
Learning-Based Risk-Averse Model
Predictive Control for Adaptive Cruise
Control with Stochastic Driver Models ?

Mathijs Schuurmans ∗ Alexander Katriniok ∗∗

Hongtei Eric Tseng ∗∗∗ Panagiotis Patrinos ∗

∗Department of Electrical Engineering esat-stadius, KU Leuven,
Kasteelpark Arenberg 10, 3001 Leuven, Belgium (e-mail:
{mathijs.schuurmans, panos.patrinos}@esat.kuleuven.be).

∗∗ Ford Research & Innovation Center, 52072 Aachen, Germany
(e-mail: de.alexander.katriniok@ieee.org)

∗∗∗Research & Innovation Center, Ford Research Laboratories,
Dearborn, MI 48124 USA

Abstract
We propose a learning-based, distributionally robust model predictive control approach towards
the design of adaptive cruise control (ACC) systems. We model the preceding vehicle as an
autonomous stochastic system, using a hybrid model with continuous dynamics and discrete,
Markovian inputs. We estimate the (unknown) transition probabilities of this model empirically
using observed mode transitions and simultaneously determine sets of probability vectors
(ambiguity sets) around these estimates, that contain the true transition probabilities with
high confidence. We then solve a risk-averse optimal control problem that assumes the worst-
case distributions in these sets. We furthermore derive a robust terminal constraint set and use
it to establish recursive feasibility of the resulting MPC scheme. We validate the theoretical
results and demonstrate desirable properties of the scheme through closed-loop simulations.

Keywords: Learning and adaptation in autonomous vehicles, Intelligent driver aids, Motion
control

1. INTRODUCTION

In recent decades, the usage of adaptive cruise control
(ACC) systems has become widespread in the automotive
research and industry, as they have demonstrated numerous
benefits in terms of safety, fuel efficiency, passenger comfort,
etc. The term ACC generally refers to longitudinal control
systems aimed at maintaining a user-specified reference
velocity, while avoiding collisions with preceding vehicles.

The recently proposed Responsibility-Sensitive Safety (RSS)
framework (Shalev-Shwartz et al., 2017), prescribes min-
imal safety distances for ACC systems based on simple
vehicle kinematics, which can guarantee collision avoidance
under natural assumptions on boundedness of the accelera-
tions. Furthermore, the authors define rules that prescribe
how an ACC system should properly respond to violations
of this safety distance. Although safe, the prescribed rules
are reactive in nature, which may lead to sudden braking
maneuvers, reducing passenger comfort and fuel efficiency.

By contrast, model predictive control (MPC) methods
optimize a specified performance index based on the
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predicted evolution of the controlled system in the near
future, which endows the control system with the capability
to behave proactively, and adapt its actions with respect to
potential future events. However, due to the involvement
of human actors, there is an inherent level of uncertainty
in the prediction of traffic situations. In order to explicitly
account for this uncertainty, stochastic MPC has been a
particularly popular approach (Bichi et al. (2010); Moser
et al. (2018); McDonough et al. (2013)).

In an attempt to make accurate predictions about the
future behavior of the lead vehicle, many different driver
models have been proposed in the literature (see Wang et al.
(2014) for a survey). A common approach is to combine
continuous physics-based dynamics with a discrete (and
potentially stochastic) decision model for the driver (e.g.,
Sadigh et al. (2014); Kiencke et al. (1999); Bichi et al.
(2010)). We follow this line of reasoning and model the
preceding vehicle using double integrator dynamics, where
the driver’s inputs are generated by a Markov chain.

A major shortcoming of stochastic MPC approaches is
their dependence on accurate knowledge of all probability
distributions involved in the stochastic model. Since,
in practice, these are estimated based on finitely sized
data samples, they may not accurately reflect the true
underlying distributions — we will refer to this uncertainty
on probability distributions as ambiguity. Due to this
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ambiguity, stochastic controllers may perform unreliably
with respect to the true distributions.

The main contributions of this paper are to address these
issues in the following manner. First, we generalize the
stochastic MPC methodology for ACC systems by adopting
a distributionally robust approach, where not only the
estimated distribution is taken into consideration, but
all distributions that belong to a so-called ambiguity set.
Under the Markovian assumption, we can use concentration
inequalities to obtain closed-form expressions for these sets,
such that they contain the data-generating distributions
with arbitrarily high confidence. Secondly, we derive a
robust control invariant set which can be used as a terminal
constraint set in the proposed control formulation, allowing
us to establish guaranteed recursive feasibility of the
resulting MPC scheme.

Proofs Due to space restrictions, our results are stated
without proof. We refer to the extended version (Schuur-
mans et al., 2020) for full proofs and additional details.

1.1 Notation and preliminaries

Given two integers a ≤ b, let IN[a,b] := {n ∈ IN | a ≤ n ≤ b}.
We define the operator [ · ]+ as max{0, · }, where the max
is interpreted element-wise. We denote the element of a
matrix P at row i and column j as Pi,j and the ith row of
a matrix P as Pi. Similarly, the ith element of a vector x is
denoted xi. We denote the vector in IRk with all elements
one as 1k := (1)ki=1. Finally, we define the indicator function
as 1x=y := 1 if x = y and 0 otherwise.

Risk measures and ambiguity Let Ω denote a discrete
sample space endowed with the σ-algebra F = 2Ω and
probability measure P, defining the probability space
(Ω,F ,P). For a given random variable Z : Ω → IR, we
can collect the possible outcomes of Z in a random vector

IR|Ω| 3 z = (Z(i))i∈Ω. Similarly, a probability vector can
be defined as D|Ω| 3 µ = (µi)i∈Ω = (P[{ω}])ω∈Ω, where

Dk := {p ∈ IRk|1k>p = 1, p ≥ 0} denotes the probability

simplex of dimension k. A risk measure ρ : IR|Ω| → IR
is a mapping from the space of possible outcomes of Z
to the real line, which we may use to deterministically
compare random variables before their outcome is revealed.
In particular, we are interested in so-called coherent risk
measures, for which the following dual representation
exists (Shapiro et al., 2009, Thm 6.5)

ρ[z] = max
µ∈A

IEµ[z]. (1)

Here, A ⊆ D|Ω| is some closed, convex subset of the
probability simplex, commonly referred to as the ambiguity
set of ρ. This dual representation allows for a distribution-
ally robust interpretation where, based on a set of data
drawn from an unknown distribution, the ambiguity set is
typically constructed such that it contains all probability
distributions that are in some sense consistent with the data.
We will use this perspective explicitly when constructing
a data-driven MPC scheme in Section 3. For a given
ambiguity set A, we will denote the induced risk measure
by ρA. We finally remark that the concept of a risk measure
can be extended in a straightforward manner to conditional
risk mappings by replacing the expectation in (1) with a
conditional expectation.

2. NOMINAL STOCHASTIC MPC

In this section, we construct a model for the ACC system
and formulate a nominal control problem for the simplified
case where all involved probability distributions are known.
We use this setting to derive a terminal constraint set that
allows us to ensure recursive feasibility of the MPC scheme.
In Section 3, we will extend these results to the setting in
which all distributions are to be estimated from data.

2.1 Modeling and problem statement

Throughout this paper, we will assume that the behavior of
the vehicle pair can be modelled as a discrete-time Markov
jump linear system (MJLS) (Costa et al. (2006)), which
has dynamics of the form

xt+1 = f(xt, ut, wt+1) = A(wt+1)xt+B(wt+1)ut+p(wt+1),
(2)

where xt ∈ IRnx is the state vector ut ∈ IRnu is the input
and w := (wt)t∈IN is a Markov chain on (Ω,F ,P) with state

space W := IN[1,M ] and transition matrix P ∈ IRM×M ,
where Pi,j = P[wt = j | wt−1 = i]. We assume that at
any time t, both xt and wt are observable.

The goal is to select a state feedback law κ : IRnx ×
W → IRnu , such that for all t ∈ IN, κ(xt, wt) ∈ U , and that
for the closed-loop system xt+1 = f(xt, κ(xt, wt), wt+1),
the state satisfies

xt ∈ Xr, (3a)

P[xt+1 ∈ Xc | xt, wt] ≥ 1− δ, (3b)

almost surely (a.s.), i.e., for all (wi)
t
i=0 ∈ Wt+1 such

that Pwt,i > 0. Here, the set U , Xr and Xc correspond
respectively to the input constraints, hard state constraints,
and soft (probabilistic) state constraints, specified below.

Dynamics We model the longitudinal dynamics of the
two vehicles along a road-aligned coordinate system and
combine the states of the ego vehicle and the target vehicle
into one system. We denote by pEV and pTV the positions of
the ego vehicle and the target vehicle respectively and define
h := pTV−pEV to be the (positive) headway between the two
vehicles. Similarly, we denote the velocities of the ego and
target vehicle by vEV and vTV, so that the total state of the
vehicle pair is described by a state vector x = [ h vEV vTV ]

>
.

For simplicity, we take the individual vehicle dynamics to
be described by discrete double integrators, such that the
combined dynamics is given by

xt+1 =
[

1 −Ts Ts
0 1 0
0 0 1

]
xt +

[
0
Ts
0

]
ut +

[
0
0

TsaTV(xt,ut,wt+1)

]
, (4)

where Ts is the sampling period and aTV denotes a mode-
dependent acceleration of the target vehicle. Provided that
aTV is an affine function of the states and inputs, this model
is compatible with the form (2). In the remainder of this
paper, we assume a parametrization of aTV such that in
decelerating modes, the input (the brake) behaves like a
dissipative element, i.e.,

aTV(x, u, w) = aTV(x,w) =

{
cw, if cw ≥ 0

cwx3, otherwise,
(5)

where cw ≥ −1/Ts, w ∈ W are design parameters.

Constraints We assume that velocities of the ego vehicle
must remain nonnegative and upper bounded by some
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physical limit vmax > 0, and that the acceleration of the
target vehicle is limited between the values amin ≤ 0 and
amax ≥ 0. This yields the constraint sets

Xr := {x ∈ IRnx | 0 ≤ x2 ≤ vmax}, (6a)

U := {u ∈ IRnu | amin ≤ u ≤ amax}, (6b)

for the states and inputs respectively. We do not pose
explicit constraints on the state x3 as we assume that the
controller has no agency over the target vehicle.

Since a stochastic model of the target vehicle will typically
include extreme behaviors, albeit with exceedingly small
probabilities, imposing certain safety constraints robustly
(i.e., for all possible realizations of w) will often lead to
overly large safety distances, excessive emergency maneu-
vers, or even infeasibility of the optimization problem
in practically benign situations. It is therefore common
to instead impose (conditional) chance constraints of the
form (3b) (e.g., Moser et al. (2018)). In particular, we want
to constrain the headway (possibly defined to include some
safety distance), to remain positive:

Xc = {x ∈ IRnx | g(x) = −x1 ≤ 0}.

Since chance constraints (3b) are generally nonconvex,
it is common to approximate them using risk measures
(Nemirovski (2012)). In particular, it can be shown (Shapiro
et al., 2009, sec. 6.2.4) that for any random variable
z ∼ p ∈ Dm, the following implication holds tightly

AV@Rp
δ [z] ≤ 0⇒ P[z ≤ 0] ≥ 1− δ. (7)

Here, AV@Rp
δ [z] denotes a particular risk measure referred

to as the average value-at-risk (at level δ ∈ (0, 1] and with
reference probability p ∈ Dm). It can be defined through
the form (1), using its polytopic ambiguity set Sopasakis
et al. (2019)

A = AAV@Rp
δ

:= {µ ∈ IR|Ω| | 1|Ω|>µ = 1, 0 ≤ µ ≤ p
δ }. (8)

By exploiting the structure of ambiguity sets such as
AAV@Rp

δ
, Sopasakis et al. (2019) show that constraints

involving the average value-at-risk can be imposed effi-
ciently using only linear (in)equalities. We can thus satisfy
the chance constraint (3b) by imposing for t ∈ IN,

AV@R
Pwt
δ [g(xt+1) | xt, wt] ≤ 0, a.s. (9)

Finally, in order to guarantee recursive feasibility, we
impose the final state to be in a robust control invariant
set xN ∈ XN for all (wi ∈ W)i∈IN[0,N]

. This set is specified
in Section 2.2.

Cost function We define a stage cost ` : IRnx×IRnu → IR+

and terminal cost `N : IRnx → IR+, that simply assign
a quadratic penalty to the deviation from the reference
velocity vref and to the control effort u:

`(x, u) := q(x2 − vref)
2 + ru2, `N (x) := q(x2 − vref)

2.

Definition 1. (Nominal stochastic MPC). For a given x ∈
IRnx , w ∈ W, the nominal optimal control problem (OCP)
comprises of computing an N -step sequence of admissible
policies, i.e., a sequence of functions π = (κi)i∈IN[0,N−1]

,
with κk : IRnx × W → IRnu that solve the optimization
problem

minimize
u0

`(x0, u0) + inf
u1

IE|0

[
`(x1, u1) + . . .

+ inf
uN−1

IE|N−2

[
`(xN−1, uN−1) + IE|N−1

[
`N (xN )

]
· · ·
]]

(10a)

subject to

x0 = x,w0 = w, (10b)

xk+1 = f(xk, uk, wk+1), k ∈ IN[0,N−1], (10c)

uk = κk(xk, wk) ∈ U , xk ∈ Xr a.s., k ∈ IN[0,N−1], (10d)

AV@R
Pwk
δ [g(xk+1) | xk, wk] ≤ 0 a.s., k ∈ IN[0,N−1], (10e)

xN ∈ XN a.s., (10f)

where IE|t[ · ] = IE[ · |xt, wt] denotes the conditional expec-
tation given the realization of (wi)

t
i=0.

The corresponding MPC scheme is obtained by applying
the first policy κ0 to the system at the current state, and
resolving the OCP (10) in a receding horizon manner. Due
to the discrete nature ofW, problem (10) can be stated as
a finite-dimensional optimization problem over a scenario
tree (Sopasakis et al. (2019)).

Remark 2. Note that by linearity of the expectation oper-
ator, the cost (10a) is equivalent to the total expectation
of the sum of the state costs `(xt, ut) and the terminal cost
`N (xN ). However, by writing the cost in the nested form
above, we emphasize the relation with the risk-averse OCP
formulated in Section 3.

2.2 Recursive feasibility of the nominal problem

In this section, we describe a simple procedure to obtain
a robust control invariant set XN and use it to establish
recursive feasiblity of the nominal stochastic MPC scheme.

Definition 3. (Robust control invariant set). Let X denote
a set of feasible states and U the set of feasible control
actions. A set R ⊆ X is called a robust control invariant
(RCI) set for the system (2) if for all x ∈ R, there exists
a u ∈ U such that f(x, u, w) ∈ R,∀w ∈ W.

Definition 4. (Maximal robust control invariant set). An
RCI set R? is called the maximal robust control invariant
(MRCI) set if R ⊆ R? for all RCI sets R.

Definition 5. (Robust positively invariant set). A setRκ ⊆
X is a robust positively invariant (RPI) set for the sys-
tem (2) driven by the control law κ : IRnx → IRnu , if for
all x ∈ Rκ, it holds that κ(x) ∈ U and f(x, κ(x), w) ∈
Rκ,∀w ∈ W. Note that any RPI set is necessarily RCI.

For notational convenience, we construct a set Zs ⊆ Xr×W ,
akin to the stochastic feasibility set defined by Korda et al.
(2011). It contains all augmented states (x,w) that are
feasible and for which a feasible input exists, with respect to
both the soft constraints (10e) and hard constraints (10d):

Zs :=

(x,w)

∣∣∣∣∣∣
x ∈ Xr, w ∈ W,∃u ∈ U :

AV@RPw
δ [g(f(x, u, w′) | (x,w)] ≤ 0

w′ ∼ Pw,

 .

(11)

Our goal is to compute a sufficiently large terminal
constraint set XN , such that XN ×W ⊆ Zs. To this end,
we first explicitly define a simple polyhedral RPI subset of
Xr for the system (4) as shown in the following result. By
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iteratively expanding this set, we can then obtain an inner
approximation of the MRCI set.

Let cmin := minw∈W cw denote the parameter of the target
vehicle model (5) corresponding to the maximal decelera-
tion. Recall that we assumed that −1/Ts ≤ cmin < 0.

Proposition 6. Let us define the linear state feedback pol-
icy u = Kx, where K := [ 0 cmin 0 ], and the corresponding
candidate RPI set

RK :=

{
x ∈ IRnx

∣∣∣∣ amin

cmin
≥ x2 ≥ 0, x3 ≥ x2,

vmax ≥ x2, g(x) = −x1 ≤ 0

}
.

The following statements hold: (i) RK is RPI for the
dynamics (4) and policy u = Kx; (ii) Kx ∈ U for every
x ∈ RK , with U as defined in (6b); and (iii) RK×W ⊆ Zs.

We can now iteratively expand RK , to obtain the following
iterates (Kerrigan, 2000, Alg. 2.1)

R(i+1) = pre
(
R(i)

)
∩ Xr ∩ Xc, R(0) = RK ,

where pre(R(i)) := {x ∈ IRnx |∃u ∈ U : f(x, u, w) ∈
R(i),∀w ∈ W} denotes the pre-set of R(i). Note that since
all involved sets are polyhedral, the pre-set can be easily
computed using standard techniques (Borrelli et al. (2017)).
From (Kerrigan, 2000, Prop. 2.6.1), it then follows that
for all i ∈ IN, R(i) is RCI. Therefore, we may choose to
terminate after any finite number of iterations, and still
retain guaranteed recursive feasibility .

Definition 7. (Recursive feasibility). An MPC controller
is recursively feasible if the existence of a feasible solution
π|t = (κi)i∈IN[0,N−1]

to the optimal control problem with

initial state (x,w) ∈ Zs implies almost surely that there
exists a feasible solution to the optimal control problem
with initial state (f(x, κ0(x,w), w′), w′), w′ ∼ Pw.

Theorem 8. (Nominal recursive feasibility). If XN is RCI
and XN × W ⊆ Zs, then the nominal stochastic MPC
problem is recursively feasible.

3. DISTRIBUTIONALLY ROBUST FORMULATION

We now move to the more realistic setting in which
the measure P, and by extension the transition matrix
P ∈ IRM×M governing the Markov chain is unknown. In
this setting, we need to resort to data-driven estimates of
the transition probabilities, which are subject to some level
of ambiguity. Taking this into account in a distributionally
robust manner leads to a modified version of the MPC
problem (10).

3.1 From Markovian data to ambiguity sets

Suppose we are given a sample W = {wi}ni=1 of n obser-
vations from the Markov chain with unknown transition
matrix P . To simplify matters, we partition W into subsets
Wj ⊆W , j ∈ W, which contain only the transitions that
originated in mode j. That is, Wj := {wi ∈ W | wi−1 = j}.
Due to the Markov property, the samples w ∈Wj are inde-
pendent and identically distributed (i.i.d.) with distribution
Pj , i.e., the jth row of the transition matrix. We compute

the empirical distributions of Wj to obtain estimates P̂j
for the transition probabilities. That is,

P̂j,i :=

{
1
nj

∑
w∈Wj

1w=i, if nj > 0,
1
M , otherwise,

(12)

for all i, j ∈ W , where nj := |Wj | is the number of samples
in each subset of the data. Given an arbitrary confidence
level α ∈ (0, 1], we can now for each such estimate P̂j ,
use the results in Schuurmans et al. (2019) to define an
ambiguity set

A`1rj (P̂j) := {p ∈ DM | ‖p− P̂j‖1 ≤ rj}, (13)

where rj is computed such that P[Pj ∈ A`1rj (P̂j)] ≥ 1− α.

By the dual risk representation (1), the computed am-

biguity sets A`1rj (P̂j) implicitly define coherent risk mea-
sures. Thus, by replacing the now unknown probability
distributions in (10) by the worst-case distributions in
the ambiguity sets, we transform it to a risk-averse MPC
problem (Sopasakis et al. (2019)), in which the ambiguity
in the estimated transition matrices is accounted for.

By collecting additional data samples during closed-loop
operation (i.e., by increasing nj and therefore decreasing
rj for all modes j) the ambiguity sets will asymptotically
shrink to the singletons {Pj}. As such, conservatism of the
controller is gradually reduced while constraint satisfaction
with respect to the true distributions is guaranteed.

3.2 Risk-averse MPC formulation

Cost function The proposed distributionally robust ap-
proach replaces the conditional expectations by conditional
risk mappings based on the risk measures induced by the
ambiguity sets (13). For ease of notation we will for a
given sequence of ambiguity sets Ā := (Aj)j∈W , denote the
conditional risk mapping of the random stage costs as

ρĀ|t [`(xt+1, ut+1)] := max
p∈Awt

IEpδ [`(xt+1, ut+1) | xt, wt].

Ambiguous chance constraints Since the implication (7)
holds only with respect to the true but unknown probability
measure P, the risk constraint (10e) no longer guarantees
satisfaction of the original chance constraints in the current
setting. We will therefore impose it robustly with respect to
all distributions in the data-driven ambiguity sets A`1rj (P̂j),
leading to the following definition.

Definition 9. (Distributionally robust AV@R). Given a
random vector z ∈ IRn and an ambiguity set A ⊆ Dn, we
define the distributionally robust average value-at-risk of
z as

r-AV@RAδ [z] := max
ν∈A

AV@Rν
δ [z]. (14)

For the `1-ambiguity set A = A`1r (p̂) of radius r around an
empirical estimate p̂, we can use the definitions (13) and
(8) of A`1r (p̂) and AAV@Rν

δ
to express (14) explicitly as

r-AV@R
A`1r (p̂)
δ [z] = max

π,ν∈Dn
{π>z | ‖ν − p̂‖1 ≤ r, π ≤ ν/δ} .

Recall that we assume that the radius r in the definition of
the ambiguity set is chosen to satisfy P[p ∈ A`1r (p̂)] ≥ 1−α.
Therefore we have that with probability at least (1− α),

AV@Rp
δ [z] ≤ r-AV@R

A`1r (p̂)
δ,r [z], so that a constraint on a

random value z of the form r-AV@R
A`1r (p̂)
δ,r [z] ≤ 0, implies

that P[z ≤ 0] ≥ 1−ε, where 1−ε ≥ (1−δ)(1−α). Thus, by
replacing the AV@R risk measure used in the conditional
risk constraints (10e) by r-AV@R, satisfaction of chance
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constraint can still be guaranteed despite the incomplete
knowledge of the transition matrix. We summarize these
modifications in the following definition.

Definition 10. (Risk-averse MPC problem). For a given
initial state x ∈ IRnx , w ∈ W, and sequence of ambiguity
sets Ā := (Aj ⊆ DM )j∈W , the risk-averse OCP comprises
of computing an N -step sequence of admissible policies
π = (κi)i∈IN[0,N−1]

, with κk : IRnx ×W → IRnu that solve
the optimization problem

minimize
u0

`(x0, u0) + inf
u1

ρĀ|0

[
`(x1, u1) + . . .

+ inf
uN−1

ρĀ|N−2

[
`(xN−1, uN−1) + ρĀ|N−1

[
`N (xN )

]
· · ·
]]

(15a)

subject to

x0 = x,w0 = w, (15b)

xk+1 = f(xk, uk, wk+1), (15c)

uk = κk(xk, wk) ∈ U , xk ∈ Xr, (15d)

r-AV@R
Awk
δ [g(xk+1) | xk, wk] ≤ 0, (15e)

xN ∈ XN , ∀wN ∈ WN , (15f)

∀wk ∈ Wk,∀k ∈ IN[0,N−1], where we introduced the

shorthand wk := (wi)
k
i=1.

Remark 11. Without knowledge of the true distributions,
imposing constraints almost surely – even for all distri-
butions in the ambiguity set – is no longer sufficient to
guarantee recursive feasibility, since with a probability of
at most α > 0, a nonzero transition probability to a given
mode may not be reflected in any probability vector in
the used ambiguity set. In this case, a feasible solution at
a given time cannot be used to guarantee the existence
of a feasible solution in the next. Therefore, we impose
constraints at stage k for all realizations of wk.

Theorem 12. (Risk-averse recursive feasibility). If for all
time steps t and t+ 1, the risk-averse MPC problem (15)
is instantiated with ambiguity sets Āt = (At,j)j∈W and
Āt+1 = (At+1,j)j∈W , such that At+1,j ⊆ At,j , ∀j ∈ W,
then, the MPC scheme is recursively feasible.

4. NUMERICAL SIMULATIONS

Terminal constraint sets For the considered set-up, the
RSS model described in Shalev-Shwartz et al. (2017)
derives a minimal safety distance required for guaranteed
collision avoidance. It involves computing the distances
∆EV(x2),∆TV(x3) required for the ego vehicle and target
vehicle respectively to come to a halt in an emergency
braking scenario, as a function of their initial veloci-
ties x2, x3. The minimal required distance is given by
hmin,RSS(x2, x3) := [∆EV(x2)−∆TV(x3)]+. Although derived
for continuous-time systems, the derivation can be easily
repeated for the discrete-time model at hand. It has to
be noted, however, that in general, XRSS := {x | x1 ≥
hmin,RSS(x2, x3)} is not RCI for the system (4). Similarly,
for a given pair of velocities x2 and x3, the iteratively
computed terminal constraint sets R(i) can be associ-

ated to a minimal safety distance h
(i)
min(x2, x3) := min{h |

[ h x2 x3 ]
> ∈ R(i)}, where we set h

(i)
min = ∞ if no feasible

solution exists. Figure 1 shows the safety distance according
to both approaches as a function of x2. Note that the initial

set R(0) is more conservative than RSS. However, after
i = 12 iterations, R(i) has converged and yields a smaller
safety distance than RSS for all values of x2. Thus, we find
that in practice, the requirement of the terminal set to
be RCI introduces no conservatism over the hand-crafted
safety distance provided by RSS.

0 5 10 15 20 25 30
0

50

100 i = 0 i = 7
i = 12

RSS

Ego vehicle velocity x2 [m/s]

h
m
in

[m
]

Figure 1. Minimal safety distances h
(i)
min and hmin,RSS, for

vmax = 40m/s, amin = −5m/s2, cmin = −0.33s−1 and
a fixed target vehicle velocity x3 = 20m/s.

Closed-loop simulations The following experiments demon-
strate the benefit of the proposed learning-based MPC
scheme in Section 3 (referred to as the risk-averse ap-
proach), as compared to the two extreme variants obtained

by taking Aj = {P̂j} and Aj = DM , j ∈ W (referred
to as the stochastic and robust approach, respectively).
For the stochastic approach, we set the tolerated chance
constraint violation probability to δs = 0.1, and for the
risk-averse controller, we choose α = δ = 0.05, such that
(1 − α)(1 − δ) ≈ 1 − δs. All used controller settings are
as summarized in Table 1, unless otherwise specified. The
(unknown) transition matrices used in the experiments are

Pp =

[
0.92 0.04 0.02 0.02
0.29 0.50 0.09 0.12
0.26 0.21 0.36 0.17
0.31 0.25 0.23 0.21

]
and Ps =

[
0.29 0.7 0.009 0.001
0.09 0.90 0.009 0.001
0.4 0.29 0.3 0.01

0.048 0.001 0.001 0.95

]
.

The optimal control problems are formulated using Yalmip
(Löfberg (2004)) and solved using MOSEK (MOSEK ApS
(2017)) on an Intel Core i7-7700K CPU.

Table 1. Default controller settings.

(q, r) Ts [s] N (vref , vmax) [m/s] (amin, amax) [m/s2]

(5, 10) 0.5 3 (30, 40) (−4, 5)

Performance For a fixed initial state, we performed 100
randomized simulations of 50 time steps for the three
controllers with prediction horizon N = 5. The target
vehicle parameters are (ci)i∈W = [ 1.13 −0.02 −0.33 −0.16 ]
and the true transition matrix is set to P = Pp. The
average solver time for these experiments was 0.45s. We
compare the performance of the controllers by computing
the closed-loop cost over each realization. We conducted
this experiment both without and with offline learning. In
the former case, all transition probabilities are estimated
online, whereas in the latter, a sequence of 5000 draws
from the Markov chain is provided to the controller before
deployment. Figure 2 shows the empirical cumulative
distribution of the closed-loop costs with and without
offline learning. We observe that due to the initial lack
of data, the risk-averse controller selects a large ambiguity
set, which renders its behavior indistinguishable from that
of the robust controller. The stochastic approach, on the
other hand, introduces no such conservatism and thus
achieves lower costs more frequently than the competing
controllers. As the risk-averse controller observes more data
(Figure 2, right), its conservatism decreases, allowing it to
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achieve a cost distribution that closely resembles that of
the stochastic approach, while still providing the same
recursive feasibility guarantees as the robust approach.
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Figure 2. Empirical cumulative distribution of the closed-
loop cost over 100 randomized simulations.

Safety In the following experiment, we use the target
vehicle parameters (ci)i∈W = [ 1.1 0 −0.5 −1 ] and transition
matrix P = Ps. We simulate a low-probability emergency
situation by forcing the Markov chain to switch to mode
4 at a single fixed time step during each simulation,
corresponding to a harsh braking maneuver of the target
vehicle. Note that from any mode i ∈ W, there is a
nonzero switching probability to mode 4. Therefore, the
simulated trajectories correspond to possible realizations
for which infeasibility of the OCP is not acceptable. We
repeated this simulation for 100 realizations of 200 steps,
and with increasing sample sizes n for offline learning.
The average solver time for this experiment was 0.036s.
Figure 3 shows that with minimal offline learning, the
stochastic controller fails to find a feasible solution in 38%
of realizations. As n increases and estimated distributions
become more accurate, this fraction decreases, yet it
requires a sample size n = 5000 to reduce the number of
infeasible realizations to zero for this particular experiment.
By contrast, Theorem 12 guarantees recursive feasibility
for the risk-averse and the robust approach regardless of n,
as confirmed by the experiment.
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Figure 3. Percentage of infeasible realizations for the
emergency braking scenario (out of 100 realizations).

5. CONCLUSION

We proposed a learning risk-averse approach towards MPC
for ACC applications with Markovian driver models. This
framework allows us to use collected data to improve
performance of the controller with respect to the robust
approach, while retaining safety guarantees through prov-
able recursive feasibility. These benefits were illustrated
through simulations. In future work, we plan to extend the
methodology to more general problem set-ups and perform
more extensive experiments using real-world driving data.
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