
Spatial Estimation of Solar Radiation Using
Geostatistics and Machine Learning

Techniques
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Abstract: In large solar fields, where the control system is distributed, it is important to know
the values of solar radiation in the complete area. Local solar radiation can be obtained by
means of static sensors, using e.g. a wireless sensor network or movable sensors with drones for
the general obtainment of variables. In this paper, solar radiation estimation is accomplished
using Ordinary Kriging and distance weighting, and an alternative method is presented, which
is based on a non-supervised competitive artificial neural network called Self-Organizing Map.
This neural network generates a map with the most representative nodes and their weights,
which are used to obtain the spatial variability of solar radiation in the area.
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1. INTRODUCTION

Since the Kyoto Protocol in 1997 to the present day,
different legal and mandatory strategies have been carried
out in order to deal with climate change and minimize its
impact in nature and society. The fight against climate
change is the greatest impulse for renewable energies and
most energy efficiency technologies.

In this context, there is much research using thermic,
photovoltaic and thermoelectric solar energy, where the
knowledge of true solar radiation is crucial when improving
the efficiency of solar plants, thus optimizing control:
Camacho et al. (2012), Núñez-Reyes et al. (2005). The
studies in Castilla et al. (2011) compare several approaches
of predictive control to optimize thermal comfort in a
building where the solar radiation considered is measured
by a meteorological station placed on the roof, as well
as other significant environmental variables. Núñez-Reyes
et al. (2017) addresses the problem of integration of PV
plants in the electricity market. It proposes an optimal
planning strategy using Model Predictive Control (MPC)
(Camacho and Bordons (2004)) with restrictions that
maximize the economic benefit. This paper considers the
solar radiation as an input to the control strategy.

Numerous robust control strategies have been designed as
well in order to obtain a controller that keeps the tempera-
ture of the heat transfer fluid at the desired value address-
ing the disturbances in solar radiation, reflectiveness of the
mirrors and the collectors inlet temperature, given that the
solar radiation varies along the day, causing changes in the
dynamics of the plant and strong disturbances during the
process (Limon et al. (2008)).

Huang et al. (2019) highlights that the output power of a
photovoltaic (PV ) system is related to the external envi-

ronmental factors of the installation location, among which
the solar radiation becomes more relevant. Therefore, the
solar radiation conditions constitute significant reference
data which allows us to evaluate the initial establishment
of a photovoltaic system, as well as long-term performance.

Gallego and Camacho (2012a) and Gallego and Camacho
(2012b) suggest the need of knowing global effective ra-
diation. The pyrheliometer offers a measure of the local
irradiance, but the extrapolation to the rest of the field
is reasonable when the size of the collector field is small.
When it is large, assuming that the solar radiation remains
the same in the whole field can damage the efficiency
and control of the plant. This is because scattered clouds
can affect the local sensor whilst the rest of the plant is
receiving direct radiation or vice versa.

In this work, we approach the problem described above, us-
ing several techniques that allow us to analyze the spatial
variability of solar radiation with the aim of estimating its
value on a surface. This will be carried out from samples
of the area of interest.

This paper uses two well-known methods for solar radi-
ation estimation: the Ordinary Kriging interpolation and
the Inverse Distance Weighting. These two methods are
applied to two different scenarios for obtaining the spa-
tial variability of solar radiation. One scenario is based
on Geostatistics and the other one in Machine Learning
techniques. The main contribution of this research consists
in reaching the second scenario with a SOM, which obtains
the spatial correlation of solar radiation in the particular
area.

Geostatistics is a statistical technique used for estimating
spatially correlated data (Cressie (1993), Isaaks and Sri-
vastava (1990)), known as “the art of modelling spatial
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data”. Its importance resides in the fact that it allows
the description of the “spatial continuity” of variables and
estimation of values very close to the real ones in unknown
points.

On the other hand, the Self-Organizing Map (SOM) is a
non-supervised artificial neural network that supplies an
automatic method of data analysis by producing a low
dimensional representation (map) of an input space of high
dimension with non-external supervision (Kohonen (1990),
Kohonen (1995), Vesanto (1999)).

Several versions of SOM models have been applied to
numerous disciplines (Kohonen (2013)) such as financial
analysis, oceanography, meteorology, bioinformatics and
image recovery.

The employment of a SOM in the field of meteorology has
been carried out from different perspectives. Chang et al.
(2010) applies a SOM for evaluating the daily variability
of evaporation based on meteorological variables as solar
radiation, wind velocity, sunshine hour and humidity. In
Sobri et al. (2018), the SOM was utilized to perform
the characterization of cloud cover index that was sub-
sequently used for evaluating solar radiation.

This document is organized as follows. After the introduc-
tion, section 2 describes the techniques employed. Section
3 presents the data, the proposed scenarios and the re-
sults. Finally, some conclusions drawn from the work and
acknowledgments are presented.

2. TECHNIQUES APPLIED

2.1 Geostatistics

Geostatistics can be considered as a discipline that ad-
dresses the statistical analysis of spatially distributed vari-
ables. A regionalized variable (RV ) is one that is dis-
tributed in the space in a way that it presents a spa-
tial structure of correlation (Samper and Carrera (1996),
Matheron (1962)). Examples of regionalized variables are
climatological variables such as solar radiation, tempera-
ture and humidity. From a mathematical point of view, a
RV is a function z(c) that adopts one value for each point
x of the space.

A geostatistical analysis consists of two phases. In the first
one, a study of the spatial dependence of the variable is
made by calculation of the experimental and theoretical
variogram. During the second phase, Kriging techniques
are used (Krige (1951)) to estimate the values of the
variables in unsampled spots.

Variogram
The variogram shows the spatial variability of the data,
considering that the nearest places will have more similar
values of the attributes than the ones corresponding to
places away from each other. The variogram function γ(h)
of a random function Z(x) quantifies its spatial correlation
structure.

From the data, we can calculate the experimental or
sample variogram as:

γ∗(h) ' 1

2N(h)

N(h)∑
i=1

[Z(xi + h)− Z(xi)]
2 (1)

where Z(xi) corresponds to the experimental values at the
points xi of which data are available from both xi and
xi +h; N(h) is the number of pairs of points separated by
a distance h. The variogram γ(h), is independent of the
location x but depends on the module and direction of the
vector |h|.
With the experimental variogram, we can obtain the value
of γ(h) for certain values of h. However, in most practical
applications it is required the knowledge of all values of γ
for each h.

For that reason, an adjustment of a theoretical model
variogram is made to the experimental variogram. Some of
the most used models are the exponential, the spherical,
the monomial and the gaussian model. For the adjustment,
it is common to use methods like least squares or maximum
likelihood, among others.

Kriging Interpolation. Ordinary Kriging
Kriging is a technique of interpolation that provides the
best linear unbiased estimator (BLUE), as well as an error
estimator called the Kriging variance, which depends on
the variogram calculated and the locations of the original
data (Journel and Huijbregts 1978).

The estimation for every not sampled point (x0) is calcu-
lated as a linear combination of the n available data Z(xi),
Cressie (1993):

Z∗(x0) =

n∑
i=1

λiZ(xi) (2)

with ∑
i

λi = 1 (3)

Z∗(x0) is said to be the best predictor because the weights
(λi) are obtained in such a way that they minimize the
variance of the estimation error. For the minimization,
it is applied the method of Lagrange multipliers and the
values of λi are obtained solving the following system of
equations:

0 γ12 γ13 . . . γ1n 1
γ21 0 γ23 . . . γ2n 1
...

...
...

...
...

γn1 γn2 γn3 . . . 0 1
1 1 1 . . . 1 0

 .


λ1
λ2
...
λn
µ

 =


γ10
γ20
...
γn0
1

 (4)

where γij is the variogram function γ(h), calculated for
the distance between points xi, xj : γij = γ(xi − xj); γi0
is the value of the variogram calculated for the distance
between the sample observation i-th and the point where
the estimation is desired: γi0 = γ(xi − x0); µ is the
Lagrange multiplicator employed for the given restriction
in the equation 3.

The variance of the estimation error of the Ordinary
Kriging (OK) is subsequently obtained taking into account
that E(Z∗ − Z) = 0,

σ2
k = V ar(Z∗ − Z) = E[(Z∗ − Z)2] (5)

Thus obtaining the following:

V ar(Z∗ − Z) =
∑
i

λiγ(xi − x0) + µ (6)
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2.2 The Inverse Distance Weighted (IDW ) Technique

The IDW method is used to estimate the unsampled
values and it is based on the fact that the weight is a
function of the inverse distance (Philip and Watson (1982),
Watson and Philip (1985)). The general equation of IDW
is:

Z∗(x0) =

∑n
i=1 Z(xi)(

1
dk
i0

)∑n
i=1( 1

dk
i0

)
(7)

where Z∗(x0) is the estimated value at the point x0, Z(xi)
represents the known values at the point i; di0 is the
distance between the known point xi and the unknown x0;
n the number of known points applied in the estimation
and k is the power function designating the degree of
weights, which, according to Dixon et al. (2015), must
equal 2.

2.3 Self-Organizing Map

The SOM neural network, also known as Kohonen map or
Kohonen net after its author (Kohonen (1982)), is a type of
artificial neural network which learning is non-supervised
and competitive. Regardless of the application granted,
the SOM produces a map (usually bidimensional), a
discretized representation of the input space, resulting in
a dimensionality reduction.

The SOM network must discover correlations and cate-
gories in the input space without any concrete objective or
tendency requirement at the output. Besides, the competi-
tive learning classifies the input data intending to activate
only one of the output neurons (or a group of neighbors)
in the case of an input pattern.

The Kohonen self-organizing map is constituted by two
levels of neurons: one at the input and one at the output.
The input layer consists of N neurons, one corresponding
to each input variable, and the output layer is conformed
by M neurons, organized as a bidimensional map. The
connections between layers are always forward and the
connectivity is total. Each input layer i is connected to
each one of the output neurons j by a weight wij , so that
the output neurons have an associated vector of weights
Wj known as reference vector or codebook vector, which
is usually randomly initialized and that constitutes the
prototype vector of the category represented by the output
neuron j.

The aim is having all the weights spatially correlated so
that the nearest points in the grid will be more similar
between each other than to the ones more distant.

The learning process of a SOM consists in two steps:

First, the activation function is applied, calculating the
similarity between the input vectors x and the reference
vectors Wj , using, for example, the euclidean distance,
which will be useful for the activation of the output
neurons.

||x−Wj || = min||x−Wj || (8)

Once found the best matching unit (BMU), the nearest
vector, i.e. the greatest activation or the smallest euclidean

distance, is selected as the winner vector. In this way, the
BMU and its neighbors move close to the vector x in
the state space, in topological way and with an attraction
index named learning rate LR(k), which is decreasing in
time and can be linear, potential or inverse time. This is
accomplished with the actualization of the weights of the
BMU and the nearest neighbors.

In a similar way to the learning rate, the neighboring
function ε(k) also declines with time and space when
it distances from the winner. There are various types
of neighboring functions and the most common is the
gaussian. The learning rule can be denoted as:

wj(k + 1) = wj(k) + LR(k)ε(k) (x(k)− wj(k)) (9)

where k denotes the learning iteration at each instant.
Note that the number of learning steps must be specified
at the beginning of the training. x(k) represents the input
pattern presented at the moment. This learning procedure
leads to a topologically ordered mapping of the presented
input data.

Similar patterns are assigned to the neighboring regions in
the map, whereas the least similar patterns are assigned
to the farthest regions.

The main contribution of this paper consists in using the
output of the SOM network as a new scenario where the
methods described above can be applied: Ordinary Kriging
and IDW.

The output of the SOM network consists of a map where
the neighboring nodes have more relationship than the
more distant ones. This work uses this characteristic to
obtain the spatial correlation of solar radiation in the
given area, relacionando el variograma con la red SOM
(V ar SOM).

3. EXPERIMENTAL RESULTS

Starting from a net formed by 49 neurons, we are going
to estimate the solar radiation in an area of 50 km2, with
a total of 2400 points. For this purpose, two methods of
spatial interpolation will be applied: IDW and Ordinary
Kriging to two different scenarios. The first one of them
consists of the original sensor network (Fig.1) and the
second one is based on the map generated by an artificial
neural network, such as the self-organizing map (Fig.2).
Both scenarios will be explained in this section.

3.1 Data

The solar radiation data have been obtained through
CAMS Radiation Service, on the SoDa portal, a service
framed in the Copernicus program, the European Union’s
Earth Observation Programme, with the aim of obtaining
data on the state of our planet and the environment.

As the aim of this work does not focus on knowing the
accuracy of the measure, but on having a great amount
of localized data of solar radiation, the CAMS service is
completely acceptable, given that we can obtain the solar
radiation in every geographic spot of the planet with a
minimum step time of 1 minute, since 2004 until present
day.
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Fig. 1. Scenario 1. Original Sensor Network (ORG)
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Fig. 2. Scenario 2. Self-Organizing Map SOM

3.2 Scenario 1: ORG

The sensors network has been assumed in the desert of
Tabernas, in Almeria (Spain), which is placed 30 km north
of Almeria, at an altitude of 400 m above the sea level,
located near the town of Tabernas. We have selected a
50 km2 rectangular zone inside the limits of the region of
Tabernas and we have randomly chosen 49 points (Fig. 1)
irregularly distributed inside the area of study.

For this work, we have studied the month of June of 2015,
obtaining 141120 data with a sample time of 15 minutes.

Variogram
It has been conducted the experimental variogram of the
data of June and the theoretical variogram (see Fig. 3).
The theoretical variogram that best matches the data is
the monomial or potential model (Samper and Carrera
(1996)): γ(h) = a + Khθ, where θ ∈ (0, 2) to satisfy the
conditions of the models of the variograms. The values
obtained are:

γ(h) = 0.018 + 0.77 ∗ h (10)

For θ = 1, the behavior at small distances is similar to the
spherical and exponential variogram. The monomial vari-
ogram has small-scale fluctuations that increase inversely
by reducing θ and large-scale fluctuations so large that
they can seem a drift. Actually, they represent correctly
the daily solar radiation curve.

3.3 Scenario 2: SOM

The input to the SOM are vectors of three dimensions that
correspond to longitude, latitude and solar radiation. The

Fig. 3. Variogram month of June

network has been trained with 141120 input vectors and
the number of iterations is 1000. For the accomplishment
of this work, we have used the neural network toolbox
of MATLAB (R2018a) version 11.1. The most important
values of the SOM are shown in Table 1, the rest of the
parameters are assumed by default.

Table 1. Parameters of the SOM

Dimensions Topology DistanceFcn training Simulation

[7 7] ’hextop’ ’linkdist’ ’trainbu’ ’negdist’

To measure the quality of the SOM , the quantization error
(QE) and topographic error (TE) are considered. The
QE is the mean value of the distance between each input
data and its BMU , and the TE represents the portion of
the data which first and second BMU are not adjacent
(Kohonen (2001). For the resulting SOM , the values of
quality are the following: QE = 0.1032 y TE = 0.1542.

Fig. 2 shows the weights of the first and second attributes
of the SOM network (black dots). Drawing on the corre-
spondence of these attributes to geographic coordinates in
space, it shows the position of the ORG net in the first
scenario too (green dots).
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Fig. 4. SOM Variogram (V ar SOM) month of June

Variogram of the SOM
The V ar SOM obtained is shown in Fig. 4, where it can
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be observed the relation that exists between the distance
of the 49 nodes and the weight (Euclidean distance) of
solar radiation. As well as with the variogram, increasing
the geographical distance increases the weight (distance)
of the variables, decreasing the correlation between farther
points.

In Bastin et al. (1984) a global variogram, also known
as climatological variogram, is described, where invariant
terms are distinguished in space and time. Following
the aforementioned paper, we can generate a model of
theoretical variogram of monomial type with the term that
only depends on the distance: dθ with θ = 1 and other
terms that depend on the intensity of solar radiation a(c)
and b(c):

V AR SOM(d) = a(c) + b(c)dθ (11)

Table 2 presents the five different classes of the SOM, three
of them have been drawn in Fig. 4 in a red line.

Table 2. 9th June at 7:15 a.m.

Classes Solar radiation a(c) b(c)

1 [0-0.2) 0 1

2 [0.2-0.4) 0.2 0.85

3 [0.4-0.6) 0.4 0.75

4 [0.6-0.8) 0.6 0.65

5 [0.8-1] 0.8 0.5

3.4 Results

As aforementioned, the solar radiation estimation is ac-
complished by employing Ordinary Kriging and IDW tech-
niques for the two scenarios described. In this way, for each
estimated point there are four different estimations:

• Scenario 1 and Ordinary Kriging: ORG OK
• Scenario 1 and IDW: ORG IDW
• Scenario 2 and Ordinary Kriging: SOM OK
• Scenario 2 and IDW: SOM IDW

Fig. 5 shows the points situated in the space that have
been used for the work.

• Scenario 1: ORG
• Scenario 2: SOM
• Area to estimate: GRID
• Validation points of the estimation: V AL

Mean absolute error (MAE) and root mean square error
(RMSE) are the evaluated indices in this paper. MAE is
the mean absolute value of the deviations:

MAE =
1

N

N∑
i=1

|Z(xi)− Z∗(xi)| (12)

RMSE is the square root of the mean of the squares of the
deviations:

RMSE =

√√√√ 1

N

N∑
i=1

(Z(xi)− Z∗(xi))2 (13)

The estimation of solar radiation in all the area has been
made for June 2015. We will analyze the results of 9th
June as a representative cloudy day Fig. 6. This graphic
represents the true and estimated solar radiation with
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Fig. 5. Geographic points. Scenario 1 (ORG), scenario 2
(SOM), area to estimate (GRID) y validation points
(V AL)
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Fig. 6. Solar radiation of 9th June of the point:
lng.:−2.5149 y lat.:37.0412

the method Ordinary Kriging and scenario 2 (SOM OK)
throughout the entire day, for one of the 10 validation
points (V AL).

Henceforth, the results will be shown as a function of the
space variables for the day 06/09, at the instant of 07:15
a.m. (Time = 30 in Fig. 6).

Fig. 7 shows the contour plots of the estimated area
(GRID) for the analyzed moment of the two scenarios
(ORG and SOM) with the two methodologies used (OK
and IDW ). They show the continuity of solar radiation
and similar behavior in both scenarios, where the area of
greatest and fewest radiation is similar in all methods. It
should be noted that the interpolation of the SOM OK
turns out to be smoother, the transition areas are less steep
than in the other methods.

In Fig. 8, the estimated area (GRID) is represented next
to the true values (black dots) of the validation network
(V AL) of the SOM OK. It can be seen that the surface
adapts perfectly to the real values of solar radiation.
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The error obtained in each of the methods is collected in
Table 3. It can be observed that the two networks present
a very small error, the SOM network being the one that
obtains the best results for that particular point. However,
the errors obtained in all the points estimated for the two
scenarios are quite acceptable and very similar.

Table 3. Day 9th June at 7 : 15 a.m.

ORG OK ORG IDW SOM OK SOM IDW

MAE 0.0081 0.0108 0.0076 0.0103

RMSE 0.0129 0.0139 0.0097 0.0121

4. DISCUSSION

This paper addresses one of the problems that are part of
the research, currently under development, of distributed
predictive control, based on a space-time model.

It starts from certain measurements of solar radiation
taken by static or dynamic sensors to later estimate solar
radiation on a large surface, where a hypothetical field of
solar collectors is located.

The idea focuses on the fact that each of the controllers,
at each sampling time, can take a measure of the solar
radiation of the place where it is located in order to obtain
the maximum information of the disturbance. For online
estimation, both the measurements of the sensors at the
instant t and the weights obtained are needed, depending
on the selected method.

This paper has provided a new alternative to obtain the
spatial variability of a regionalized variable based on a
self-organizing map. The SOM network is used to obtain
a second scenario where to apply the interpolation of solar
radiation.

The results of the applied methods, in the two proposed
scenarios, have been very similar, which demonstrates that
the use of the SOM is perfectly valid for applying it in the
spatial interpolation of regionalized variables.

This work opens up future research lines, including the
optimal design of sensor networks or the study of spatial
variability for different sampling times, with the aim of
using mobile sensors for measuring or extending to other
continuous variables in space, such as temperature and
humidity.
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Castilla, M., Álvarez, J.D., Berenguel, M., Rodŕıguez,
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