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Abstract: This work proposes an experimental validation of software sensors for advanced
on-line anaerobic digester process monitoring. The considered strategy is based on cheap
available measurements (conductivity, temperature, pH, redox potential, etc) to reconstruct
key component trajectories such as volatile fatty acid, carbonate and alkalinity concentrations,
as well as biogas composition (methane, carbon dioxide, etc). The proposed solution considers
a radial basis function artificial neural network (RBF −ANN) structure, using data processing
(principal component analysis) and an efficient and fast sequential learning algorithm. In order to
better reproduce unknown and complex process dynamics, the combination of a moving-window
technique with a simple Jordan recurrent ANN structure (MW − RBF − RNN) is proposed.
Comparative results based on real industrial data illustrate the estimation improvements
provided by the MW −RBF −RNN with respect to the classical RBF −ANN structure.
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1. INTRODUCTION

Anaerobic digestion (AD) is a wastewater treatment pro-
cess that is widely used in the field of brewery since more
than half a century (Martins et al. (2018), Tokos and
Pintaric (2009)). This success results from economical and
ecological advantages, renewing and saving more energy
with respect to traditional aerobic treatment which is,
indeed, energetically more demanding (McCarty (2001)).
However, AD is delicate to control since the operation
is sensitive to several chemical parameters as well as the
influent content (pH, chemical oxygen demand, suspended
solid and volatile fatty acid concentrations, etc) which
may be unknown. AD monitoring is therefore crucial to
stabilize the process and may require the use of expen-
sive hardware probes. Software sensor design may be
an interesting alternative solution, taking advantage of
hopefully affordable sensor signals feeding a mathematical
model which, most of the time, results from a mecha-
nistic approach with inherent biological interpretability,
and interesting predictive capabilities, compensating the
lack of frequent measurements of biological variables. Sev-
eral AD mechanistic models have been proposed in the
literature like the IWA ADM1 model (Batstone et al.
(2002), Blumensaat and Keller (2005), Alcaraz-Gonzalez
and Gonzalez-Alvarez (2007), Lara-Cisneros et al. (2016),
Giovannini et al. (2018), Dewasme et al. (2019)]). Mecha-
nistic model-based monitoring strategies present however
the drawbacks to require a minimum of on-line informa-
tion on key-components and to guess an a priori conve-
nient kinetic structure which is not necessarily valid in
all process operating scenarios. This paper tackles the
problem of AD process key-component level inference from
very basic measurements which do not explicitly appear

in mechanistic models, as shown in Figure 1. In this
particular case, machine learning using artificial neural
network (ANN) structures is an appropriate alternative.
Successful applications of data-driven strategies to model
the complex nonlinear behavior of bioprocesses have been
developed during the last decades (Oliveira (2019), Karim
et al. (1997), Chen et al. (2000), Renotte et al. (2001),
Vande Wouwer et al. (2004), Dewasme et al. (2009)), even
if the resulting models often present limited predictive
capabilities beyond the studied experimental field.

The current study considers an AD process of brewery
wastewater treatment using a plug-flow methanizer (see
Figure 1), and aims at designing an advanced monitoring
based on intelligent ANN software sensors using basic and
cheap available measurements (in the same spirit as in
Aceves-Lara et al. (2012) and Charnier et al. (2016)) such
as liquid input (Fin) and biogas output (Fout) flows, pH,
temperature (T ), conductivity (CON), redox potential
(ORP ) and total suspended solid concentration (TSS)
to estimate key-component levels, that is, volatile fatty
acids (V FA), carbonates (CAR) and alkalinity (ALK)
concentrations as well as biogas content, i.e. hydrogen sul-
phide (H2S), methane (CH4) and carbon dioxide (CO2)
fractions.

The next section presents the industrial process and avail-
able data-sets. A classical radial basis function artificial
neural network (RBF − ANN) and an original moving-
window recurrent NN are presented in section 3. Compar-
ative results of their applications to the available experi-
mental data-sets are proposed in section 4 and conclusions
are drawn in section 5.
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Fig. 1. Schematic view of the considered Plug-Flow Anaer-
obic Digestion Reactor with the proposed data-driven
sensor.

2. PROCESS DESCRIPTION

2.1 Digester monitoring

As illustrated in Figure 1, the considered 60 m3 anaerobic
reactor, located in the brewery "De Halve Maan" in Bruges
(Belgium), is fed at the bottom with an influent flow Fin

recorded every minute. Wastewater chemical composition
is measured in two specific locations, the circulation flow
and the effluent line. The biogas outflow is also measured
as well as its composition by a Combimass gas flow
meter and analyser from the Bindergroup measurement
and control, chemical parameters by Liquiline Endress and
Hauser sensors in the reactor circulation flow and in the
effluent, TSS is measured by a Solitax turbidity probe from
Hach in mg/L, while V FA, CAR and ALK measurements
are achieved analytically from the effluent line thanks to
an Anasense device (Applitek) in mg/L.

2.2 Data-sets

A 19-day data-set has been provided by the company
Anabel Energy, managing the anaerobic digester monitor-
ing. Since the probes described in subsection 2.1 present
different sampling times, a cubic spline (using the function
"interp1" from MATLAB) is chosen to synchronize the
available data at a constant sampling time of 2 hours. The
resulting data-set has a total sample number ntot = 3870
spread over nin = 12 input and nout = 6 output signals
(described in the next subsection), that is, nsamp = 215
samples per signal. The proposed data-set partitioning
considers the 10 first days for the ANN learning while
the 9 remaining days are dedicated to cross-validations.
For the sake of confidentiality, the upcoming results are
normalized.

3. ARTIFICIAL NEURAL NETWORK STRUCTURE

3.1 A simple radial basis function structure

The selection of a radial basis function (RBF ) is motivated
by its successful previous applications in biological system
state estimation, as, for instance, in Hulhoven et al. (2006)

and Dewasme et al. (2009), and the existence of a well-
adapted fast learning procedure proceeding in 3 steps
described in Vande Wouwer et al. (2004).

Basically, the nonlinear mapping is defined by an input
vector y ∈ ℜ1×nin containing the basic online measure-
ments pH, T , CON , ORP , TSS (in the circulation flow
and the effluent line, see Figure 1), inlet and outlet flows
Fin/Fout, and an output vector x ∈ ℜ1×nout containing the
key-component measurements V FA, CAR, ALK, H2S,
CH4 and CO2. As stated in Dewasme et al. (2009), it may
also be interesting to reduce the number of parameters to
accelerate the learning phase, considering a data principal
component analysis (PCA, Geladi and Kowalski (1986))
providing a set of uncorrelated linear combinations of the
input signals, such that the user may select nPC < nin

new inputs while almost conserving the same level of
information (at least 95 % in good practice). A new score
or principal component matrix S of dimension nsamp×nin

is generated by the projection of the measured data matrix
Y (nsamp×nin) in a new space, using a square orthogonal
loading matrix P of dimension nin × nin as in:

S = Y × P (1)

The score matrix is typically generated by iterative partial
least squares algorithms, also providing the variances of
each component and the corresponding relative level of
explanation, i.e. informative content. Table 1 shows the
results of the PCA applied to the first 10 days of the avail-
able database. Selecting only the first nPC = 1

2nin = 6
input components is, for instance, enough to conserve more
than 95 % of the chosen database informative content.

Table 1. Results of the input signal PCA: PC
are sorted by decreasing variance

PC No V ariances Explanations

1 5.2546 47.1888

2 2.1308 19.1355

3 1.3531 12.1516

4 0.9803 8.8032

5 0.7306 6.5609

6 0.2845 2.5547

7 0.1951 1.7517

8 0.1083 0.9725

9 0.0716 0.6433

10 0.0192 0.1725

11 0.0055 0.0493

12 0.0018 0.0158

Considering a simple one-layer RBF structure with k
neurons, the ith output therefore reads:

x̂i(t) =

k∑

j=1

wije

−‖PC(t)−c
j‖

2

r2
j + bi i = 1, ..., nx (2)

where PC ∈ ℜ1×nPC is the vector of principal components
(linear combinations of the input signals), W ∈ ℜnx×k is
the matrix of weights wij , b ∈ ℜ1×nx is the bias vector,
C ∈ ℜk×nPC is the matrix of centroids, where cj ∈ ℜ1×nPC

is the jth raw of C and r ∈ ℜ1×k is the vector of radii.
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Fig. 2. Radial Basis Function Artificial Neural Network
(RBF −ANN) structure with PCA.

The number of neurons can unfortunately only be deter-
mined by trial and error during the validation steps using,
for instance, a simple root mean square criterion (RMS).

The resulting RBF − ANN structure with input pre-
processing by PCA is shown in Figure 2 where ϕ stands
for the radial basis function e−(.).

3.2 An original recurrent ANN structure

The RBF − ANN mapping from section 3.1 remains
static and is not able to exploit the full dynamical con-
tent of the data. It is therefore suggested to consider a
receding horizon, also called "moving-window" (MW), of
each input/output signal, inserting parallel input/output
layers accounting for past samples, introducing a so-called
moving-window radial basis function recurrent neural net-
work (MW−RBF−RNN) predicting the key-component
evolutions in t+1 and illustrated in Figure 3. This classical
RNN form, also called "Jordan form" (Jordan, 1997), is
mostly used in pattern recognition, calculating the most
likely output from past output sequences combined to new
inputs. In the present study, the same recognition mecha-
nism is applied to predict the bioprocess key-components.

The ith output prediction in k + 1 becomes:

x̂i(t+ 1) =
t∑

l=t−ho+1

ko∑

j=1

wo
ij,le

−‖PC
o
(l)−c

o,j‖
2

r2
o,j + bo,i

i = 1, ..., nx

(3)

where the o index stands for the output parameters and
variables and the mth component of PCo reads:

PCo,m(t) =

t∑

l=t−h+1

k∑

j=1

wo
mj,le

−‖PC(l)−c
j‖

2

r2
j + bm

m = 1, ..., nPCo

(4)

It should be noticed that while the numbers of centroids,
radii and biases of the first RBF −ANN structure remain
unchanged, the number of weights of the input layers is
now h times greater. A new PCA is achieved on the
nout = 6 output signals and the results from Table 2 show
that nPCo

= 4 components are sufficient to reproduce
more than 95 % of the relative explanation level of the
considered part of the database.

4. RESULTS AND DISCUSSION

4.1 Learning algorithm

A three-step learning procedure, described in Vande
Wouwer et al. (2004) and Dewasme et al. (2009), is imple-
mented on MATLAB platform to identify the parameters
of the classical RBF − ANN and the original MW −
RBF − RNN structures, and can be summarized as fol-
lows:

• An unsupervised step, using k-means clustering, esti-
mating C and r;

• A supervised step taking advantage of the radial basis
forms of (2), (3) and (4), using fixed values of C and
r from the first step and estimating W and b from a
simple linear regression;

• A second supervised step using the previously identi-
fied values from the first two steps as initial guesses
and solving, numerically, a nonlinear regression prob-
lem re-identifying the whole set of parameters in order
to cancel possible estimation bias.

This last step consists in solving the following uncon-
strained nonlinear programming problem:

min
C,r,W,b

Jnonlin

=

tf∑

t=t0

1

2
(x̂(t)− x(t))Q−1 (x̂(t)− x(t))

T
(5)

where tf is the experiment final time, Q is the covariance
matrix of the measurement errors, assumed diagonal (the
measurements present independent noise distributions)
and containing the squared maximum values of the out-
puts, a good practice usually considered when the signal
noise variances are assumed to be unknown, in order to
uniformly distribute the error independently of the signal
orders of magnitude. The Nelder-Mead (simplex) algo-
rithm is chosen to solve (5) using the MATLAB function
"fminsearch".

4.2 RBF −ANN validation

The residuals of the direct and cross-validations using the
RBF − ANN structure are respectively presented in the
left and right sides of Figure 4. Jcross is the cross-validation
residual and is calculated comparably to Jnonlin in (5).
In order to avoid overparametrization effects, the selected
range of neurons is chosen such that the total number of
parameters is always 10 times lower than the total number
of samples.

Obviously, the best results are obtained for 8 neurons with
an acceptable direct validation residual Jnonlin and the

Table 2. Results of the output signal PCA

PC No V ariances Explanations

1 4.7880 67.4508

2 1.2706 17.8994

3 0.5495 7.7406

4 0.3084 4.3449

5 0.1426 2.0090

6 0.0330 0.4654
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Fig. 3. Moving-Window Radial Basis Function Recurrent Neural Network (MW −RBF −RNN) structure with PCA.
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Fig. 4. RBF −ANN direct (left) and cross (right) valida-
tion cost function residuals as functions of the number
of neurons.

lowest cross-validation residual Jcross. The corresponding
key-component estimations are shown in Figure 5 where
95% confidence intervals considering a relative standard
deviation of 10 % on the measurement errors are drawn to
provide a qualitative assessment of the results. The quality
of the key-component estimations is, in overall, satisfying,
excepted during the last 4 days where V FA, CAR and
H2S present important estimation errors.

4.3 MW −RBF −RNN validation

Inserting moving windows in the NN structure induces an
increase of the number of parameters as follows:

nparam =(h k + 1) nPCo
+ (k + 1) nPC

+ (ho ko + 1) nx + (ko + 1) nPCo

(6)

where the terms (h k + 1) nPCo
and (ho ko + 1) nx

respectively account for the weights and biases while (k+
1) nPC and (ko + 1) nPCo

, respectively for the centroids
and radii.
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Fig. 5. RBF −ANN cross-validation using one layer of 8
neurons.

However, since the input/output moving-windows respec-
tively require h and ho times the corresponding in-
put/output data-sets, the total effective number of samples
becomes:

neffsamp = h nPC nsamp+ho nPCo
nsamp+nx nsamp (7)

Table 3 presents the validation results of the MW−RBF−
RNN for a selection of parameter combinations, that is,
h, ho ∈ {5, 8} and k, ko ∈ {6, 10}, such that the considered
number of parameters is consistent with respect to the
available number of samples following neffsamp > 10 ×
nparam. The new structure direct validation shows better
residuals than the simple RBF −ANN from 4 (excepted
for one combination) while the cross-validation residuals
reach lower values in specific cases, that is, for the combi-
nations [h, ho, k, ko] = [5, 5, 10, 6], [h, ho, k, ko] = [8, 8, 6, 6]
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Fig. 6. MW −RBF −RNN cross-validation with h = 5,
ho = 5, k = 10 and ko = 6.

and [h, ho, k, ko] = [8, 5, 6, 6], which are respectively repre-
sented in Figures 6, 7 and 8.

Objectively, it must be pointed out that the quality of
CAR estimation is generally poor around the eleventh day
and that H2S presents an abnormally oscillating behavior
between days 15 and 19. Anaerobic digestion is a very
slow process and the relatively small amount of collected
data is likely to limit the performance of the proposed
data-driven architecture. Despite these informative lim-
itations, the results are promising since a 10-day data-
set is already sufficient to provide an efficient learning
with accurate direct validations and, in overall, acceptable
cross-validations.

It must also be noticed that the quantitative assessment
from Table 3 should not be the only criterion to be taken
into account. Figure 9 indeed shows that the combination
providing the most faithful reproduction of the process
dynamics is [h, ho, k, ko] = [5, 8, 10, 6]. The higher cross-
validation residual (Jcross = 0.1207) is explained by the
worse H2S estimation.

Table 3. MW−RBF−RNN validation results
(horizon length h, number of neurons k, di-
rect and cross-validation residuals Jnonlin and

Jcross)

h ho k ko Jnonlin Jcross

5 5 6 6 0.0326 0.1914

5 5 6 10 0.0282 0.1420

5 5 10 6 0.0301 0.1034

5 8 6 6 0.0330 0.2348

5 8 10 6 0.0284 0.1207

8 5 6 6 0.0325 0.0925

8 5 6 10 0.0287 0.1261

8 5 10 6 0.0304 0.1367

8 5 10 10 0.0264 0.1903

8 8 6 6 0.0305 0.1055

8 8 6 10 0.1007 0.2164

8 8 10 6 0.0285 0.2534
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Fig. 7. MW − RBF −RNN cross-validation with h = 8,
ho = 8, k = 6 and ko = 6.
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Fig. 8. MW − RBF −RNN cross-validation with h = 8,
ho = 5, k = 6 and ko = 6.

5. CONCLUSION

In this work, an original and cheap monitoring device
for brewery wastewater digester key components (V FA,
CAR, ALK, H2S, CH4 and CO2) is designed. The pro-
posed software sensor resorts to radial basis function neu-
ral networks (RBF − ANN), allowing a fast machine
learning in three short steps. With a 3-week data-set, made
available by Anabel Energy (SPRL), validations of basic
RBF−ANN are satisfactory but still partially inaccurate.
A new contribution using moving-horizons and a recurrent
neural network architecture (MW − RBF − RNN) is
therefore proposed to better capture process dynamics.
The performances of the recurrent structure are assessed
and the results show better accuracy and tendencies of
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Fig. 9. MW −RBF −RNN cross-validation with h = 5,
ho = 8, k = 10 and ko = 6.

the predictions, which make the MW − RBF − RNN a
good candidate for further analysis with richer databases,
in view of model-based control design.
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