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Abstract In Smart Manufacturing, the Internet of Things technology brings about new
possibilities as for the interaction of Cyber-Physical Systems with their virtual models—
in Industry 4.0 jargon, Digital Twins. Besides traditional roles in engineering and control
design, Digital Twins cab play innovative ones by evolving together with their cyber-physical
counterpart: predictive maintenance, fault detection, or fast training of data-based decision aid
tools. In this paper we focus on the relevance of dynamic models in this scenario, particularly as
for the co-existence of continuous-time and discrete-event models wherever control and planning
are involved. We argue that in such cases, models with analysis-specific levels of detail have to
co-exist, interact and maintain mutual consistency. We propose a modelling approach to address
the problem, and present a supporting example based on an object-oriented modelling language.

Keywords: Dynamic models; Advanced manufacturing; Production control and management;
Cyber-physical systems; Object-oriented modelling and simulation.

1. INTRODUCTION AND MOTIVATION

This paper is about using Dynamic Models (DMs) in
a Smart Manufacturing (SM) context, often referred to
as Industry 4.0 (I4.0). We focus on the evolution that
this context induces in the roles played by DMs – on
which Digital Twins (DTs) are based – for the engineering
of Cyber Physical Systems (CPSs). DMs serve various
purposes, from design to control up to asset management.
Many such uses are nowadays enabled by the connectivity
boost yielded by the so called Internet of Things (IoT)
technologies, not only within a plant but also involving
the associated industrial processes.

The density of acronyms in the paragraph above is delib-
erate. As technology progresses, engineering domains once
disjoint come to interact. Besides new opportunities, this
brings about possible new inefficiencies due to poorly har-
monised viewpoints on the same entities – and a symptom
is the proliferation of names.

Some years ago, the role of DMs was not so pervasive, nor
so relevant was the idea of transferring models from one
phase to another through the lifetime of an asset. Different
models – not all dynamic – took part in the engineering
of a plant and its control, but their task more or less
ended when the plant was commissioned, or control set up,
or in general, at the end of the design and management
phase that originated them. This was quite natural in a
world where the tools used to make models and controls,
as well as the instrumentation aboard the plant, were so
heterogeneous – or equivalently, designed in so unrelated
ways – to make their interconnection not natural.

Today this is not the case anymore, and as said, new
possibilities come with new problems. One of particular
interest for us, is how to exploit the enormous amount

of data that modern plant instrumentation generates, in
conjunction with the knowledge stored in the DMs used
for its engineering. Said just a bit more brutally, taking
decisions through data analytics is fine, but disregarding
DMs for the same purpose potentially is not. Just as an
example, if a DM based on physical principles is driven
to off-design operation, its outcome can still be trusted as
long as its validity limits, stated in physical terms as well,
are obeyed; guaranteeing the same properties in a purely
data-based context is not equally straightforward.

As will emerge from the brief literature review of Section
2, there is much on how to draw DTs from data, but much
less on the role played in DTs by DMs, and even less about
the integration – whatever is meant for this – of DMs and
data. The above said, the contributions of this paper can
be summarised as follows.

• A literature review on DTs in the SM context, show-
ing the advantages of introducing DMs into DTs.

• A study on structuring DTs for use both in the
absence and the presence of plant data, i.e., both for
asset design/engineering and control/management.

• General clues to integrate DMs into DTs, specifically
using Discrete Event Systems (DEVS) as computa-
tionally efficient replicas – though not totally physical
– of Continuous-Time (CT) ones.

• A discussion on how the resulting modelling approach
lends itself to the various situations seen in manufac-
turing systems, and on the opportunity of represent-
ing those systems with a mixture of CT and DEVS
models.

• A realisation proposal for the said approach, formally
based on a control description language (SFC) and
operationally implemented by means of an Object-
Oriented Modelling and Simulation (OOMS) multi-
physics one (Modelica).
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2. BRIEF LITERATURE REVIEW

A lot has been said in the literature about Smart Man-
ufacturing and its enabling technologies, in particular
CPSs. The CPS concept is defined by Monostori (2015)
as “system of collaborating computational entities which
are in intensive connection with the surrounding physical
world and its on-going processes, providing and using, at
the same time, data-accessing and data-processing services
available on the internet”.

In more technological terms, the definition could read
“a network of computers, (some) instrumented to com-
municate with a physical process, and connected to the
Internet”. This implies that data processing capabilities
are inherent to such systems, but says nothing about what
data elaboration is envisaged. The CPS concept can be
applied at various granularities, from a single component
to an entire machine or “Cyber Physical Production Sys-
tem (CPPS)” (Weyer et al., 2015). Also, the CPS idea
in automation adds the implication that the Physical (P)
part should be the plant, in broad sense, and the Cyber
(C) one should be (or at least contain) its control.

The idea of DT is very similar, but focuses on replicating
the P into the C, thus becoming the part of a CPS devoted
to that specific purpose. However, notwithstanding the
large amount of literature on DTs, there is to date no
unique definition; in general a DT is just associated to
a “digital copy” of the system somehow created by the
CPS (Negri et al., 2017; Tao et al., 2018). As the more
technological and control-oriented counterpart, here too
a DT uses the data collected by the CPS to simulate a
system in a digital environment.

The literature on DTs is vast. We here focus on works
about how a DT is – or should be – employed, typically
classified by use. In manufacturing, a DT is mostly as-
sociated to system analysis, can be used for scheduling
purposes (Zhang et al., 2019), or for fault prediction and
maintenance (Kritzinger et al., 2018; Lu et al., 2020; Tao
et al., 2018; Macchi et al., 2018). Also, a DT should
improve performances through the whole plant lifecycle
and with a different level of integration with the real sys-
tem (Kritzinger et al., 2018). Each phase of that lifecycle
could correspond to a set of analyses, compliant with some
standards (Lu et al., 2020). Each analysis, in turn, could
be executed using a collection of models that represent the
same system. Overall, a DT should thus be able to perform
different types of simulation along the whole lifecycle of a
manufacturing system.

Focusing on an SM scenario made of interconnected CPSs,
a DT is generally used for analyses that can be done in
parallel with the system or not: a DT can be used offline
(not necessarily while the real system is running) and (as
the opposite case) online (Borangiu et al., 2019).

• Offline - given a model of a real system, the offline
mode produces a complete simulation with the possi-
bility of defining – depending on the case – some Key
Performance Indicators (KPI).
• Online - the same KPIs of the offline mode are

computed in real time. The DT uses these and/or
the simulation results to understand how much the
system is closer to its digital counterpart.

Talking about offline and online mode operation, this
paper will refer to the above definitions, applied in differ-
ent phases of the lifecycle. The literature illustrates the
uses of a DT for design, production, and maintenance
through purpose-specific models (Negri et al., 2017). Also,
a novelty that can enhance the production efficiency and
productivity, would be the introduction of a control action
directly from a DT based on operation conditions (Tao
et al., 2018).

There is to date no unique architecture for DTs to sup-
port all these features. There exist different purpose- or
problem-tailored ways to build a DT: Cimino et al. (2019)
outlines this through a systematic review on DT applica-
tions, highlighting that most DTs are built based on data,
hence replicate the system dynamics as long as those data
are representative. Such DTs have knowledge about the
history of a system but, without the dynamic provided
by physical DMs, they can deal only with the already
occurred behaviours. To include control in the possible
online roles of the DT – neglecting the difficulties that
must be considered when talking about CPS based control,
not discussed in this paper – the classical control theory
has to be recalled. A model of the considered plant is
needed for real time control. As shown in Figure 1, an
example of DT for a feedback control system consists in
a model of the plant that is fed, in parallel with the real
plant, with the output of the controller.

Figure 1. DT control with the use of the DM of a plant

DMs are also useful for fault prediction and maintenance.
To this end, the same plant and DM can be used both
offline and online. A DT can also be used for fault
prediction and maintenance (online).

• Offline – through simulation-based computation of
KPIs, related to maintenance and fault prediction.

• Online – The same simulation and/or KPIs of the
offline mode can train the system to recognise the
faults online. Once the system is installed, this should
reduce the training time as exemplified in Figure 2
(Zhang et al., 2019).

time

Production line installed

Training time with simulations

tT

Training time
with hystorical data

tD

Figure 2. Training time reduction with DM simulations

In synthesis, in the literature DTs are widely mentioned
in manufacturing for different purposes. Although these
systems – at each level of detail – are already represented
by different models, these are mostly based on data (as
opposite to DMs). In this respect, the introduction of DMs
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in a DT could improve their use in the whole lyfecycle.
DMs give the possibility of controlling the system from
a DT, and can also enhance predictive maintenance and
fault detection. Control through a DT with DMs is well
suited for application at different levels of details and to
different models, corresponding to the representation of a
system in its different characterisations. The difficulty lies
in managing DM-endowed simulations of each problem-
tailored representation.

3. MANUFACTURING PLANT SIMULATION

We now focus on the manufacturing context. According to
literature and applications, here a DT has neither a single
representation nor a single role. On the contrary, it has
different definitions applicable to the distinct roles that
it can assume. It is highly desirable that a DT replicates
the system from the beginning of its life cycle and gives
information about it at several levels of detail. Then, to
obtain different analyses, there is the need to represent
each system throughout all its levels of detail.

The realisation of such an ambitious task involves several
aspects. The processes in manufacturing are various and
can be divided into simpler subsystems, each with different
representations, more or less complicated in reference to
the required level of detail (e.g. the production line, the
single machine, the process, the tools). Moreover, this
concept is also related to the dynamics to be described,
including the relevant controls.

A case study on the creation of a digital copy of a real sys-
tem, is described in (Cannon et al., 1991; Turvesky et al.,
2007b,a) referring to a digital replica of an airplane from
the beginning, starting from the geometrical properties.
Design choices define the aerodynamics of the vehicle, then
the various parts of the project are interconnected with one
another and the simulation of each single dynamic of the
components brings to the complete design of the airplane
and to the final flight simulation. Then the process contin-
ues to the code building, the flight testing and the analysis
of the flight data. The results obtained from the analysed
case study are good tools to simulate the system allowing
for an estimate of the performances and handling qualities
well before any hardware is built, reducing design costs
and preventing errors. This approach is also promising in
the case of manufacturing systems. However it has to be
well noticed that notwithstanding the success of model-
based engineering in the avionic domain and similar ones,
attempting to replicate the story in the manufacturing
context is a hard task: systems are far more heterogeneous
and complex, there is far less standardisation, production
processes are continuously modified, re-designed, joined
and split. In one word, after the initial design, engineering
and operation continue to co-exist on a daily basis.

Considering the available space, to exemplify, we study
the use case of a laboratory apparatus composed by
an heater and a mechanical stirrer – that could well
be part of a production line – and attempt (in small
scale) to replicate the same approach of the avionics case
sketched above. Systems like this are mostly represented as
DEVS, namely with a model based on the events occurring
during the production (Mourtzis et al., 2014; Jahangirian
et al., 2010). As a possible part of a production line, the

considered process can be represented as a DEVS like in
Figure 3, in sequence: a generator of events that randomly
decides when an entity – in this case each piece to be
heated – entered the system, a buffer that accumulates a
queue of pieces, a model that simulates the service time –
in this case the process time – and an event terminator to
visualise the heated pieces leaving the system.

Event
Generator

[ti]
Buffer

Service
[ts]

Event
Terminator

Figure 3. Generical DEVS representation

When dealing with DEVSs, event instants are generally
not deterministic but based on statistical distributions,
therefore DEVS models are in general stochastic. In the
example above, as common in DEVS models, both the
generator of the events and the time process are decided
by probabilistic distributions. In practice, however, only
the events that decide the part inter-arrival time – ti in
Figure 3 – is properly stochastic, while the processing
(service) time ts would be better described by the physics
of the system through a DM, confining stochasticity to the
physical entities and quantities that are really subject to it.
The only way to connect the probabilistic distribution of
the process time with the controlled system is to consider
all the possible parameters of the system that can produce
some variability to the process time and compute multiple
simulations of the process according to that variability.
Also, the DEVS system – as represented above – is
poorly scalable in the level of detail. In particular, when
expressing the process plant with a unique DM of the
system the relation between parameters and level of detail
is not so clear.

To visualise the concept, considering the laboratory appa-
ratus use case, the DM of the plant would be represented
by the transfer function 1 that relates the difference be-
tween the liquid temperature and the air temperature (TL)
to the heating power (Ph). The variation of the system is
given by the parameters a, t1, t2.

P (s) =
TL

Ph
=

a

(1 + t1s)(1 + t2s)
(1)

In the system, t1, t2 are the two time constants of the
process, that in turn relates to the equations of the physical
process. In the mentioned example, they can derive from
the variability of a heat exchange coefficient or from the
variability of the contact area during the heating process.
Such correlation represents the scalability in the level of
details. In short:

• In general, in a DEVS representation, it is possible to
decide the level of detail only changing the probability
distribution related to the variability of a set of
system parameters;

• The DMs provides the description of the physical
processes, that relates the parameter variability of
the system with the probability distribution (from
simulation results).

What is missing is the definition of a standard architecture
that associate the correct DM to each level of detail of the
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system, being manufacturing systems really various, and
with deep scalability. As a consequence, with the intro-
duction of DMs in DEVS for manufacturing environment
modelling, it is possible to:

• Give a physical meaning to the probability distribu-
tions coming from DEVSs;
• Understand which are the right parameters to include

in the computation of the said probability distribu-
tions (among the large set of parameters that can be
found in a manufacturing system).

A consistent representation can be identified in an existent
structure, the Sequential Functioning Charts (SFC); the
choice will be better motivated in Section 4.

4. SFC MODEL BASED WITH OO LANGUAGE

Until now we talked about DTs in CPS-based manufac-
turing. The idea of introducing DMs into a DT, could
enlarge its role from control to fault detection and predic-
tive maintenance. Though the majority of manufacturing
systems are simulated with DEVSs alone, a connection
between DEVS and DMs could help confine stochasticty
in DEVS simulation and related it to the physics of the
system. As said in Section 3, such a link requires a for-
malism to provide (i) scalability in the level of detail, (ii)
integration with the control strategy, and (iii) representing
the dynamics of the system.

Thinking e.g. of the laboratory apparatus example of
Section 3, the control logic is well described by models
based on the IEC 61131(Controllers-Part, 2013) standard
on expressing the logic control systems defining five pro-
gramming languages (Otto and Hellmann, 2009). Among
them, the language that follows this standard and that
gives also a good representation of the system for opera-
tions, control design and simulation is the well known SFC,
introduced under the french name of GRAphe Fonctionnel
de Commande Etapes/Transitions (GRAFCET). A lot
can be found in the literature about the description of
systems using this representation.SFC is mainly based on
two concepts, represented in Figure 4:

• The phase, where certain actions are performed;
• The transition, that allows to change the set of active

phases when an event occurs.

Phase Actions

Conditions
Transition

Figure 4. SFC basic elements.

The SFC for the laboratory apparatus example in Section
3 is shown in Figure 5, referring to a heated stirrer. In the
initial state 1, the system is initialised by setting no control
action (AUTO=0) and the stirrer OFF (CMDOFF). State
2 becomes active when the stirrer is actually OFF. When
the START button is pressed, state 3 becomes activate
until the sensor detects the presence of liquid (Li). When
the system reaches state 4, the control action is activated
(AUTO=1) and the liquid temperature set point is fixed

1
P| AUTO=0

P| CMDOFF

SOff

2

Start

3

Li

4
P| AUTO=1

P| T L
0 = T̄

T L = T L
0−TOL

5 P| CMDON

SOn

6

6

T P6 >= 120s

7 P| AUTO=0

T L <= 20o+TOL

8 P| CMDOFF

SOff

9

T P9 >= 60s

10 P| FINISH=1

Start

3

Figure 5. Example: SFC of a laboratory apparatus

(TL0 = T̄ ). State 5 fires when the measured liquid temper-
ature TL becomes equal to the desired temperature within
a tolerance, and the stirrer is switched ON (CMDON).
Once the stirrer is ON (Son) the system reaches state 6
and remains there for 2 minutes. After that, the system
arrives in state 7 where the control action is deactivated
(AUTO=0), and when the temperature goes below 20◦C,
the system goes in state 8 and the stirrer is turned OFF
(CMDOFF). When the stirrer is OFF (SOff) the system
goes in state 9, stays there for 1 minute and reaches
the final state 10, send the FINISH signal and waits for
another START signal to start over from state 3. The
simulation results of the described example is illustrated
in Figure 6, from bottom to top: the first plot exhibits
the evolution of the system through its phases, the second
and the third ones are respectively the behaviours of the
control action (Ph) and the controlled variable (TL).

Figure 6. Example simulation with fixed parameters: a =
0.7, t1 = 40, t2 = 2

As said in Section 2, in detail, the time constants of this
specific operation depend on a heat exchange coefficient,
whose variations around a nominal value impact the total
heating time. To prove it, the represented system was sim-
ulated 1000 times: in each simulation the heat coefficient
was varied based on a Gaussian random generator. This
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yielded a variation of the time constant t1 in a range
[−10, 10] around the nominal. The resulting heating time
distribution is depicted in Figure 7.

Figure 7. Heating time distribution varying the heat coef-
ficient

Figure 7 suggests that, in general, the process times do
depend on their DMs, that relies on the level of detail
of its representation given by a set of parameters that
may vary in the system. Also, a variation given by a
Gaussian number generator does not produce a Gaussian
distribution, and this is related to both the variability of
physics and to the control action.

This representation permits the co-existence of continuous
models with the event-based ones and can be easily ex-
tended or reduced in order to describe less or more levels
of detail of the system. Above, we talked about the level of
detail in reference to the set of parameters used in a DM
of a process, but the level of detail can be also referred
to the processes of a system that are described by a DM
in a SFC. Taking again the example into consideration,
if the stirrer is automated, it could be described by its
control logic and then can be included in the PLC. As
illustrated in Figure 8, the SFC could be extended adding
a state SD-On where to set the automatic mode of the
stirrer (AUTOstirrer = 1) and a set point for the stirrer
speed (vS = v̄). Consequently, a command is added to
deactivate the control action of the stirrer in state 8 and
then the stirrer is turned OFF (CMDOFF). In this case,
not only the time constant of the on/off process of the
stirrer is considered – as in the example in Figure 5 – but
also its controlled dynamic, knowing the related DM of the
stirrer (that relates the speed to a control variable).

5 P| CMDON

SOn

SD-On
P| AUTOStirrer = 1
P| vSo = v̄

vS = vSo−TOL

6

T L = 20o+TOL

8 P| AUTOStirrer = 0

SOff

9

Figure 8. Changes of the SFC of the laboratory apparatus
example to include the stirrer dynamic

In synthesis, a system can be identified by a series of
processes, each one can be considered or not and described
by its control logic, based on a DM. A first level of detail is

given by the presence of a DM for each process. Each DM
in turn can provide different levels of detail of each process,
that correspond to a different description of it and then to
several sets of parameters that can bring variability to the
process. To implement such a structure in a way that can
be created in future directly from a DM based system,
the language selected is an Object-Oriented (OO) one.
The simulation environments that use these languages can
handle multi-physic systems – needed to model the larger
possible range of systems in a manufacturing environment
– and can relate event-based systems with continuous time
ones (Mattsson et al., 1998; Fritzson, 2010).

Once chosen the environment and the language to imple-
ment the identified structure, the SFC correlates DEVSs
and DMs maintaining three main features:

(1) Scalability in the levels of detail. As seen from the
example in Figure 5 and 8, a SFC representation
can be made scalable paying attention to the object
abstracted in the OO language;

(2) Integration with the control strategy. The SFC stan-
dard by definition represents the control logic. Plant
models in OO language can be interconnected with
their controls, and in doing so the SFC logic control
representation can be described as an input/output
systems, considering (i) the outputs correspond to the
actions to be performed in a specific phase, and (ii)
the inputs correspond to the conditions that trigger
the transition and consequently the switching from
one active phase to another.

(3) Dependency on DMs. SFC gives the possibility to
connect to the input/output representation differ-
ent DMs, using different dynamic representations de-
pending on the required level of detail.

Phase Actions

Conditions

Figure 9. Possible SFC blocks in OO language

The implementation process is still in progress. A possi-
ble result is envisaged in Figure 9 as the OO language
objects represent the SFC. The arrows in the “transition
conditions” and in the “action to perform” are respectively
inputs and outputs of the SFC representation. Notice that
the Input/Output model created coincides with the PLC
standards and is convenient to test the control strategies in
simulation (Otto and Hellmann, 2009). The library under
development is compatible with the SFC structure and the
modelling purposes, and corresponds to the DT concept in
a CPS-based SM environment.

5. CONCLUSION AND FUTURE WORK

A DT can assume different roles in a CPS-based SM
scenario, from design to control and maintenance. There is
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however still some confusion on its operating modes, and
on the models to represent a manufacturing environment
accounting for its multiple products and the various re-
quired detail levels. Also, according to the literature on
DTs, most of the used models are based only on data.

In this paper we considered the introduction of DMs in a
DT and its possible integration with other models, in turn
dependent on the dynamic of the systems, and pointed
out the main reasons for the use of DMs. The resulting
DT should be capable of integrating different simulation
analyses and detail levels in the same digital environment,
and exchange information among those analyses. This
structure was discussed in association with the possible
operating modes of a DT. The discussed environment
where all the simulations – based also on different models –
can interchange information among each others, is placed
in the offline mode and can lead to other consequent offline
operations, i.e. the computation of KPI or the training of
a system (Figure 10). Then the offline mode can support
numerous online operation, i.e. system or subsystem con-
trol, maintenance strategies, fault detection or different
real-time comparisons with simulations (Figure 10).

Real Manufacturing System

DT environment

Offline Online

Integrated scalable
simulations

DEVS

Others

DMs

SFC

KPIs identification

Training

Set a control logic

Real-time comparison

Maintenance

Figure 10. DT uses in a Manufacturing environment

As a result of the above considerations, and also of the
reported minimal analysis about the role of stochasticity
and poor scalability in the level of detail that one experi-
ences when representing the dynamics of a system through
non problem-tailored DMs and thus DTs, we devised a
modelling approach based on the use of SFC models, and
targeting an OOMS language. The SFC-OOMS structure
implementation is still in progress – we reported a pre-
liminary example – but it is a good starting point for a
research path to create the environment discussed above.
Future work will be focused in the implementation of a
library that can describe the SFC in OO language. Then,
the research will be dedicated more on obtaining the SFC
representation directly from the correspondent DM for the
required level of detail.
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