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Abstract: Inspired by some insightful results on the delay-independent stability of discrete-time
systems with time-varying delays, in this work we study the arbitrary switching stability for
some classes of discrete-time switched systems whose dynamic matrices are in block companion
form. We start from the special family of block companion matrices whose first block-row is made
of permutations of nonnegative matrices, deriving a simple necessary and sufficient condition
for its arbitrary switching stability. Then we relax both these assumptions, at the expense of
introducing some conservatism. Some consequences on the computation of the Joint Spectral
Radius for the aforementioned families of matrices are illustrated.
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1. INTRODUCTION

During the last decades an intensive research effort has
been devoted to the stability analysis of dynamical sys-
tems. While the stability of linear time-invariant sys-
tems is a classic and relatively simple problem, for which
long standing results are available, huge difficulties arise
when time-varying systems or systems with time-delays
are considered. In those cases, necessary and sufficient
conditions are either not available or generally intractable
from a computational viewpoint, and conservative results
are often investigated. Interestingly enough, a remark-
able simplification takes place when positive systems are
considered. This has proven influential in linear delay
systems of various classes (see e.g. Kerscher and Nagel
(1984); Haddad and Chellaboina (2004); Liu et al. (2009,
2010)) and also for switched systems (see Blanchini et al.
(2015) and references therein). Moreover, the so called
comparison approach has provided useful results to export
to non positive systems the aforementioned favourable
properties, although at the expense of introducing some
conservatism. In this work we proceed a step forward in
this direction: first of all, we discuss how existing results for
positive delay systems naturally yield an interesting result
on the stability of discrete-time switched systems in block
companion form, for which the arbitrary switching stabil-
ity becomes a relatively trivial task. Then, we show how
the positivity-based results for both delay and switched
systems of the aforementioned classes can be exported to
non positive systems of the same classes, yielding novel
sufficient stability conditions.

Namely, we will focus on the stability of discrete-time
switched systems described by:

x(k + 1) = Aσ(k)x(k) (1)

where σ is an arbitrary switching sequence taking values
in {1, . . . , p} such that at time k the matrix Aσ(k) ∈

Rmn×mn is taken from a family A = {A1, . . . ,Ap} of block
companion matrices, of the type

Aj =

!

""""#

Aj1 Aj2 · · · Ajm−1 Ajm
In 0 · · · 0 0
0 In · · · 0 0
...

...
. . .

...
...

0 0 · · · In 0

$

%%%%&
, j = 1, . . . , p, (2)

where Aji ∈ Rn×n for all i = 1, . . . ,m. Block companion
switched systems arise in both theoretical and practical
problems. For instance, they can serve as state-space
representations of linear switched ARX models, whose
estimation for control of large-scale systems is an active
research area (see e.g. Smarra et al. (2020) and references
therein). We will prove a number of stability results on this
class of switching systems, starting from the case in which
the first block row of Aj consists of permuting matrices,
then relaxing this assumption.

The starting point of our analysis comes from the fact
that system (1) with block companion Aj can be shown
equivalent, under some conditions, to the discrete-time
delay system

z(k + 1) =

m'

i=1

Miz(k − δi(k)) (3)

where δi(k) takes value in N0. The enabling property that
will be instrumental in our analysis is that for system
(3), in the special case of nonnegative Mi matrices, the
stability for all possible values of the time-varying delays
is equivalent to the stability for a fixed set of constant
delays.

The work is structured as follows. First, in Section 2, we
will discuss in some detail the stability properties of the
delay system (3), starting from the positive framework,
then relaxing this assumption to consider not necessarily
positive systems. Section 3 will relate the stability of
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switched systems in block companion form to the results
illustrated in Section 2, presenting the main contributions
of this work. Section 4 provides two numerical examples.
Conclusions and ideas for future work close the paper.

Notation. N0 is the set of nonnegative integers. R+ is
the set of nonnegative real numbers. Rn

+ is the nonnegative

orthant of Rn. Rm×n
+ is the cone of nonnegative m×n ma-

trices. In is the n× n identity matrix. Inequalities among
vectors and matrices of the same dimensions have to be
understood componentwise, i.e. M ≤ N if mij ≤ nij for all
i, j. In this sense, a nonnegative matrix M ∈ Rm×n

+ is also
denoted by M ≥ 0, where 0 is the matrix of appropriate
dimensions whose entries are all zero. σ(M) and ρ(M)
respectively denote the spectrum and the spectral radius
of a square matrix M , which is said to be Schur-stable if
σ(M) ⊂ {z ∈ C : |z| < 1} or, equivalently, if ρ(M) < 1.
For a set of matrices M = {M1, . . . ,Mp} the joint spectral
radius of M is defined and denoted as

ρ∗(M) = ρ∗(M1, . . . ,Mp) = lim
k→∞

max
B∈Mk

‖B‖1/k,

whereMk is the set of all products of length k (allowing for
repetitions) of matrices in M. Clearly, for a single matrix
M , ρ∗(M) = ρ(M). See Jungers (2009) for further details.

2. THE ENABLING RESULTS ON DELAY SYSTEMS

Consider a discrete-time delay system governed by the
difference equation:

z(k + 1) =

m'

i=1

Miz(k − δi(k)), k ≥ 0,

z(k) = φ(k), k ∈ [−δ, 0],

(4)

where δi(k) is a time-varying delay with integer values in
[0, δ], z(k) ∈ Rn is the state trajectory at time k and φ is
the initial state function. Since the focus of our work is on
stability, we do not model input and output functions to
avoid unnecessary details.

It is instrumental to note that the trivial case of constant
delays δi(k) = δi ∈ N0, with 0 ≤ δi ≤ δ can be rewritten
as

z(k + 1) =

δ'

j=0

M̃jz(k − j), k ≥ 0, (5)

where M̃j =
(

i∈Ij
Mi, with Ij = {i : δi = j} accounting

for possibly multiple delays with value j (note that Ij can
be empty). It is clear that (5) admits an equivalent delay-
free state-space representation

x(k + 1) = Ax(k) (6)

where x(k) =
)
zT (k) zT (k − 1) · · · zT (k − δ)

*T
and

A =

!

""""#

M̃0 M̃1 · · · M̃δ−1 M̃δ

In 0 · · · 0 0
0 In · · · 0 0
...

...
. . .

...
...

0 0 · · · In 0

$

%%%%&
(7)

which allows to conclude that the stability of a discrete-
time delay system is a trivial question when constant
delays are involved (i.e. ρ(A) < 1 is a necessary and
sufficient condition for the exponential stability).

This explains why most of the literature has focused on
the general case of time-varying delays (4), for which
the stability analysis is far from being trivial. In this
respect, the literature has mainly investigated Lyapunov
approaches, yielding LMIs of growing complexity in order
to reduce conservatism. Some notable contributions can
be found in: Gao and Chen (2007); Zhu and Yang (2008);
Seuret et al. (2015).

A truly remarkable simplification is achieved if system (4)
is positive, i.e. if nonnegative initial conditions (and non-
negative input, if modelled) can only produce nonnegative
state at all time instants. This definition is trivially satis-
fied checking the system matrices, see Liu et al. (2009).

Lemma 1. The delay system (4) is positive if and only if
Mi is componentwise nonnegative (i.e. Mi ≥ 0) for all
i = 1, . . . ,m.

Then, if positivity is satisfied, checking the asymptotic
stability of (4) is very simple, and a single check ensures
that the system is delay-independent stable, i.e. is stable
for all possible time-varying values of the delays δi(k), as
shown in Liu et al. (2009).

Theorem 2. The delay system (4), with Mi ≥ 0 for all i,
is delay-independent asymptotically stable if and only if
ρ(
(m

i=1 Mi) < 1.

Remark 3. Note that the theorem states that the delay-
independent stability can be verified checking the zero-
valued delays stability (just substitute δi(k) ≡ 0 in (4)),
but this check is only the simplest way to say that the
system is delay-independent stable if and only if it is stable
for a given set of constant values of the delays. We will use
this equivalence later in the work. We also note that the
delay-independent stability is exponential for all possible
constant delays, as shown in Liu and Lam (2013).

Now consider the special case of constant delays described
by (5). Then the previous result implies that, if the system

is positive (M̃j ≥ 0 for all j), its exponential stability is

simply tested verifying that ρ(
(δ

j=0 M̃j) < 1. Moreover,

since the stability of (5) is equivalent to that of its
augmented state-space representation (6)–(7), we easily
infer the following result.

Lemma 4. Consider p nonnegative n × n matrices Mi.
Then, the following result holds:

ρ

+

,,,,-

!

""""#

M1 M2 · · · Mp−1 Mp

In 0 · · · 0 0
0 In · · · 0 0
...

...
. . .

...
...

0 0 · · · In 0

$

%%%%&

.

////0
< 1 ⇐⇒ ρ

1
p'

i=1

Mi

2
< 1

(8)

Before deriving the main results of this work, presented in
the next Section, we highlight the fact that a recently de-
veloped technique allows to export to non positive systems
stability results that only hold for positive ones, although
at the expense of introducing some conservatism. The
general idea is to associate to a given non positive system
an augmented positive representation whose state (and
output, if modelled) trajectories always upper bound those
of the original system. This method of analysis, which is
described in the literature as the “Comparison principle”
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(see e.g. Niculescu (2001)), has been systematically imple-
mented for a number of different classes of delay systems
by means of the Internally Positive Representation (IPR)
technique, see Conte et al. (2017); De Iuliis et al. (2017,
2019a,b, 2020a,b).

Avoiding unnecessary details which can be found in the
referenced works, the IPR method can be readily applied
to the class of systems described by (4) defining the
following positive representations of a vector v ∈ Rn and
a matrix M ∈ Rn×n:

π(v) =

3
v+

v−

4
, Π(M) =

3
M+ M−

M− M+

4
, (9)

where v+ denotes the componentwise positive part of v,
i.e. v+i = max(0, vi), and v− denotes its componentwise
negative part, i.e. v−i = max(0,−vi). The same can be
said for M+ and M−. Notice that π(v) and Π(M) are
positive (nonnegative, actually) representations of twice
the dimensions of v and M . Moreover, v = v+ − v− and
|v| = v+ + v− (and the same holds for M and |M |).
Noteworthy, v can be obtained back from π(v) simply
defining the backwards operator ∆n = [In − In], yielding
v = ∆nπ(v), and Mv = ∆nΠ(M)π(v).

With these definitions in mind, it is easy to show that a
simple IPR for system (4) is the following:

Z(k + 1) =

m'

i=1

Π(Mi)Z(k − δi(k)), k ≥ 0,

Z(k) = π(φ(k)), k ∈ [−δ, 0],

(10)

The proof that (10) is a valid IPR for (4) consists of
showing that the original system state trajectory z(k), for
a given initial condition φ can be obtained from the state
trajectory Z(k) once started from π(φ), at every time step.
We omit for brevity this straightforward proof, which is
on the lines of that given for Theorem 6 in De Iuliis et al.
(2017) and allows to conclude that z(k) = ∆nZ(k) for all
k ≥ −δ.

Now, the following result is the core point of this section in
order to export to non positive systems the strong delay-
independent stability criterion of Theorem 2.

Lemma 5. The asymptotic stability of the IPR (10) im-
plies the asymptotic stability of the original system (4).

Proof. The result is a simple consequence of the fact that
the state trajectory of the IPR always dominates the state
trajectory of the original system, since:

z(k) = ∆nZ(k) =⇒ ‖z(k)‖ ≤ ‖∆n‖‖Z(k)‖. (11)

Then, if the IPR is (asymptotically) stable, the original
system is stable as well. □

Clearly, the previous result only gives a sufficient stability
condition, since it can happen that the IPR of a stable
system is not stable. This is due to the fact that Π(M)
properly contains the spectrum of M , but it also contains
the spectrum of |M | (see De Iuliis et al. (2019b) for
details), i.e.

σ(Π(M)) = σ(M+ −M−) ∪ σ(M+ +M−) =

= σ(M) ∪ σ(|M |), (12)

and since ρ(M) ≤ ρ(|M |), one readily has that the added
spectrum can consist of unstable modes.

Nevertheless, one can apply Theorem 2 to the IPR (10)
and if the latter is proved stable, the original system (4)
is stable as well. This leads to the following result, which
concludes the section.

Theorem 6. The delay system (4) is delay-independent
asymptotically stable if ρ(

(m
i=1 |Mi|) < 1.

Proof. The proof consists of noting that Theorem 2 gives
a necessary and sufficient stability condition for the IPR
(10) which requires to check that ρ(

(m
i=1 Π(Mi)) < 1. But

since

σ

1
m'

i=1

Π(Mi)

2
= σ

1
m'

i=1

Mi

2
∪ σ

1
m'

i=1

|Mi|
2

(13)

it would suffice to verify that both ρ(
(m

i=1 Mi) < 1 and
ρ(
(m

i=1 |Mi|) < 1 in order to prove the stability of the IPR,
which in turn implies the stability of the original system
(4). Nevertheless, for matrices P ∈ Rn×n and Q ∈ Rn×n,
such that |P | ≤ Q, it holds that (see Meyer (2000)):

ρ(P ) ≤ ρ(|P |) ≤ ρ(Q). (14)

Applying (14) with P =
(m

i=1 Mi and Q =
(m

i=1 |Mi| one
has:

ρ

1
m'

i=1

Mi

2
≤ ρ

155555

m'

i=1

Mi

55555

2
≤ ρ

1
m'

i=1

|Mi|
2
, (15)

and this means that ρ(
(m

i=1 |Mi|) < 1 is a sufficient
condition for the delay-independent asymptotic stability
of (4), as stated in the theorem. □

Summing up, in this section we introduced the class of
discrete-time systems with time-varying delays (4), illus-
trating how its stability analysis is difficult, in general,
except for the case of constant delays, which can be
expressed as a delay-free augmented system (6). Never-
theless, a huge simplification occurs when positive delay
systems are considered, i.e. systems as in (4) satisfying
Mi ≥ 0 for all i. In this case, the stability is independent
of delays, i.e. if the system is stable for given fixed values
of the delays, it is stable for all their values, possibly time-
varying. The result is readily checked considering the case
of zero-valued delays, yielding the necessary and sufficient
stability condition of Theorem 2. Finally, we have shown
how this strong result can be exported also to non positive
systems, at the expense of losing necessity, via the IPR
technique. The outcome of this procedure is Theorem 6,
which gives a sufficient condition for the delay-independent
stability of (4) with no positivity constraint.

3. STABILITY OF BLOCK COMPANION SWITCHED
SYSTEMS

In this section we consider the class of discrete-time
switched systems presented in the Introduction, and de-
scribed by (1)–(2).

The aim of the section is to unveil a number of peculiar
stability results holding for this class of systems, starting
from some special cases and then moving towards more
general results.

3.1 First block permutations

We start addressing the special case in which the first block
row of Aj consists, for each j, of a permutation (with
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no repetitions), of some matrices M1, . . . ,Mm. Defining
P as the set of all possible permutations of {1, . . . ,m},
we denote the particular permutation (among the possible
m!) selected at time k with Pσ(k), and the single element

with Pσ(k)
i , for i = 1, . . . ,m. Then, Aσ(k) switches among

the m! matrices of the family A = {A1, . . . ,Am!} and the
first block row of each Aj contains the matrices Aji = MPj

i

for i = 1, . . . ,m.

Let us present a simple example in order to clarify the
notation.

Example 7. Consider m = 3 matrices M1,M2,M3 ∈
Rn×n. The set of the 3! possible permutations of {1, 2, 3} is
P = {P1,P2,P3, . . . ,P6} = {{1, 2, 3}}, {1, 3, 2}, {2, 1, 3},
{2, 3, 1}, {3, 1, 2}, {3, 2, 1}}. At each time k, one of the 6
permutations is possible. For example, consider at time
k = 2, σ(2) = 3, such that P3 = {2, 1, 3} is selected.
Then, P3

1 = 2, P3
2 = 1, and P3

3 = 3. In this case, the first
row of the A3 matrix will be made of A3i = MP3

i
, yielding:

A3 =

6
M2 M1 M3

In 0 0
0 In 0

7
. (16)

At this point, bearing in mind the notation, the following
result is readily obtained.

Theorem 8. Consider a switched system as in (1)–(2),
where Aσ(k) is arbitrarily taken from the family A =
{A1, . . . ,Am!} of matrices whose first block-row is a per-
mutation of m nonnegative matrices M = {M1, . . . ,Mm},
i.e. Aji = MPj

i
. Then, the switched system is asymptoti-

cally stable for all possible switching sequences if and only
if ρ(

(m
i=1 Mi) < 1.

Proof. The result comes from the fact that, as detailed
for the constant delay case (6)–(7), the first (block) state
component of the switched system under examination, i.e.
x1(k) ∈ Rn is described at every time step k by the delay
system:

z(k + 1) =

m'

i=1

Miz(k − P̃σ(k)
i ), k > 0, (17)

with x1(k) = z(k) and P̃σ(k)
i = Pσ(k)

i − 1. Since
Mi is nonnegative for all i, system (17) is a positive

delay system with time-varying delays P̃σ(k)
i with val-

ues in {0, 1, . . . ,m − 1}. Then, by Theorem 2 we know
that it is stable for all possible values of the delays
if and only if ρ(

(m
i=1 Mi) < 1, i.e. z(k) → 0 as

k → ∞ for any initial condition φ, and since x(k) =)
zT (k) zT (k − 1) · · · zT (k −m+ 1)

*T
one trivially has

that x(k) → 0 as k → ∞ for any x(0) ∈ Rmn. □
Remark 1. It is rather clear from the proof above that
the case of permuting matrices is not the most general
class of switching block companion systems which can
be equivalently mapped with delay systems as in (4),
since permutations (with no repetitions) do not cover
the case of coinciding delays. Due to space limitation,
the corresponding case of block companion systems with
broader first row combinations is left to future work.

It is well known that testing the arbitrary switching
stability for a discrete-time switched system as in (1) is

equivalent to verifying that the joint spectral radius of the
family A = {A1, . . . ,Ap} is less than one (Jungers (2009)),
a generally NP-hard problem. Nevertheless, for the class
of nonnegative Aj matrices (not only in block companion
form), some interesting relaxations have been proposed.
Blondel and Nesterov (2005) introduced some noteworthy
inequalities. The simplest of them is:

1

p
ρ

1
p'

i=1

Ai

2
≤ ρ∗(A) ≤ ρ

1
p'

i=1

Ai

2
(18)

while an arbitrary approximating inequality is formulated
resorting to Kronecker lifting:

1

p1/k
ρ1/k

1
p'

i=1

A[k]
i

2
≤ ρ∗(A) ≤ ρ1/k

1
p'

i=1

A[k]
i

2
(19)

where [k] denotes the k-th order Kronecker power of a
matrix, and the right inequality converges to the equality
as k → ∞.

It is clear that, while the aforementioned approximation
holds for general nonnegative matrices, its computational
burden increases dramatically with the required accuracy.
In this respect, the simplification introduced by Theorem
8, even though restricted to the special class of block
companion matrices with permuting entries, is noteworthy,
as it directly implicates the following Corollary.

Corollary 9. Consider a set of nonnegative matrices M =
{M1, . . . ,Mm}, and the family of block companion matri-
ces A = {A1, . . . ,Am!} whose first block-row is a permu-
tation of M, i.e. Aji = MPj

i
. Then the following result

holds:

ρ∗(A) < 1 ⇐⇒ ρ

1
m'

i=1

Mi

2
< 1. (20)

3.2 Removing the positivity assumption

Bearing in mind Theorem 6, the results of Theorem
8 and Corollary 9 can easily be restated (introducing
conservatism) for not necessarily positive systems (i.e.
arbitrary set of matrices {M1, . . . ,Mm}).
In this case, denoting A the family of block companion
matrices satisfying the conditions of the aforementioned
Theorem and Corollary, we can easily state the following
result.

Theorem 10. Consider a set of arbitrary matrices M =
{M1, . . . ,Mm} and the family A of block companion
matrices built from M under the conditions of Theorem
8. Then, the following result holds:

ρ

1
m'

i=1

|Mi|
2

< 1 =⇒ ρ∗(A) < 1. (21)

3.3 A more general result

It can be surely conceded that the previously illustrated
results concern very special classes of switched systems.
This restriction, however, should not be unexpected, since
the arbitrary switching stability is known to be a very
difficult problem in the general case. Nevertheless, in
order to extend the previous results to a broader class
of switched systems, we note that the comparison method
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readily gives us an idea to remove the special combinatorial
structure of Theorem 8.

One just needs to note that, for nonnegative matrices P
and Q such that P ≤ Q it follows that ρ(P ) ≤ ρ(Q)
and clearly x(k + 1) = Px(k) is upper-bounded by x(k +
1) = Qx(k). For switched systems, we readily have that
if Pk ≤ Qk for all k, the trajectory of x(k + 1) = Qkx(k)
always dominates that of x(k+1) = Pkx(k). This trivially
leads to the following Theorem.

Theorem 11. Consider a switched system x(k + 1) =
Akx(k) with nonnegative block companion Ak as in (2),
consisting of possibly distinct blocks Aki

at every time
instant. If there exist nonnegative matrices M1, . . . ,Mm

such that ρ(
(m

i=1 Mi) < 1, and the associated family Ā
as in Theorem 8 such that at every k there exists a Āj in
Ā with Ak ≤ Āj , then the system x(k + 1) = Akx(k) is
asymptotically stable.

Let us present a simple example in order to illustrate the
previous result.

Example 12. Consider a switched system x(k + 1) =
Akx(k) where

Ak =

3
Ak1

Ak2

In 0

4
≥ 0, ∀k. (22)

If there exist nonnegative M1,M2 such that, for all k,
Ak1 ≤ Mi and Ak2 ≤ Mj , i ∕= j, then ρ(M1 + M2) <
1 ensures the asymptotic stability of the system under
examination. Indeed, in this case the family Ā associated
to M1,M2 is simply the family {Ā1, Ā2} built as in
Theorem 8, with:

Ā1 =

3
M1 M2

In 0

4
, Ā2 =

3
M2 M1

In 0

4
, (23)

and x(k+1) = Akx(k) is asymptotically stable because at
each time k it holds Ak ≤ Āj , for at least one j = 1, 2.

Remark 13. The previous result can easily be extended
to not necessarily positive systems (i.e. arbitrary block
companion Ak), just requiring that |Ak| ≤ Āj in Theorem
11.

We conclude this section noting that for companion non-
negative matrices with scalar blocks, i.e. the first row of (2)
is scalar with Aki = aki ∈ R+, some interesting facts have
been unveiled in Nesterov and Protasov (2013), reducing
the arbitrary switching stability criterion to

(m
i=1 aki < 1

for all k = 1, . . . , p, and proving that the maximum growth
rate of x(k) is obtained staying on the Ak̄ system with
largest spectral radius. The result does not require special
structures (permutations etc.) on the ak = (ak1 , . . . , akm)
sequences, but is derived resorting to successive rank-one
corrections of a common matrix in a given uncertainty
set. Clearly, the generalization of this result to the class of
block companion matrices considered in this work is not
trivial, since multiple-rank corrections are involved.

4. NUMERICAL EXAMPLES

4.1 Example 1

We start from an easy example which illustrates Theorem
8 and Corollary 9. Consider the switched system x(k +
1) = Aσ(k)x(k), where Aσ(k) switches in the family A of

the 4! = 24 matrices Aj whose first block-row is made of all
the permutations of the following nonnegative matrices:

M1 =

6
0.16 0.04 0.02
0.10 0.10 0.08
0.08 0.09 0.10

7
, M2 =

6
0.10 0.20 0
0.16 0.10 0
0 0.08 0.24

7
,

M3 =

6
0.06 0.01 0.06
0.20 0.09 0.08
0.23 0.04 0.06

7
, M4 =

6
0.04 0.05 0.01
0.01 0.09 0.10
0.08 0.01 0.21

7
,

(24)
i.e.

Aj =

!

"#

Aj1 Aj2 Aj3 Aj4
I3 0 0 0
0 I3 0 0
0 0 I3 0

$

%& j = 1, . . . , 4!, (25)

with Aji = MPj
i
, see Example 7 (Sect. 3) for clarifications.

Then, we can prove that the switching system is stable
for all possible switching sequences, since ρ(

(4
i=1 Mi) =

0.9974 < 1, allowing to conclude that ρ∗(A) < 1.

Notice that a similar conclusion can not be attained with
the Joint Spectral Radius toolbox for MATLAB (using
standard settings), see Vankeerberghen et al. (2014), which
after 34 minutes of computations on an Intel Core i5 460M
returns the following bounds: 0.9990 ≤ ρ∗(A) ≤ 1.0261.

4.2 Example 2

To conclude, we provide a simple example for Theorem 11,
applied to an arbitrary (not positive) switched system (see
Remark 13).

Consider the system x(k + 1) = Akx(k), where

Ak =

3
Ak1

Ak2

I2 0

4
, (26)

with:

Ak1
=

!

"#
−0.1 sin

8π
2
k
9

0.3 cos
8π
2
k
9

−0.3 cos
8π
2
k
9

0.1 sin
8π
2
k
9

$

%& ,

Ak2 =

!

"#
0.2 cos

8π
2
k
9

−0.05

−0.1 −0.2 cos
8π
2
k
9

$

%& .

(27)

Then, the nonnegative matrices M1,M2:

M1 =

3
0.2 0.1
0.1 0.2

4
, M2 =

3
0.15 0.3
0.3 0.15

4
, (28)

such that ρ(M1+M2) = 0.75 < 1, can be used to construct
the “dominating” family Ā = {Ā1, Ā2}, built with the two
permutations of M1 and M2 on the first block-row:

Ā1 =

3
M1 M2

I2 0

4
, Ā2 =

3
M2 M1

I2 0

4
. (29)

Since:
|Ak1 | ≤ M1

|Ak2 | ≤ M2

:
i.e. |Ak| ≤ Ā1, for k = 1, 3, 5, . . . (30)

|Ak1 | ≤ M2

|Ak2 | ≤ M1

:
i.e. |Ak| ≤ Ā2, for k = 2, 4, 6, . . . (31)

we can conclude that the system is asymptotically stable,
as confirmed computing the joint spectral radius of the
family A = {Ak}: ρ∗(A) = 0.6276.
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5. CONCLUSION AND FUTURE WORK

This work, taking inspiration from some recent results on
discrete-time positive delay systems, has illustrated how
the arbitrary switching stability can easily be studied for
some classes of switched systems in block companion form.
Starting from positive systems whose first block-row has a
special combinatorial structure, we removed both assump-
tions (even though at the expense of some conservatism).
The consequences on the problem of computing the joint
spectral radius of matrices in block companion form have
been highlighted, describing how a generally hard problem
(ρ∗ < 1?) becomes very simple in the aforementioned
cases.

For what concerns future work, we note that recently
introduced switched identification methods via machine
learning techniques naturally provide state-space models
in block companion form, see Smarra et al. (2020), Smarra
and D’Innocenzo (2020), whose stability analysis is a
generally difficult problem, particularly when large scale
systems with several operating modes are estimated. The
results of this work are directly applicable for the stability
analysis of such models.
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