product of the sets
Xi for all i ∈ {1, ...,M}.

2. PROBLEM FORMULATION

We consider a large-scale dynamical system which admits a
separable structure and thus, can be decompsed into M subsys-
tems. For each subsystem i ∈ {1, ...,M}, a setNi of neighbours
is defined comprising subsystem i itself as well as all other sub-
systems coupled with subsystem i through the dynamics and/or
the constraints. Each subsystem i is described as a discrete-time
linear time-invariant system given by

xi(t +1) = ANixNi(t)+Biui(t), (1)
where t ∈ N+ is the time index, xi ∈ Rni , ui ∈ Rmi and xNi ∈
RnNi are the state vector of subsystem i, the input vector of
subsystem i and the state vector of the neighbours of subsystem
i respectively. The system matrices ANi ∈ Rni×nNi and Bi ∈
Rni×mi are assumed to be known. The state and input constraint
sets of each subsystem are given by

xNi(t) ∈ XNi = {xNi ∈ RnNi : GNixNi ≤ gNi},
ui(t) ∈ Ui = {ui ∈ Rmi : Hiui ≤ hi},

(2)

where the constraints matrices GNi ∈ Rqi×nNi , Hi ∈ Rri×mi and
vectors gNi ∈Rqi , hi ∈Rri are assumed to be known. The origin
is assumed to be contained in the interior of the constraint set.
We also assume that the inputs of the different subsystems
are coupled neither through the dynamics, nor through the
constraints; indeed this assumption can be imposed without
loss of generality, because inputs can always be decoupled by
introducing new auxiliary variables (Darivianakis et al., 2019).

Our main aim is to regulate the system to the origin. We
therefore impose a quadratic cost function in the states and
the inputs. To maintain the distributed structure of the optimal
control problem, the local cost function of subsystem i is
assumed to be a function of the states of the neighbours of
subsystem i and the inputs of subsystem i. Let T ∈ N+ be
the prediction horizon. Therefore, the local cost function of
subsystem i is designed to be

Ji =
T−1

∑
t=0

[
xNi(t)

>QNixNi(t)+ui(t)>Riui(t)
]
+ xi(T )>Pixi(T ),

(3)
where QNi ∈ RnNi×nNi and Ri ∈ Rmi×mi are the local cost
function matrices and Pi ∈ Rni×ni is the local terminal cost
matrix.

Denoting the global state and input vectors of the whole system
as x = [x>1 , ...,x

>
M]> ∈ Rn and u = [u>1 , ...,u

>
M]> ∈ Rm respec-

tively, the mappings Ui ∈ {0,1}ni×n, WNi ∈ {0,1}
nNi×n and

Vi ∈ {0,1}mi×m can be defined to relate the local variables of
subsystem i to the global variables as follows,

xi =Uix, xNi =WNix, ui =Viu. (4)
Note that the cost function matrices QNi , Ri and Pi are selected
as in Darivianakis et al. (2019) where Q = ∑

M
i=1 W>Ni

QNiWNi

is positive semidefinite and the pair (A,Q) is observable, R =

∑
M
i=1 U>i RiUi is positive definite, P = ∑

M
i=1 U>i PiUi is positive

definite and A = [(AN1WN1)
>, ...,(ANMWNM )

>]>.

To ensure the asymptotic stability of the closed-loop system and
the recursive feasibility of the proposed distributed MPC, the

final state xi(T ) of each subsystem i is constrained to lie in an
ellipsoidal terminal set as follows,

xi(T ) ∈ X f ,i = {xi ∈ Rni : (xi− ci)
>Pi(xi− ci)≤ αi}, (5)

where αi ∈ R represents the size of the terminal set and ci ∈
Rni represents the center of the terminal set. This ellipsoidal
terminal set is required to be invariant under the terminal
controller u f ,i = KNixNi . Thus, assuming that X f ,i(KNi) is the
set of ellipsoidal terminal sets which are invariant under the
terminal controller u f ,i, we impose the constraint

X f ,i ∈X f ,i(KNi). (6)
We assume that the terminal control gain KNi and the matrix Pi
have been designed offline and we seek ci and αi online such
that X f ,i satisfies (6).

In conclusion, the global cooperative online optimal control
problem is formulated as

min
M

∑
i=1

Ji

s.t.


xi(t +1) = ANixNi +Biui,

xNi(t) ∈ XNi , ui(t) ∈ Ui,

}
∀t ∈ {0, ...,T},
∀i ∈ {1, ...,M},

xi(0) = xi,0, xi(T ) ∈ X f ,i,

X f ,i ∈Xi, f (KNi),

}
∀i ∈ {1, ...,M},

(7)

where xi,0 ∈Rni is the current state of subsystem i. The decision
variables of this optimal control problem are the predicted state
trajectory xi(t) for all i ∈ {1, ...,M} and t ∈ {0, ...,T}, the
predicted input trajectory ui(t) for all i ∈ {1, ...,M} and t ∈
{0, ...,T −1}, the terminal set size αi for all i ∈ {1, ...,M} and
the terminal set center ci for all i ∈ {1, ...,M}. Note that the
terminal set depends on the system state because it is computed
in the online optimal control problem whose solution is a
function of the current state of the system. The last constraint
in (7) is ensured by means of convex optimization tools in the
next section.

Note that, in the above MPC formulation, the systems matrices
ANi , Bi, the constraint matrices GNi , Hi, the constraint vectors
gNi , hi, the cost function matrices QNi , Ri are all known for
all i ∈ {1, ...,M}. Note also that the terminal cost matrix Pi and
the stabilizing terminal controller u f ,i need to be computed ap-
propriately offline to ensure asymptotic stability and recursive
feasibility. To compute these terminal ingredients, we follow
the method in Conte et al. (2012, 2016) where the terminal cost
matrices Pi are computed such that P = diag(P1, ...,PM) ∈Rn×n

is a Lyapunov matrix of (1) under the terminal controller u f ,i.

3. DISTRIBUTED MPC SCHEME

In this section, we modify the online optimal control problem
(7) by replacing the last constraint with a set of LMIs involving
the terminal set size and center to ensure the positive invariance
of the terminal set and consequently, the asymptotic stability
of the closed-loop system. The following proposition shows the
conditions to ensure the positive invariance of terminal sets.
Proposition 1. (Darivianakis et al. (2019)). Define the sets
X f ,Ni = × j∈NiX f , j. Each local terminal set X f ,i is positively
invariant if for each i ∈ {1, ...,M} and for all xNi ∈ X f ,Ni ,

(ANi +BiKNi)xNi ∈ X f ,i, (8a)
xNi ∈ XNi , (8b)

KNixNi ∈ Ui. (8c)
Consequently, the global terminal set X f = ×i∈{1,...,M}X f ,i is
positively invariant.
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Condition (8a) ensures that the terminal set X f ,i is invariant.
Whereas, conditions (8b) and (8c) show that all the state and
input constraints are satisfied inside the terminal set respec-
tively. In the sequel, LMIs are derived for each of the conditions
in Proposition 1. Embedding these LMIs in the online optimal
control problem (7) guarantees the positive invariance of the
terminal set. The derived LMIs depend on the following quanti-
ties: α = diag(α1In1 , ..,αiIni , ..,αMInM ), c = [c>1 , ..,c

>
i , ..,c

>
M]>,

αNi =WNiαW>Ni
and cNi =WNic.

Condition (8a) can be represented using an LMI as shown in
the following proposition; the inequality (10) to which we refer
in this proposition is found overleaf in single column.
Proposition 2. For each subsystem i ∈ {1, ...,M}, the terminal
set invariance condition
[(ANi+BiKNi)xNi − ci]

>Pi[(ANi +BiKNi)xNi − ci]≤ αi,

∀ j ∈Ni, x j 3 (x j− c j)
>Pj(x j− c j)≤ α j,

(9)

holds if there exist λi j ≥ 0 such that (10) holds.

Proof. The proof is found in the Appendix.

Condition (8b) can be represented as an LMI as shown in the
following proposition.

Proposition 3. Denote the kth row of the matrix GNi by Gk
Ni

and the kth element of the vector gNi by gk
Ni

. For each subsys-
tem i ∈ {1, ...,M}, the state constraint k ∈ {1,2, ...,qi}

Gk
Ni

xNi ≤ gk
Ni
, ∀ j ∈Ni, x j 3 (x j− c j)

>Pj(x j− c j)≤ α j,
(11)

holds if there exist σ k
i j ≥ 0 such that

∑
j∈Ni

σ
k
i jPi j

1
2

α
1/2
Ni

Gk>
Ni

1
2

Gk
Ni

α
1/2
Ni

gk
Ni
−Gk

Ni
cNi − ∑

j∈Ni

σ
k
i j

≥ 0. (12)

Proof. The proof is found in the Appendix.

Condition (8c) can be represented as an LMI as shown in the
following proposition.

Proposition 4. Denote the lth row of the matrix HNi by H l
Ni

and the lth element of the vector hNi by hl
Ni

. For each subsys-
tem i ∈ {1, ...,M}, the input constraint l ∈ {1,2, ...,ri}
H l
Ni

KNixNi ≤ hl
Ni
, ∀ j ∈Ni, x j 3 (x j− c j)

>Pj(x j− c j)≤ α j,

holds if there exist β l
i j ≥ 0 such that

∑
j∈Ni

β
l
i jPi j

1
2

α
1/2
Ni

K>Ni
H l>
Ni

1
2

H l
Ni

KNiα
1/2
Ni

hl
Ni
−H l

Ni
KNicNi − ∑

j∈Ni

β
l
i j

≥ 0. (13)

Proof. The proof follows that of Proposition 3 by replacing σ k
i j,

gk
Ni

and Gk
Ni

with β l
i j, hl

Ni
and H l

Ni
KNi respectively.

Notice that the center ci and the square root of the size αi
of each local terminal set are considered as decision variables
without affecting the convexity of the problem. However, it is
not possible to achieve convex conditions, and thus a convex
optimization problem, when considering the terminal control

gain KNi as a decision variable. This fact is due to the existence
of the bilinear terms KNiα

0.5
Ni

and KNicNi which would result in
a nonconvex problem if the gain KNi is assumed to be a decision
variable. Thus, the terminal control gain is computed offline
using the method in Conte et al. (2012).

Note that the S-Lemma parameters introduced in Propositions
2, 3 and 4 have to be non-negative for these propositions to
hold. Thus, for all i ∈ {1, ...,M}, j ∈ Ni, k ∈ {1, ...,qi} and
l ∈ {1, ...,ri}, the following constraints are imposed in the
online optimal control problem,

λi j ≥ 0, σ
k
i j ≥ 0, β

l
i j ≥ 0. (14)

Finally, recall that the final state xi(T ) has to satisfy the con-
straint (xi(T )− ci)

>Pi(xi(T )− ci)≤ αi. By means of the Schur
complement (Boyd et al. (1994)), an equivalent form to this
constraint can be formulated as[

P−1
i α

1/2
i xi(T )− ci

(xi(T )− ci)
>

α
1/2
i

]
≥ 0. (15)

In conclusion, the online optimal control problem of the pro-
posed distributed MPC scheme is given by

min
M

∑
i=1

Ji

s.t.


(1), (2) ∀t ∈ {0,1, ...,T}, ∀i ∈ {1, ...,M},
xi(0) = xi,0, (10), (15), ∀i ∈ {1, ...,M},
(12) ∀k ∈ {1, ...,qi}, ∀i ∈ {1, ...,M},
(13) ∀l ∈ {1, ...,ri}, ∀i ∈ {1, ...,M},
(14) ∀i ∈ {1, ..,M}, j ∈Ni, k ∈ {1, ..,qi}, l ∈ {1, ..,ri}.

(16)

To maintain the convexity of (16), we consider the square root
of the terminal set size (and not the terminal set size itself) as a
decision variable. The following theorem shows the recursive
feasibility of the proposed MPC scheme and the asymptotic
stability of the closed-loop system.
Theorem 5. The distributed MPC problem with asymmetric
adaptive terminal sets is recursively feasible and the closed-
loop system under this MPC controller is asymptotically stable.

Proof. The proof follows that of Theorem 3 in Darivianakis
et al. (2019).

Normally, the online optimal control problem is formulated as
a quadratic program (QP) with a polytopic terminal set or a
quadratically-constrained-quadratic program (QCQP) with an
ellipsoidal terminal set. The feasible region in this case is
enlarged by choosing longer predicition horizons leading to an
increase in the number of decision variables and constraints. In
addition, the number of consensus variables to be agreed on by
the neighbours also increases. On the other side, although the
resulting optimal control problem of the proposed approach is
a semidefinite program (SDP), shorter prediction horizons can
be possibly used. Note also that, following Darivianakis et al.
(2019), the terminal set can be computed in the first timestep
only and then enforced for the next timesteps. In this case,
there is no need to recalculate the terminal set in each timestep.
Thus, an SDP is solved in the first timestep, whereas a QCQP
is solved for the rest of the simultion. Furthermore, if the initial
condition is known a priori, the SDP can be solved offline once
and the online optimal control problem becomes a QCQP which
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P−1

i α
1/2
i (ANiα

1/2
Ni

+BiKNiα
1/2
Ni

) [(ANi +BiKNi)cNi − ci]

(ANiα
1/2
Ni

+BiKNiα
1/2
Ni

)> ∑
j∈Ni

λi jPi j 0

(ANi +BiKNi)cNi − ci]
> 0 α

1/2
i − ∑

j∈Ni

λi j

≥ 0. (10)

is the same program used when fixed ellipsoidal terminal sets
are considered.

4. DISTRIBUTED IMPLEMENTATION

The global cooperative online optimal control problem (16)
can be solved using distributed optimization techniques. In
this section, we show how this problem can be solved using
the alternating direction method of multipliers (ADMM). This
alogrithm is iterative and each iteration is mainly composed
of three steps which are summarized in this section. For more
details about this algorithm, see Boyd et al. (2011).

Let x j|i, α j|i and c j|i be local copies of the state, terminal
set size and center of the subsystems j ∈ Ni computed by
subsystem i respectively. Let zx ∈ Rn, zα ∈ Rn and zc ∈ Rn

be global copies comprising the state, terminal set size and
center of the whole system respectively. Let the local copy (·) j|i
correspond to the component z(·)δ (i, j)

of the global copy using
the map δ (·, ·). This map is used because several local copies
may correspond to the same component of the global copy (e.g.
δ (i, j) = δ (k, j) if {i,k}⊆N j). The goal is that the components
of the global copy and the corresponding local copies reach
consensus and converge to the centralized solution of (16).
We also define the lagrange multipliers γx j|i , γα j|i and γc j|i . In
the first step of iteration τ + 1, each subsystem i computes
uτ+1

i (t), xτ+1
j|i (t), α

τ+1
j|i , cτ+1

j|i , λ
τ+1
i j , σ kτ+1

i j , β lτ+1

i j ∀ j ∈Ni, k ∈
{1, ..,qi}, l ∈ {1, ..,ri} by solving the optimization problem

min Ji + ∑
j∈Ni

[
T

∑
t=0

(
γ

τ
x j|i

(t)x j|i(t)+
ρ

2
(x j|i(t)− zτ

xδ (i, j)
(t))2

)
+

γ
τ
α j|i

α
1
2
j|i + γ

τ
c j|i

c j|i +
ρ

2

(
α

1
2
j|i−

√
zτ

αδ (i, j)

)2

+
ρ

2
(c j|i− zτ

cδ (i, j)
)2

]

s.t.


(1), (2) ∀t ∈ {0,1, ...,T},
xi(0) = xi,0, (10), (15),
(12), (13), (14) ∀ j ∈Ni, k ∈ {1, ...,qi}, l ∈ {1, ...,ri},

where ρ is the step size and x j, α j and c j are replaced by
x j|i, α j|i and c j|i in (1), (2), (10), (12), (13), (14), (15) and
the definition of Ji. In the second step, subsystem i updates the
component zcδ (i|i) of the global copy as follows,

zτ+1
cδ (i,i)

= argmin

(
∑

j∈Ni

−γ
τ
ci| j

zcδ (i,i) +
ρ

2 ∑
j∈Ni

(cτ+1
i| j − zcδ (i,i))

2

)
.

The same applies to zxδ (i,i)(t) and √zαδ (i,i) . Finally, subsystem
i updates the lagrange multipliers corresponding to its local
variables as follows,

γ
τ+1
c j|i

= γ
τ
c j|i

+ρ(cτ+1
j|i − zτ+1

cδ (i, j)
).

The same applies to γx j|i(t) and γc j|i . Note that z0
(·)δ (i, j)

and γ0
(·) j|i

are initialized so that the first step of the first iteration can be
implemented. Note also that we terminate the program after a
fixed number of iterations in this work even though there exist
more advanced techniques which can be used for termination.

5. SIMULATION RESULTS

In this section, the effectiveness of the proposed distributed
MPC scheme with asymmetric adaptive terminal set (16) (de-
noted by D-ASYM) is illustrated by means of a simulation
example. This scheme is also compared to the distributed MPC
scheme with adaptive terminal set (denoted by D-ADAP) de-
veloped in Darivianakis et al. (2019).

We consider the discrete-time linear time-invariant system
x+1 = 2x1 +0.5x2, x+M = 0.5xM−1 +2xM,

x+i = 0.5xi−1 +2xi +0.5xi+1,∀ i ∈ {2, ...,M−1}.
The state and input constraints of this system are represented as

−5≤ xi ≤ 5, −0.25≤ ui ≤ 1, ∀ i ∈ {1, ...,M}.
The system and constraint matrices in (1) and (2) can be derived
accordingly. The cost function matrices are selected such that
Q = In and R = Im. The terminal cost and controller can then
be computed based on the work in Conte et al. (2012). Two
test scenarios are considered in this paper. In the first one,
we consider the case in which M = 2 to compare D-ASYM
and D-ADAP, whereas we consider the case in which M = 9
in the second one to demonstrate the efficacy of the proposed
approach for relatively large-scale systems.

Figure 1 shows the result of the first test scenario. In particular,
the predicted state trajectory (refered to as PT) and the terminal
set (refered to as TS) of the two distributed MPC schemes; D-
ASYM and D-ADAP, are shown with a prediction horizon T =
2 for three different initial conditions when the optimization
problem is solved once. Notice that the terminal set is described
by a rectangle and not an ellipsoid because it is the product of
two ellipsoidal sets in one dimension.

The online optimal control problem is initially feasible for
both schemes and the optimal solutions are the same when the
initial condition is x0 = [−0.1 − 0.4]>. The online optimal
control problem is still feasible for both schemes when x0 =
[−0.7 0.45]>. However, the optimal solutions are different
reflecting the conservativeness of D-ADAP. Finally, for x0 =
[−0.6 −0.6]>, only D-ASYM is initially feasible showing that
its domain of attraction is possibly larger than that of D-ADAP.

Table 1 shows the cost function value for the different schemes
and initial conditions when the optimization problem is solved
recursively for 10 timesteps. When the initial condition is x0 =
[−0.1 −0.4]>, the cost of both schemes is the same because the
optimal state and input trajectories are the same independent of
the scheme applied. In the case of x0 = [−0.7 0.45]>, the cost of
D-ADAP is higher than that of D-ASYM showing the realtive
suboptimality of D-ADAP with respect to D-ASYM. Finally,
for x0 = [−0.6 − 0.6]>, no value is shown for D-ADAP since
the online optimal control problem is infeasible.

Figure 2 shows the result of the second test scenario when
M = 9. In the left figure, the state trajectories of the third and
sixth subsystems are shown when D-ASYM is implemented
recursively for ten timesteps with a prediction horizon T = 2.
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Table 1. Value of cost function for different
schemes and initial conditions

Initial Conditions x0 =

[
−0.1
−0.4

]
x0 =

[
−0.7
0.45

]
x0 =

[
−0.6
−0.6

]
D-ADAP 0.2528 1.1562 -
D-RLXD 0.2528 1.1071 1.8185

As shown, the system states converge to the origin illustrating
Theorem 5. In the middle figure, the ADMM trajectories of the
states of the third and sixth subsystems are shown. In particular,
the trajectories of the variables zxδ (3,3)(1) and zxδ (6,6)(1) at the
first timestep are shown. Note that the states computed using
distributed optimization (i.e. ADMM) converge to the same
values obtained by solving the whole optimization problem
centrally. In other words, the optimal state trajectories are
reached using distributed optimization. In the right figure, the
ADMM trajectories of the terminal set size and center of the
fifth subsystem at the first timestep is shown. In particular, the
local copies of these variables computed by all the neighbours
of the 5th subsystem and the corresponding global copies are
shown. Although more iterations are required so that the local
and global copies converge to the steady-state value, these
copies reach consensus. Note that the program can be safely
terminated in this case since the optimal trajectories are reached
and the terminal set size and center reach consensus which
means that all the constraints are satisfied.

6. CONCLUSION

A novel distributed MPC scheme is proposed where the ter-
minal set size and center are determined online. The terminal
set positive invariance is ensured by imposing additional con-
straints in the MPC problem. The proposed approach is com-
pared to a recently-proposed one in the literature. Extensions to
nonlinear systems are to be considered for future work.

APPENDIX

Proof of Proposition 2

The inequalities (18), (19) and (20) to which we refer in this
proof are found overleaf in single column

Define an auxiliary vector si ∈ Rni for each subsystem’s state
vector xi as follows,

xi = ci +α
1/2
i si. (17)

By concatenation, the relation xNi = cNi +α
1/2
Ni

sNi also holds,
By substituting these auxiliary vectors in (9), the invariance
condition is written as

s>Ni
(ANiα

1/2
Ni

+BiKNiα
1/2
Ni

)>Pi(ANiα
1/2
Ni

+BiKNiα
1/2
Ni

)sNi

+2[(ANi +BiKNi)cNi − ci]
>Pi(ANiα

1/2
Ni

+BiKNiα
1/2
Ni

)sNi

+[(ANi +BiKNi)cNi − ci]
>Pi[(ANi +BiKNi)cNi − ci]≤ αi,

∀ j ∈Ni, s j 3 s>j Pjs j ≤ 1.
Using the mapping equations in (4) and multiplying the above
equation by α

−1/2
i gives the condition (18) where Pi j =

WiU>j PjU jW>i . By applying the S-procedure (Boyd et al.,
1994) to (18), the invariance condition for each subsystem
i ∈ {1, ...,M} holds if there exist λi j ≥ 0, j ∈ Ni such that
(19) holds. Equation (19) can be rearranged as shown in (20).
Applying Schur’s complement (Boyd et al., 1994) to (20) leads
to the linear matrix inequality (10).

Proof of Proposition 3

Consider the auxiliary vectors si defined in (17) and the con-
catenated auxiliary vectors sNi . Substituting these auxiliary
vectors in (11), the state constraints become

Gk
Ni
(cNi +α

1/2
Ni

sNi)≤ gk
Ni
, ∀ j ∈Ni, s j 3 s>j Pjs j ≤ 1.

Using the mapping equations in (4), the above implication can
be expressed as

Gk
Ni

α
1/2
Ni

sNi +Gk
Ni

cNi ≤ gl
Ni
, ∀ j ∈Ni, s>Ni

Pi jsNi ≤ 1.
Applying the S-procedure Boyd et al. (1994) to the above
implication yields

∑
j∈Ni

σ
k
i j

[
Pi j 0
0 −1

]
−

 0
1
2

α
1/2
Ni

Gk>
Ni

1
2

Gk
Ni

α
1/2
Ni

Gk
Ni

cNi −gk
Ni

≥ 0.

Rearranging the above LMI results in (12).
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Fig. 1. Predicted state trajectories (PT) and terminal sets (TS) of two distributed MPC schemes; D-ADAP (Blue) and D-ASYM
(Red) for three different initial conditions and a prediction horizon of T = 2 when solving the optimization problem once
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Fig. 2. (left) Optimal state trajectories of the third and sixth subsystems starting from x0 = [−0.3 −0.5 −0.3 −0.5 −0.3 −0.5 −
0.3 − 0.5 − 0.3]> with a prediction horizon T = 2 when solving the optimization problem recursively, (middle) ADMM
iterations of the global copies of the states of the third and sixth subsystems at the first timestep and the corresponding
centralized solutions, (right) ADMM iterations of the local and global copies of the terminal set size and center of the fifth
subsystem at the first timestep

s>Ni
(ANiα

1/2
Ni

+BiKNiα
1/2
Ni

)>Piα
−1/2
i (ANiα

1/2
Ni

+BiKNiα
1/2
Ni

)sNi

+2[(ANi +BiKNi)cNi − ci]
>Piα

−1/2
i (ANiα

1/2
Ni

+BiKNiα
1/2
Ni

)sNi

+[(ANi +BiKNi)cNi − ci]
>Piα

−1/2
i [(ANi +BiKNi)cNi − ci]≤ α

1/2
i , ∀ j ∈Ni, sNi 3 s>Ni

Pi jsNi ≤ 1.

(18)

ww�
∑

j∈Ni

λi j

[
Pi j 0
0 −1

]
−

[
(ANiα

1/2
Ni

+BiKNiα
1/2
Ni

)>Piα
−1/2
i (ANiα

1/2
Ni

+BiKNiα
1/2
Ni

)

[(ANi +BiKNi)cNi − ci]
>Piα

−1/2
i (ANiα

1/2
Ni

+BiKNiα
1/2
Ni

)

(ANiα
1/2
Ni

+BiKNiα
1/2
Ni

)>Piα
−1/2
i [(ANi +BiKNi)cNi − ci]

[(ANi +BiKNi)cNi − ci]
>Piα

−1/2
i [(ANi +BiKNi)cNi − ci]−α

1/2
i

]
≥ 0.

(19)

~w� ∑
j∈Ni

λi jPi j 0

0 α
1/2
i − ∑

j∈Ni

λi j

−[(ANiα
1/2
Ni

+BiKNiα
1/2
Ni

)>

(ANi +BiKNi)cNi − ci]
>

]
Piα
−1/2
i

[
(ANiα

1/2
Ni

+BiKNiα
1/2
Ni

) [(ANi +BiKNi)cNi − ci]
]
≥ 0.

(20)
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