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Abstract: This paper investigates decentralized optimal tracking control for multi-agent systems (MAS)s 
with a large population. Unlike conventional decentralized control, two major challenges must be addressed 
when the population size of the MAS is large: the “curse of dimensionality” and environmental uncertainties. 
The paper develops a novel online learning decentralized adaptive optimal control strategy to address these 
challenges by combining the emerging Mean Field Games (MFG) theory with a novel Biomimetic Actor-
Critic-Mass (B-ACM) learning algorithm. Mean-field control is developed as a decentralized optimal 
controller that can effectively reduce the computational complexity and the communication effort. A 
Biomimetic neural network that mimics the human brain, which is much more efficient than traditional 
Artificial Neural Networks (ANNs), is designed using Spiking Neural Networks (SNN)s. The information 
is encoded into a sparse spikes vector similar to the human brain. The SNN technique and mean-field control 
are merged into one unified framework, B-ACM. The B-ACM includes three regions of neurons in 
coordination with mean-field control: 1) Reward region to approximate the optimal cost function, 2) MAS 
Population Estimation region to predict the effects from other agents, and 3) Action region to compute the 
optimal control. Moreover, the paper introduces a novel SNN weight update law based on gradient descent. 
The effectiveness of the proposed scheme is validated through numerical simulations. 
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1. INTRODUCTION 

Multi-Agent Systems (MAS)s are increasing in popularity 
because of the many advantages of having a large 
population of agents. However, two major challenges are 
restricting the effectiveness of most existing MAS tracking 
control algorithms. The first challenge is the “curse of 
dimensionality”, which causes an explosion of 
computational effort when a large-scale system is 
considered. In tracking control and “leader-follower” 
algorithms, such as (Li et al., 2015), the dimension of the 
problem and the complexity of computing the optimal 
control increase drastically with the number of agents. The 
second challenge is the harsh environment where high-
quality wireless communication is unavailable.  

To overcome these challenges, several methods have been 
proposed including (Peng et al., 2018; Cui et al., 2019). 
However, theses decentralized algorithms can neither 
guarantee system optimality nor completely handle low-
quality communication or inaccurate observation. Recently, 
a novel Mean Field Game (MFG) theory was proposed to 
compute the population’s states’ density directly through 
the Fokker-Planck-Kolmogorov (FPK) equation, a partial 
differential equation that only needs local information and 
the initial agent distribution (Caines, Huang and Malhamé, 
2018).  

The theoretical analysis of MFG-based optimal control 
integrates the FPK equation into the optimal control 
problem (Guéant, Lasry and Lions, 2011; Caines, Huang and 
Malhamé, 2018). The optimal control policy and optimal 
cost can be obtained by solving the Hamilton-Jacobi-

Bellman (HJB) equation (Lewis and Vrabie, 2009). (Caines, 
Huang and Malhamé, 2018) developed the coupled HJB-
FPK equation, also called the Mean Field equations, by 
replacing the effect of the MAS population in the 
Hamiltonian with the probability density function (PDF). 
Although this provides effective control, the Mean Field 
equation is nearly impossible to solve analytically because 
the FPK and HJB are two coupled high dimensional PDEs. 

In recent years, Adaptive Dynamic Programming (ADP) has 
appeared as a promising technique to solve the HJB 

equation (Vamvoudakis and Lewis, 2010). We extend the 
ADP framework to a novel Actor-Critic-Mass learning 
structure by introducing an extra Mass Neural Network to 
approximate the solution of the FPK equation online. We 
replace the conventional ANNs with Spiking Neural 
Networks (SNNs) inspired by the human brain to obtain a 
Biomimetic ADP that we christen B-ACM. Human brains can 
encode huge amount of information using small 
populations of spikes and consume significantly less energy 
than ANNs (Wolfe, Houweling and Brecht, 2010).  

SNNs are the third generation of neural networks (Bing et 
al., 2018), that simulate the elementary processes in the 
human brain according to the functional similarity to 
biological brains. Recent studies in neuromorphic 
computing have shown that SNNs are easily implemented 
in hardware and much more efficient than traditional 
neural networks (Das, Schulze and Ganguly, 2018; Bouvier 
et al., 2019). Moreover, SNNs are popular in many 
reinforcement learning structures, e.g., (Frémaux, 
Sprekeler, and Gerstner, 2013; Friedrich and Lengyel, 
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2016). However, none of these methods is designed for 
multi-agent reinforcement learning or massive multi-agent 
problems. This paper proposes a massive multi-agent 
decentralized optimal tracking control where the SNNs 
adaptively approximate the optimal control using a novel 
Actor-Critic-Mass structure.   

The contribution of this paper can be summarized as: 

1) It proposes a novel online Biomimetic Actor-Critic-Mass 
(B-ACM) algorithm for massive MAS decentralized tracking 
control to overcome the “Curse of Dimensionality" and 
handle a harsh environment. This is accomplished by 
integrating the Mean Field Games (MFG) theory with 
Adaptive Dynamic Programming (ADP).  

2) It uses a novel Spiking Neural Network (SNN) in the ACM. 
Because the SNN is easily implemented with RC circuits 
(Das, Schulze and Ganguly, 2018; Bouvier et al., 2019), the 
proposed B-ACM can be applied on massive robotic 
systems without the need for GPUs for online learning that 
other neural networks require.  

2. BACKGROUD AND PROBLEM FORMULATION 

Consider 𝑁 agents with stochastic dynamics defined as: 

𝑑𝑥௜ = [𝑓௦(𝑥௜) + 𝑔௦(𝑥௜)𝑢௜]𝑑𝑡 + 𝛴୧𝑑𝑤௜ (1)

where 𝑥௜ ∈ ℝ௟  is the state containing the 𝑖௧௛ agent’s 
position, 𝑢௜ ∈ ℝ௟  is the control input, 𝑤௜ ∈ ℝ௟  denotes a set 
of independent Wiener processes representing 
environmental noise, and 𝛴௜  is a diagonal matrix of 
diffusion coefficients. The functions 𝑓ௌ(𝑥௜) and 𝑔௦(𝑥௜) are 
the intrinsic dynamic functions of all agents. Decentralized 
tracking control is needed to force the large MAS to follow 
a given reference trajectory. 

Let 𝑥௥(𝑡) be the desired reference trajectory, the tracking 
error for each agent can be defined as 𝑒௜(𝑡) = 𝑥௜(𝑡) −
𝑥௥(𝑡). Thus, the tracking error dynamics can be derived as: 

𝑑𝑒௜  = [𝑓(𝑒௜) + 𝑔(𝑒௜)𝑢௜] + 𝛴௜𝑑𝑤௜  (2) 

where 𝑓(𝑒௜) = 𝑓௦(𝑒௜ + 𝑥௥) − 𝑑𝑥௥ 𝑑𝑡⁄ , and 𝑔(𝑒௜) = 𝑔௦(𝑒௜ +
𝑥௥) represent the tracking error dynamics function.  

The objective of each agent is to follow the reference 
trajectory while considering the effect from other agents, 
that is to minimize a cost function 

𝑉௜(𝑒௜ , 𝑚) = 𝔼 ቊන [𝐿(𝑒௜

ஶ

଴

, 𝑢௜) + Φ(𝑚, 𝑒௜)]𝑑𝑡ቋ (3)

where 𝑚 = 𝑚(𝑒௜ , 𝑡), 𝑖 = 1,2, … , 𝑁 is the nonstationary PDF 
of the tracking error for the 𝑖௧௛ agent and has the same form 
for all agents, Φ(𝑚, 𝑒௜) is the mean field coupling function 
that represents the influence of other agents, 𝑄 ≥ 0, and 
𝑅 > 0 are weight matrices of compatible dimensions. Note 
that the value of the cost function depends on the tracking 
error so we assume that tracking remains sufficiently 
accurate for a bounded cost function. 

The optimal control is obtained by solving the HJB equation 
(Lewis and Vrabie, 2009) 

Φ(𝑒௜ , 𝑚) = −𝜕௧𝑉௜
∗(𝑒௜, 𝑚, 𝑡) −

𝜎௜
ଶ

2
Δ𝑉௜

∗(𝑒௜ , 𝑚, 𝑡) 

+𝐻[𝑒௜, 𝜕௘𝑉௧
∗(𝑒௜, 𝑚, 𝑡)] 

(4)

where 𝜕௧𝑉௜
∗(𝑒௜ , 𝑚, 𝑡) =

డ

డ೟
𝑉௜

∗(𝑒௜ , 𝑚, 𝑡), Φ(𝑚௜ , 𝑒௜) is the mean 

field coupling function that describes the coupling effects of 
agent 𝑖  and all other agents, the function 𝐻(∙)  is the 
Hamiltonian defined as 

𝐻[𝑒௜ , 𝜕௘𝑉௜(𝑒௜ , 𝑚, 𝑡)] = 𝐿(𝑒௜ , 𝑢௜) + Φ(𝑚, 𝑒௜) 
+𝜕௘𝑉௜(𝑒௜ , 𝑚, 𝑡)்[𝑓(𝑒௜) + 𝑔(𝑒௜)𝑢௜] 

(5)

Then, similar to  (Lewis and Vrabie, 2009), the optimal 
control for each individual agent is 

𝑢௜
∗(𝑒௜) = −

1

2
𝑅ିଵ𝑔்(𝑒௜)𝜕௘𝑉௜

∗(𝑒௜ , 𝑚, 𝑡) (6)

Since individual agents minimize their own cost to obtain 
the decentralized optimal control 𝑢௜

∗ , the problem can be 
considered as a nonzero-sum stochastic differential game. 
Therefore, there exists a Nash equilibrium {𝑢ଵ

∗, … , 𝑢ே
∗ } such 

that individual agent cost is optimal, i.e., 𝑉௜(𝑢௜; 𝑢ି௜) ≥
𝑉௜(𝑢௜

∗; 𝑢ି௜) , where 𝑢ି௜  represents the control input of all 
agents other than 𝑖 (Carmona and Delarue, 2013). 

To solve the HJB equation (4), the population’s tracking 
error PDF distribution 𝑚(𝑒௜ , 𝑡)  is needed. Recall to MFG 
(Caines, Huang and Malhamé, 2018), the 𝑚(𝑒௜ , 𝑡)  can be 
attained by solving the Fokker-Planck-Kolmogorov (FPK) 
equation based on the “law of large numbers”, i.e., 

𝜕௧𝑚(𝑒௜ , 𝑡) −
𝜎௜

ଶ

2
Δ𝑚(𝑒௜ , 𝑡)

− div൛𝑚𝐷௣𝐻[𝑒௜, 𝜕௘𝑉௜
∗(𝑒௜ , 𝑚, 𝑡)]ൟ = 0 

(7)

where 𝐷௣(. ) denotes 𝜕(. )/𝜕௘𝑢௜
∗(𝑒௜). 

Definition 1: (𝜖ே-Nash equilibrium)(Nourian and Peter E. 
Caines, 2013) Given 𝜖ே > 0, the admissible control laws 
{𝑢ଵ

∗, … , 𝑢ே
∗ }, 𝑢௜ ∈ 𝑈௜ , 𝑖 = 1, … , 𝑁,   for 𝑁  agents generate an 

𝜖ே-Nash equilibrium with respect to the cost 𝑉௜ , 1≤ 𝑖 ≤ 𝑁, 
if 𝑉௜(𝑢௜

∗; 𝑢ି௜) − 𝜖ே ≤ inf
୳౟∈௎೔

𝑉௜(𝑢௜; 𝑢ି௜), 𝑖 = 1, … , 𝑁 . 

Theorem 1: (𝜖ே -Nash equilibrium)(Nourian and Peter E 
Caines, 2013)  If there exists a unique solution to the 
coupled HJB-FPK equation system, then the optimal control 
laws {𝑢ଵ

∗, … , 𝑢ே
∗ } generate an 𝝐𝑵-Nash equilibrium such that 

lim
ே→ஶ

𝜖ே = 0. 

Remark 1: Theorem 1 requires the solution of the couple 
HJB-FPK equations to uniquely exist. The solution exist and 
is unique under mild conditions (Guéant, Lasry and Lions, 
2011; Caines, Huang and Malhamé, 2018). To obtain the 
optimal design, the coupled HJB-FPK equations must be 
solved simultaneously. However, the HJB equation (4) and 
the FPK equation (7) are nonlinear Partial Differential 
Equations (PDEs) whose solutions are difficult to obtain 
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analytically. In this paper, a novel Spiking Neural Network 
(SNN) Biomimetic Actor-Critic-Mass (B-ACM) learning 
algorithm is developed to solve the coupled HJB-FPK 
equations online. 

 

Fig. 1. An illustration of the proposed Biomimetic ACM 
algorithm based on SNN. The corresponding regions in human 
brain are marked on the cerebral cortex image. 

3. DECENTRALIZED ADAPTIVE OPTIMAL CONTROL 

In this section, the proposed SNN-based B-ACM controller 
is developed. The structure of the B-ACM controller, as well 
as the corresponding brain regions, are shown in Figure 1. 
The controller includes one set of sensing neurons and 
three regions: 1) the sensing neurons sense the 
environment and encode the information into spikes, 
which is similar to the occipital lobe, 2) the reward region 
and population estimation region approximate the optimal 
cost function and the population’s tracking error PDF, 
which serves the same purpose as the limbic lobe, 3) the 
action region calculates the control input, which is similar 
to the frontal lobe. Next, the B-ACM controller is discussed 
in detail. 

3.1 Spiking Neural Network Model Design 

The Spike Response Model (SRM) neuron model (Gerstner 
et al., 2014) requires minimal computational resources 
without degrading learning performance compared to 
other models such as (Nagumo, Arimoto and Yoshizawa, 
1962; Izhikevich, 2003), etc. We first define the activation 
function for the encoding neurons that encode the inputs 
into the spike times for the output spikes of the 𝑖௧௛ agent’s 
encoding neuron: 

ቐ

𝒕௩,௜ = 𝑙௩(𝑒௜ , 𝑚)

𝒕௠,௜ = 𝑙௠(𝑒௜ , 𝑡)

𝒕௨,௜ = 𝑙௨(𝑒௜ , 𝑚)
 (8)

where 𝒕௩,௜  is the sequence of spike times (spike train) for 

the critic neurons in the reward region, 𝒕௠,௜  is the spike 

time for the mass neurons in the population estimation 
region, and 𝒕௨,௜  is the spike time for the actor neurons in the 

action region.  

The spike train is written in terms of the Dirac delta 
function as: 

𝑆(𝑡) = ෍ 𝛿(𝑡 − 𝑡௞)

௞

 (9)

with 𝑡௞ ∈ 𝒕∙,௜ are the firing times. The spike trains from a set 

of neurons 𝑏௡ , 𝑛 = 1,2, … are transmitted to another 
connected neuron, say 𝑎 , in the form of synaptic input 
current that charges the neuron 𝑎  by increasing its 
membrane potential 𝜇௔ . The neuron 𝑎 fires a spike when 
the membrane potential exceeds a threshold value 𝜇௧௛ . 
Then the membrane voltage returns to the resting potential 
𝜇௥ . Thus, the SRM model can be written as a function that 
maps the input spike trains and output spike trains to the 
membrane potential 

𝜇௔(𝑡) = ෍ 𝑤௔௕೙
ቀ𝜖௔ ∗ 𝑆௕೙

(𝑡)ቁ + (𝜂௔ ∗ 𝑆௔(𝑡))

௕೙

 (10)

where 𝑤௔௕೙
 is the synaptic weight of the connection 

between neuron 𝑎  and 𝑏௜ , 𝑆௔(𝑡)  is the output spike train 
fired by neuron 𝑎 , 𝑆௕೙

(𝑡)  is the input spike train from 

neuron 𝑏௡ , 𝜂௔ is a convolution kernel that models the effect 
of output spike dynamics, the kernels 𝜖௔(𝑡), 𝜂௔ describe the 
postsynaptic potential caused by the input spike train and 
output spike train, respectively. 

3.2 SNN-Based B-ACM Algorithm 

In this section, the actor-critic reinforcement learning 
algorithm (Lewis and Vrabie, 2009) is adopted and 
extended to the Spiking Neural Network (SNN) Biomimetic 
Actor-Critic-Mass (B-ACM) algorithm for massive MAS 
decentralized tracking control. To obtain the decentralized 
optimal tracking control, the optimal cost function and the 
PDF must first be obtained. Therefore, the reward region 
and population estimation region in Fig. 1 are constructed 
to approximate the solution of the HJB equation (4) as well 
as FPK equation (7). The postsynaptic potentials of the 
neurons in these two regions are then sent to the action 
region to approximate the optimal control input. The 
mathematical representation of this process is 
demonstrated as follows. 

The cost function, PDF, and decentralized optimal control 
can be approximated as functions of the postsynaptic 
membrane potential of the output neurons in the 
corresponding regions: 
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⎩
⎪
⎨

⎪
⎧𝑉௜

∗(𝑒௜ , 𝑚, 𝑡) = 𝜙௩,௜ ቀ𝜇௏,௜(𝑡)ቁ + 𝑉଴,௜

𝑢௜
∗(𝑒௜ , 𝑚, 𝑡) = 𝜙௨,௜ ቀ𝜇௨,௜(𝑡)ቁ + 𝑢଴,௜

𝑚௜
∗(𝑒௜ , 𝑡) = 𝜙௠,௜ ቀ𝜇௠,௜(𝑡)ቁ + 𝑚଴,௜

 (11)

where 𝜇௏,௜(𝑡) , 𝜇௨,௜(𝑡) , and 𝜇௠,௜(𝑡)  are the postsynaptic 

potentials of the output neurons of the Critic NN, the Actor 
NN, and the Mass NN, respectively, 𝑉଴,௜ , 𝑢଴,௜, and 𝑚଴,௜ are the 

membrane potentials in the absence of an input spike train.  

Equation (10) shows that the synaptic weights 𝑤௔௕௡
 for all 

neuron connections, which are unknown, are required to 
calculate the postsynaptic membrane potential. We 
estimate the synaptic weights and use the estimates to 
obtain estimates of the membrane potentials. The 
estimates of the membrane potentials can be derived by 
substituting (8) and (9)into (10) to obtain 

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝜇̂௏,௜(𝑒௜ , 𝑚ෝ ௜) = ෍ 𝑤ෝ௏,௜௕೙

ቀ𝜖௏ ∗ 𝑙௏,௜(𝑒௜ , 𝑚ෝ ௜)ቁ + (𝜂௩ ∗ 𝑆௏,௜(𝑡))

௕೙

𝜇̂௠,௜
௣ (𝑒௜ , 𝑡) = ෍ 𝑤ෝ௠,௜௕೙

ቀ𝜖௠ ∗ 𝑙௠,௜(𝑒௜ , t)ቁ + (𝜂௠ ∗ 𝑆௠,௜(𝑡))

௕೙

𝜇̂௨,௜
௣ (𝑒௜ , 𝑚ෝ ௜) = ෍ 𝑤ෝ௨,௜௕೙

ቀ𝜖௨ ∗ 𝑙௨,௜(𝑒௜ , 𝑚ෝ ௜)ቁ + (𝜂௨ ∗ 𝑆௨,௜(𝑡))

௕೙

(12)

where 𝑤ෝ௏,୧ , 𝑤ෝ௠,௜ , 𝑤ෝ௨,௜  are the estimates of the synaptic 

weights’ vectors. Next, we rewrite (11) using the estimates 
of the membrane potentials of the output neurons as 

⎩
⎪
⎨

⎪
⎧ 𝑉෠௜(𝑒௜ , 𝑚ෝ ௜ , 𝑡) = 𝜙௩,௜ ቀ𝜇̂௏,௜(𝑒௜, 𝑚ෝ ௜)ቁ + 𝑉଴,௜

𝑢ො௜(𝑒௜ , 𝑚ෝ ௜ , 𝑡) = 𝜙௨,௜ ቀ𝜇̂௨,௜
௣ (𝑒௜ , 𝑚ෝ ௜)ቁ + 𝑢଴,௜

𝑚ෝ ௜(𝑒௜ , 𝑡) = 𝜙௠,௜ ቀ𝜇̂௠,௜
௣ (𝑒௜ , 𝑡)ቁ + 𝑚଴,௜

 (13)

Substituting (13) and (12) into (4), (7), and (6) gives the 
residual errors 

𝑒௩,௜ = Φ௜(𝑚ෝ ௜, 𝑒௜) + 𝜕௧𝜙௩,௜(𝑒௜ , 𝑚ෝ ௜) +
𝜎௜

ଶ

2
Δ𝜙௩,௜(𝑒௜ , 𝑚ෝ ௜) 

−𝐻[𝑒௜, 𝜕௘𝜙௩,௜(𝑒௜ , 𝑚ෝ ௜)] 
(14)

𝑒௠,௜ = 𝜕௧𝜙௠,௜(𝑒௜ , 𝑡) −
𝜎௜

ଶ

2
Δ𝜙௠,௜(𝑒௜ , 𝑡) 

−div൛𝜙௠,௜(𝑒௜ , 𝑡)𝐷௣𝐻ൣ𝑒௜, 𝜕௘  𝑉෠௜(𝑒௜, 𝑚ෝ ௜)൧ൟ 
(15)

𝑒௨,௜ = 𝜙௨,௜(𝑒௜ , 𝑚ෝ ௜(𝑒௜, 𝑡) +
1

2
𝑅௜

ିଵ(𝑒௜)𝜕௘𝜙௏,௜(𝑒௜ , 𝑚ෝ ௜) (16)

According to the gradient descent algorithm, the B-ACM 
neurons' update law can be obtained as 

Critic neurons in reward region:  

𝑊෡̇௩,௜ = −𝛼௛,௜∇ௐೡ,೔
𝑒௩,௜(𝑒௜, 𝑚ෝ ௜) (17)

Mass neurons in reward region:  

𝑊෡̇௠,௜ = −𝛼௠,௜∇ௐ೘,೔
𝑒௠,௜(𝑒௜ , 𝑡) (18)

Actor neurons in reward region:  

𝑊෡̇௨,௜ = −𝛼௨,௜∇ௐೠ,೔
𝑒௨,௜(𝑒௜ , 𝑚ෝ ௜) (19)

where 𝛼௛,௜ , 𝛼௨,௜ , and 𝛼௠,௜  are learning rates,  

𝑊෡̇௩,௜ = [𝑤ෝ௏,௜௕ଵ 𝑤ෝ௏,௜௕ଶ 𝑤ෝ௏,௜௕ଷ …]்  

𝑤ෝ௩,௜௕೙
 represents weight between the 𝑛௧௛  neuron in the 

hidden layer and the output neuron the 𝑖௧௛ agent. 𝑤ෝ௠,௜௕೙
, 

𝑤ෝ௨,௜௕೙
 have similar definitions. 

Finally, the closed-loop stability analysis is given as follows. 

Theorem 1. (Closed-loop Stability) Given an admissible 
initial control input, actor, critic, and a Mass NN whose 
synaptic weights are selected within a compact set and 
tuned with the tuning laws of (19), (17), and (18). There 
exist constants 𝜶𝒉,𝒊 > 𝟎, 𝜶𝒎,𝒊 > 𝟎, and 𝜶𝒖,𝒊 > 𝟎 such that 

the system tracking error 𝒆𝒊 , actor, critic, and mass 

neurons' synaptic weights estimation errors, 𝑾෢̇𝒗,𝒊 , 𝑾෢̇𝒎,𝒊 , 

and 𝑾෢̇𝒖,𝒊  are all uniformly ultimately bounded (UUB). In 
addition, the estimated cost function, PMF, and control 
inputs are all UUB. 

Proof. Omitted due to page limit. 

4. SIMULATIONS 

In this section, the proposed decentralized adaptive 
optimal Mean Field control is evaluated under the noised 
environment. The map we use is a 2-D map. A total of 1000 
agents were employed, with initial velocities set to zero, 
and positions randomly distributed on the map. We 
designed a search and rescue mission on campus, where 
the planned reference trajectory is : 𝑥௥(𝑡) =
[0.01𝑡 sin(0.1𝑡)]் . 

Next, the intrinsic dynamics functions in (1) for all agents 
are selected as 

𝑓௦(𝑥) = ൥

−𝑥ଵ + 𝑥ଶ

−
1

2
cos(𝑥ଵ)ଶ −

1

2
𝑥ଶ

൩ , 𝑔௦(𝑥) = ൤
0

cos 𝑥ଵ
൨ 

where 𝑥 ∈ ℝଶ represents the agent's position. 

The parameters are selected as 𝑅 = 𝑄 = 𝐼ଶ, 𝛼௛ = 1 × 10ିଷ, 
𝛼௠ = 1 × 10ି଺ , 𝛼௨ = 1 × 10ିସ  and the total simulation 
time is 140𝑠. 

The Mean Field coupling function in cost function (3) is 
selected as the distance between the population mean 
tracking error and the agent's current tracking error, i.e., 

Φ(𝑚௜ , 𝑒௜ , 𝑡) = ‖𝑒௜(𝑡) − 𝔼{𝑚(𝑡)}‖ଶ (20)
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The agents' initial position distribution follows a 2-variant 
normal distribution where the mean vector is [1 1]் and 
the covariance matrix is the identity matrix 𝐼ଶ. 

To estimate the solution of the HJB equation 𝑉௜
∗ , the 

solution of the FPK equation 𝑚௜ , and the MF control input  
𝑢௜

∗, the two-layer SNNs with critic neurons, actor neurons, 
and mass neurons are constructed. The functions 𝜙௩(⋅) , 
𝜙௠(⋅), and 𝜙௨(⋅)  of (11) and (13) are selected as linear 
functions 𝜙(𝑧) = 𝑧. The terms 𝑉଴, 𝑢଴, and 𝑚଴ are set to zero 
for all agents. 

Next, the information encoding functions (i.e., the coding 
neurons) for the critic neurons are defined as 

𝑙௩,௝(𝑒௜ , 𝑚௜) = tansig൫𝑍௝൯ + 𝑡, 𝑗 = 1,2,3, ⋯ ,
(𝑀 + 3)!

𝑀! 3!
 (21)

where 𝑍௝  represents the 𝑗௧௛  term of the expansion of the 

polynomial ∑ (𝑒ଵ + 𝑒ଶ + 𝑚ଵ + 𝑚ଶ)ఉெ
ஒୀଵ , 𝑀 = 4  for actor 

neurons and 𝑀 = 5 for critic neurons. 

The coding neurons for population estimation region are  

𝑙௠,௝(𝑒௜ , 𝑡) = tansig൫𝑍௝൯ + 𝑡,  𝑗 = 1,2,3, ⋯ ,461 (22)

where 𝑍௝  is the terms of the expansion of the polynomial 

∑ (𝑒ଵ + 𝑒ଶ + 𝑚ଵ + 𝑚ଶ + 𝑡)ఉெ
ஒୀଵ  with 𝑀 = 6.  

Finally, the number of neurons in the hidden layer for the 
critic neurons, actor neurons and mass neurons are the 
same as the corresponding coding neurons. The synaptic 
weights between neurons in the encoding layer and hidden 
layer are set equal to 1  while the weights between the 
neurons in the hidden layer and output layer are randomly 
initialized. The ϵ functions in these neurons, (see (12)), are 
all selected as the linear function ϵ(𝑡) = 𝑡 . Similarly to 
(Zenke and Ganguli, 2018) and without loss of generality, 
the second term in (12) is drooped for simplicity because it 
only contributes a small correction to the membrane 
potential. To increase all agents' exploration rate, random 
noise is injected into their control input from the beginning 
to 50 seconds. The random noise can accelerate learning 
and avoid local optimal solution.  

 

Fig. 2. The tracking error PDF plot of vertical tracking error. 
The blue region represents lower density while the yellow 
region represents high density. 

The simulation results are shown in Figs. 2-4. First, the 
tracking error PDF with respect to time is plotted in the 
Fig. 2 and Fig. 3. The purple represents the least common 
error values and the yellow represents the most common 

error values. The plots show that the initial tracking error 
is high and randomly distributed. However, after 53 
seconds, the agents' mean tracking errors are bounded 
near zero and the variance of tracking error distribution 
decreases near zero. This also shows that the system can 
track the reference trajectory. 
 

 
Fig. 3. The tracking error PDF plot of horizontal tracking error. 
The blue region represents lower density while the yellow 
region represents high density. 

 

Fig. 4. The time evolution of HJB equation error for agent 1. 

Then, the performance of the SNNs is studied. The errors of 
the HJB equation, i.e., 𝑒ு௃஻௜  in (14) is plotted to show the 

convergence of the synaptic weights. For brevity, and 
because the plots are similar for all agents, we only plot the 
HJB equation error for agent 1 in Fig. 4 where the error is 
bounded near zero after 50 seconds. 

The convergence of the tracking error and SNN learning 
error, i.e. the HJB equation error, indicates that the online 
B-ACM algorithm effectively approximates the cost 
function, PDF, and optimal control input respectively. The 
simulation is conducted when each agent has limited 
observation capability due to the harsh environment. Each 
agent only needs to solve two 2-dimensional PDEs instead 
of a 1000-dimensional HJB equation. Thus, the 
computational complexity is reduced significantly.  

5. CONCLUSIONS 

In this paper, a novel Actor-Critic-Mass (ACM) learning 
structure has been developed along with Biomimetic 
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neural networks, i.e. Spiking Neural Networks (SNNs). The 
proposed algorithm yields a decentralized optimal tracking 
control for large scale multi-agent systems through 
approximating the solution of coupled HJB-FPK equation in 
real-time. Moreover, the developed scheme can effectively 
reduce the computational complexity due to its 
decentralized structure. Furthermore, a novel SNN 
mechanism has been designed for approximation. The SNN 
contains three critical regions that are the reward region, 
the PDF population estimation region and the action region. 
The three regions can efficiently approximate the solution 
of HJB, FPK, and decentralized optimal control policy 
respectively. Finally, a series of numerical simulations 
demonstrate the effectiveness and efficiency of the 
proposed SNN based B-ACM algorithm. In future work, the 
proposed design will be implemented and evaluated 
through a real-time massive MAS testbed at University of 
Nevada, Reno with the support of the U.S. Federal Aviation 
Administration (FAA). 
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