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Abstract: This work presents a novel approach to calculate classification observability using a
supervised autoencoder (SAE) neural network (NN) for classification. This metric is based on a
minimal distance between every two classes in the latent space defined by the hidden layers of
the auto-encoder. Quantification of classification observability is required to address whether the
available sensors in a process are sufficient to observe certain outputs (phenomenon) and which
additional measurements are to be included in the dataset to improve classification accuracy. The
efficacy of the proposed method is illustrated through case-studies for the Tennessee Eastman
Benchmark Process.
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1. INTRODUCTION

Identification of inputs that are highly informative and
well correlated to an output of interest, e.g. productiv-
ity of a process, is crucial for efficient chemical process
plant operation, manufacturing flexibility, improved sys-
tem knowledge and operational robustness with respect to
unknown disturbances. An input design space is defined
as “the multidimensional combination and interaction of
input variables and process parameters” Laky et al. (2019),
that assures quality of product within specified operational
constraints. Classification of the input variables’ space
into distinct regions that result in correspondingly distinct
output classes is often challenging due to the proximity
among input values that correspond to different classes
combined with the presence of measurement noise. We
focus on classification of different regions of an economic
profit function for a chemical process with respect to
process inputs using a Supervised Autoencoder Neural
Networks (SAE-NNs). SAE-NNs are Autoencoders (AE)
that predicts both reconstructed inputs as well as outputs.
Previously, SAE-NNs or its variants have been used for
image classification and other regression tasks in a semi-
supervised setting i.e. making use of both labelled and
unlabelled data (Epstein and Meir (2019); Seeger (2001)).
To accomplish this task the following objective function is
minimized with respect to the weights of the SAE-NN:
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Program

lSAE =

N∑
s=1

Lsr(ys, ŷs) + λ1

N∑
i=1

Lsp(xs, x̂s) (1)

The addition of the input reconstruction loss Lsr (first
term in Equation (1)) to the supervised learning related
term Lsp for a sample s (second term in Equation (1)) in
the objective function has been a subject of debate as to
why the input reconstruction helps in better classification
Rigollet (2007). The focus of this work is to quantify a
robust lower bound on classification observability (Cobs)
of output classes from inputs using SAE-NNs models. The
ability of classifying regions of the input space that result
in corresponding classes of a process output, e.g. process
productivity, depends on the degree of observability of
the output from the measured process inputs. Quantify-
ing observability of classification task can help answering
several important industrial questions such as: are the
available sensors sufficient to provide acceptable classifi-
cation accuracy? which sensors are more informative for
the classification task? It should be noticed that observ-
ability cannot be assessed by standard state observability
methods since a state model is assumed to be unavailable.
Hence, the novelty of the current proposed method is
in assessing observability directly from input-output data
that to our knowledge has not been thoroughly researched
in the literature.

The development of an SAE-NN model to be used for
classification involves several steps: i- feeding the inputs
to the encoder, ii- feeding the outputs from the encoder to
a fully connected layer and iii- feeding the outputs from
the fully connected layer a to classification layer consisting
of softmax functions. iv- jointly training the autoencoder
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and classifier. Due to the data projection (compression)
operation achieved by the encoder, the outputs from the
encoder are referred to as latent variables. The difficulty
in observing the output classes from input data is due to
the proximity/overlap among sets of input data, model
structure error and noise. Regarding overlap, the support
of the encoder functions corresponding to different output
classes define regions in the latent variable space (output
space of the encoder) that may strongly overlap with each
other. This overlap may cause miss-classification of new
samples, i.e. samples that were not used for training. In
this study we perform numerical evaluation of the overlap
between regions in the latent space that correspond to dif-
ferent classes and observability of the classes is quantified
from the degree of overlap. The overlap is estimated for any
two input data points xi and xj ∈ Rdx based on a distance
dij between their projections in the latent variable space
z ∈ Rdz where points xi and xj corresponds to different
classes (dx > dz). If these distances are large enough
as compared to certain threshold dij (robust observabil-
ity distance measure) related to the noise in the input
measurements, the classes are considered to be observable
while if the distance is smaller than the threshold the
system is considered unobservable as follows:

d = ||zi − zj ||22 =

{
observable, if d > dij .

non-observable, otherwise.
(2)

where points zi and zj are projections of xi and xj in the
latent space that corresponds to different output classes.

Quantifying the observability in the latent variable space
capitalizes on the lower dimensions of this space as com-
pared to the original input space thus drastically simpli-
fying the calculation.

It is also investigated that beyond its use for assessing clas-
sification observability, the degree of classification observ-
ability Cobs can be further enhanced by discarding inputs
that are not informative for classification (Agarwal and
Budman (2019); Agarwal et al. (2020)) and contribute to
overlap between regions corresponding to different output
classes and is not presented for brevity. The discarded
inputs do not contribute to the classification task and
instead they decrease the classification accuracy due to
reducing distinction between classes (creating confusion)
and overfitting. Eliminating sensors that do not contribute
significantly to classification may help to reduce cost
and to reduce miss-classification resulting from potentially
faulty sensors/ irrelevant sensors.

Following the above, the three main contributions of this
work: i) Assessment of the use of the reconstruction error
for training the classification model; ii) Derivation of a ro-
bust observability distance measure (RODM) to evaluate
the degree of classification observability Cobs; iii) Identifi-
cation of input variables contributing to the overlap. The
proposed contributions are illustrated through case-studies
of the Tennessee Eastman Benchmark Process.

The paper is organized as follows: Section 2 provides a
brief review on Autoencoder NNs. Section 3 provides the
problem description and the TEP case-study. The two
algorithms used for quantifying a robust lower bound

on observability are presented in Section 4. Results and
discussions on the case-study are shown in Section 5
followed by concluding remarks in Section 6.
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Fig. 1. Traditional single layer Autoencoder Neural Net-
work (AE-NN)

2. PRELIMINARIES

This section briefly reviews the fundamentals of an Au-
toencoder (AE-NNs) and a Supervised Autoencoder Neu-
ral Networks (SAE-NNs) models.

2.1 Autoencoder Neural Networks (AE-NNs)

A traditional AE-NN is a neural network model composed
of two parts, encoder and decoder, as shown in Figure
1. An AE is trained in an unsupervised fashion to extract
underlying patterns in the data and to facilitate non-linear
dimensionality reduction. The encoder is trained so as to
compress the input data onto a reduced latent space and
the decoder uncompresses back the hidden layer outputs
into the reconstructed inputs. Let consider the input to an
AE is a vector x ∈ Rdx , then the operation performed by
the encoder for a single hidden layer between the input
variables to the latent space z ∈ Rdz variables (latent
variables) can be represented as follows:

z = fe(Wex + be) (3)

where fe is a chosen non-linear activation function for the
encoder, We ∈ Rdz×dx is an encoder weight matrix and
be ∈ Rdz is a bias vector. The decoder reconstructs back
the inputs from the feature or latent space z ∈ Rdz as per
the following operation follows:

x̂ = fd(Wdz + bd) (4)

where fd is a chosen activation function for the decoder,
Wd ∈ Rdx×dz and bd ∈ Rdx is a decoder weight matrix
and a bias vector respectively. The ‘tanh’ function is used
for both transforming the inputs into the latent variables
and for reconstructing the inputs from the latent variables
in this work. The AE-NN is trained based on the following
minimization problem:

lSE(x,WdWex) =
1

2N
||x− x̂||22 =

1

2N

N∑
s=1

||xs − x̂s||22

(5)

where N is the number of samples.
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Fig. 2. Schematic of a single layer Supervised Autoencoder
Neural Network (SAE-NN)

2.2 Supervised Autoencoder Classification Neural Networks
(SAE-NNs)

The Supervised Autoencoder Neural Network (SAE-NN)
model, shown in Figure 2, is trained based on the mini-
mization of a combination of the reconstruction loss func-
tion and the supervised classification loss corresponding to
the first and second terms in (Equation (9)) respectively.
The reconstruction loss function in Equation (1 and 9)
is ensuring that the calculated latent variables are able
to reconstruct the input data with good accuracy. The
goal is to learn a function that predicts the class labels
in one-hot encoded form y ∈ Rm from inputs x ∈ Rdx .
The encoder operation for a single hidden layer between
the input variables to the latent variables z ∈ Rdz is
represented as follows:

z = fe(Wex + be) (6)

The latent variables are used both to predict the class
labels and reconstruct inputs x as follows:

x̂ = fd(Wdz + bd) (7)

ŷ = fc(Wcz + bc) (8)

where fc is a non-linear activation function for the output
layer. Wc ∈ Rm×dz and bc ∈ Rm are output weight matrix
and bias vector respectively. For training the SAE, the
following loss function is minimized:

lSAE = λ1

N∑
s=1

Lsr(xs,WdWexs) +

N∑
s=1

Lsp(WcWexs,ys)

=
λ1

N

N∑
s=1

||xs − x̂s||22 +
1

N

N∑
s=1

m∑
c=1

−ys,clog(ps,c)

=
1

N

[
λ1

N∑
i=1

||xs − x̂s||22 +

N∑
s=1

m∑
c=1

−ys,clog(ps,c)

]
(9)

ps,c =
e( ˆys,c)∑m
c=1 e

( ˆys,c)
(10)

where λ1 is the weight for the reconstruction loss Lr, m is
the number of classes, ys,c is a binary indicator (0 or 1), 1
if class label c is the correct classification for observation
s, ˆys,c is the non-normalized log probabilities and ps,c is
the predicted probability for a sample s of class c.
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Fig. 3. Case 2: Projection of input space in 2 dimensions
using TSNE for overlapping case

3. PROBLEM DESCRIPTION

The TEP involves several unit operations including a
vapor-liquid separator, a reactor, stripper, a recycle com-
pressor and a condenser. Four gaseous reactants (A, B, C
and D) form two liquid products streams (G and H) and
a by-product (F). Although several TEP simulators are
available, in this work the one developed by Larsson et al.
(2001) was used. The original controller settings were mod-
ified and different disturbances, i.e. referred to as faults in
the TEP simulator, were introduced in order to generate
different ranges of values of process profit since the goal in
the current study is to classify the inputs according to their
resulting process profit. The simulator involves 53 input
variables of which 3 manipulated variables (Compressor
Recycle Valve (XMV(5)), Stripper Steam Valve (XMV(9))
and Agitator Speed XMV(12)) were discarded initially
(number of input variables = 50). Since the process profit
for this case study is determined solely by the operating
costs of the plant, this profit will be referred to as cost of
productivity (COP).

COP ($/hr) High Profit Intermediate Low Profit

Case 1 > 89.6 89.6− 142.6 < 142.6
Case 2 > 108 108− 130 < 130

Table 1. Profit-based defined classes for COP

Also, since the boundaries between classes corresponding
to different ranges of COP values can be chosen arbitrarily,
we examine two different cases that are defined in Table
1. These cases differ in the overlap between classes. This
overlap is calculated from the training data based on sim-
ulated frequency of occurrences of COP values as shown
in Figure 4. As shown in this figure Case 1 corresponds to
very low overlap while case 2 results in significant overlap
between classes. The overlap is illustrated by TSNE (t-
distributed Stochastic Neighbor Embedding, Maaten and
Hinton (2008)) projections of the input design space for
the high overlap in Figure 3.

A total of 8 datasets were generated, 1 normal operation
and 7 each involving one known fault (IDV(1)-IDV(7))
for a total simulation time of 800 hours, i.e. a 100-
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hour duration for each dataset. Each fault was activated
at the start of the corresponding 800-hour time period
and data samples were collected at a sampling rate of
100 samples/hour (total number of samples 8 × 104 per
dataset). Out of which 3 × 104 samples were considered
as training dataset and 1.5 × 104 samples as validation
dataset and testing dataset. Each of these datasets resulted
in various ranges of COP values, i.e. different classes (refer
Figure 4 and Table 1) to be identified by the SAE-NN
model.
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Fig. 4. Distribution of Cost Of Productivities (COP)

4. PROPOSED METHODOLOGY

The goal is to find an observability measure which is robust
to measurement noise in the input data. The proposed
algorithm is based on calculating a distance measure in
the latent space using SAE with respect to noisy inputs
using a boot-strapping approach. The two algorithms are
as follows:

(1) Algorithm 1 (Robust Observability Distance Measure
(RODM)) for the computation of the RODM (dij , i 6=
j).

(2) Algorithm 2 (Evaluation of degree of observability
Cobs) for the computation of a degree of observability
Cobs which is defined as the percentage of overlap
between points within a neighbourhood of distance
(dij , i 6= j) from each point, where i and j are points
in different class labels.

To compute the RODM dij , first a SAE-NN model is
trained on the training data collected from the process.
Subsequently a bootstrapping approach is used where the
inputs are perturbed around different operating regions
for R number of realizations of white-noise and the vari-
ances in the latent variables resulting from these input
perturbations are evaluated (refer Equations (11) and (12).
Finally, a distance measure is defined as the maximum of l2
norm of the variance of perturbations in latent variables
due to noisy inputs (refer Equation and (13)) across R
realizations (see Algorithm 1).

To calculate the degree of classification observability Cobs
(see Algorithm 2), we first evaluate pairwise Euclidean
distance matrix D ∈ RN×N where N is the number of
samples in the validation dataset. Afterwards, inter-class
samples that are closer than RODM (dij) are selected
(referred as Total percentage overlap (%TOv) in the
pseudo code Algorithm 2). Thereafter, the points which

Algorithm 1 Robust Observability Distance Measure
(RODM)

1: Train an SAE classification NN g(WcWex) using an
optimal weighting of the reconstruction and classifica-
tion loss-functions, where this weighting is found by
using a validation dataset.

2: Perturb the input variables, xl (l = 1, 2, . . . , dx) (mean
µxl

= 0; variance σ2
xl

), with input perturbations ∆xl.
Where ∆xl (l = 1, 2, . . . , dx) are independent normally
distributed (i.i.d) random variables that has mean
µ∆xl

= 0 and variance σ2
∆xl

for R uncorrelated realiza-

tions such that Signal-to-noise ratio (SNR)
σ2
xl

σ2
∆xl

= 10

is maintained.
3: Compute the latent feature vectors zk (k =

1, 2, . . . , dz) for R realizations of xl + ∆xl using the
trained SAE model.

4: Estimate the variances of the latent variables result-
ing from the introduced perturbations to the inputs
(noise) for R realizations in the latent space as follows:

V (∆ẑk) = E
[(

∆zk − E
(

∆zk

))(
∆zk − E

(
∆zk

))T]
(11)

∆zk =
(
g(We(xi + ∆xi))− g(Wexi)

)
(12)

where k = 1, 2, . . . , dz & E is an expectation operator.
5: Robust Observability Distance Measure (RODM) is

computed as the maximum of l2 norm of the estimated
variance of ∆z for R realizations as:

dij = max
{√

ˆV (∆z1) + ˆV (∆z2) + . . .+ ˆV (∆zk)
}
R

(13)

where i 6= j.

are correctly classified are discarded and the remaining
samples are used to evaluate the Total Classification
Percentage Overlap (%TCOv) as:

%TCOv =

∑
n(u) 6=l(u) unique(cov).length

ind.length

Finally the degree of observability Cobs is calculated as

Cobs = %Training Accuracy−%TCOv

The obtained Cobs is evaluated for the worst-case possible
using RODM and represents the lower bound on the degree
of observability i.e. new samples are expected to exhibit
equal or larger classification accuracy.

The evaluation of RODM (see Algorithm 1) not only helps
in the evaluation of degree of classification observability
Cobs but can also be used to define an extra term in the
objective function with explicitly determining the inter-
class distance as RODM in the latent space for achieving
higher testing accuracy.

5. RESULTS AND DISCUSSION

The following section presents the results of the applica-
tion of the algorithms of the previous section to the TEP
case-study. The advantage of adding the reconstruction
loss function Lr in Equation (9) is also assessed.
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Table 2. Degree of classification observability (Cobs) for Case 1 and Case 2

cov12 cov21 cov13 cov31 cov23 cov32 dij(i 6= j) % TCOv Cobs

Case 1 52 14 0 303 0 0 1.14 2.46% 95.28%
Case 2 4565 8 48 1931 0 1070 0.5168 43.84% 53.78%

Enhanced Classification Observability

Case 1 54 1 10 240 0 0 1.5818 2.02% 96.16%
Case 2 4542 7 74 774 0 969 0.8654 42.40% 54.47%
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Fig. 5. Confusion Matrix for Case 1 (Validation Data-set)
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5.1 Effect of Reconstruction Error Loss function on
classification accuracy

The first objective of the case study is to investigate
whether the addition of the reconstruction loss Lr term

to the supervised loss function Lp (see Equation (9)) for
training the classification AE-NN model helps to improve
classification. An SAE-NN with a single layer was trained
with different weights λ1 with a validation dataset. The
hyper-parameters including the weight multiplying the
reconstruction loss Lr term in Equation (9) and the dimen-
sion of the latent space z were chosen based on the highest
classification accuracy achieved on the validation set for
both cases 1 and 2. It can be observed in Table 3 that for
different dimensions of the latent space z, the validation
classification accuracy and test classification accuracy with
reconstruction loss function Lr was always higher than the
NN architecture without the reconstruction loss function
Lr.

5.2 Degree of Classification Observability (Cobs) for the
TEP problem

The degree of classification observability Cobs is calculated
according to Algorithms 1 and 2, presented in Section
4. First the RODM is calculated for both the cases i.e.
Case 1 and Case 2 using R = 1000 realizations of input
perturbations. It can be observed that RODM is larger
i.e dij = 1.14 for case 1 as compared to case 2 i.e.
dij = 0.5168 which indicates that case 1 has higher degree
of observability than case 2. The confusion matrix for Case
1 and the classification overlap (COv) matrix evaluated
using both Algorithm 1 and 2 are shown in Figures 5 and 6
respectively. The computation of COv matrix explains the
root cause for the miss-classification of samples. The num-
bers shown in coloured boxes of COv matrix represents the
number of samples that are miss-classified because of the
proximity between each two different regions. The numbers
shown below (in the brackets) shows the total number of
samples miss-classified. The degree of classification observ-
ability Cobs for Case 1 is:

Cobs = 97.74%− 2.46% = 95.28%

It can be seen that the Cobs (lower-bound) is smaller
than the validation data-set accuracy 95.5% (shown in the
right corner of Figure 5) and 97.5% for the test data-set
accuracy (see Table 2). The results for both Case 1 and
Case 2 are summarized in Table 2. The results corroborate
that Case 1 is easily separable than Case 2 i.e. the degree
of classification observability for Case 1 is much higher
than Case 2.

6. CONCLUSION

This paper presents a novel method to compute a robust
observability distance measure (RODM) and evaluate de-
gree of classification observability Cobs for a classification
problem based on noisy input data. The proposed method
first computes a distance metric such that two clusters
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Algorithm 2 Evaluation of degree of observability Cobs
1: Evaluate pairwise Euclidean distance matrix D ∈

RN×N
2: Determine the indices (indc, where c = 1,2,. . . ,m) of

samples corresponding to m different classes.
3: ind = {ind1, ind2, . . . ,indc}; t = 0
4: for i in number of classes (m) do
5: for j in number of classes (m) do
6: if i! = j then
7: t = t+ 1
8: for q in indi.length (samples of class i) do
9: for r in j1.length, where j1 = indj do

10: tovij = list() & covn(u)l(u) = list()
11: if D(ind i(q), ji(r)) < dij then
12: tovij .add = ji(r)
13: end if
14: end for
15: end for
16: end if
17: return n(t) = i
18: return l(t) = j
19: end for
20: end for
21: for i in m(m− 1) i.e. #overlapping regions (i 6= j) do
22: tovij = unique(tovij)
23: end for
24: tov = {tov12,tov13,. . .,tov1m,tov21,tov23,. . .,tovm(m−1)}
25: Total Percentage Overlap (% TOv) is determined by:

%TOv =

∑
i6=j unique(tov).length

ind.length
(14)

26: Total Classification Percentage Overlap (% TCOv) is
determined by taking SAE-NN output probabilities
pi,c,where c = (1, 2, . . . ,m) into account.

27: for u in m(m−1) i.e. #overlapping regions (i 6= j) do
28: for v in the length of tovn(u)l(u) do
29: if pv,l(u) > pv,l\l(u) then
30: covn(u)l(u).add = tov(u, v)
31: end if
32: end for
33: end for
34: cov = {cov12,cov13,. . .,cov1m,cov21,cov23,. . .,covm(m−1)}
35: Total Classification Percentage Overlap (% TCOv) is

determined by:

%TCOv =

∑
n(u)6=l(u) unique(cov).length

ind.length
(15)

Cobs = 100%− (%TCOv + (100%− Training

%Accuracy))

Cobs = %Training Accuracy−%TCOv (16)

of points belonging to different classes should be at least
distance dij (i 6= j) apart in the worst case-scenario where
i and j are points corresponding to different labels in
representation space for a good classification. The merit
of the method is that it can be used to assess the observ-
ability of output classes from available input data that
is corrupted by noise. Furthermore, it is shown that the
observability and classification accuracy can be enhanced
by discarding variables that are not relevant for the clas-
sification task and contribute to overlap between different
regions corresponding to output classes. It is argued that

Table 3. Classification Accuracy for both cases
(z ∈ Rdz , dz = 7)

Lr

Weights
Validation
Accuracy

Training
Accuracy

Test
Accuracy

Case 1 0.5 95.53% 97.74% 97.5%
Case 1 0 94.81% 97.12% -
Case 2 0.5 55.94% 97.62% 55.8%
Case 2 0 55.59% 92.05% -

the proposed observability can be used in the future for
selecting sensors to increase the observability of the classes
or for providing a threshold for relevances of inputs and
neural network interconnections where this threshold will
serve for pruning the network thus avoiding over-fitting of
noisy data.
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