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Abstract: This paper presents an observer design for estimation of thermoacoustic instabilities
in a Rijke tube. To study this problem, we consider that the acoustic dynamics is represented by
the wave equation with a point source term representing the heat release. In turn, the heat release
dynamics is given by a first-order ordinary differential equation (ODEs). The observer, whose
design is based on the backstepping methodology, relies on measurements of acoustic pressure
and velocity at an arbitrary point of the domain. The design employs a folding transformation
(with two folds) around the measurements and the heat release point, allowing to write the
system into a form with more states but boundary measurements and ODE couplings. Then,
we formulate a well-posed and invertible integral transformation with both triangular and full
terms that maps the observer error dynamics into an exponentially stable target system. The
theoretical results were tested through numerical simulations in order to show the effectiveness
of the design.
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1. INTRODUCTION

The thermoacoustic phenomenon is described by high lev-
els of sound produced due to the feedback between heat
release rate fluctuations and acoustic pressure fluctuations
in confined spaces. In some applications these oscillations
are important to the successful operation of the system.
However, in most cases this phenomenon remains a serious
problem. Examples are steam and gas turbines, industrial
burners, and jet and ramjet engines. In such applica-
tions, thermoacoustic instabilities are undesirable due to
vibrations resulting in mechanical failures, high levels of
acoustic noise, high burn rates, and component melting
(Annaswamy and Ghoniem, 1995). Moreover, suppressing
these oscillations is essential to achieve higher efficiencies
and increasing the performance of the system.

Thermoacoustic instabilities are also observed in simpler
devices, such as the Rijke tube benchmark, where the
phenomenon can be reproduced without the presence
of a combustion process. This makes the modeling and
system analysis more tractable while still representing,
with significant accuracy, combustion instabilities.

In this context, several researchers have focused on the
modeling and control problem of the Rijke tube, with
Heckl (1988) being one of the first to consider the open-
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loop stability analysis and control design. Recent results,
such as Olgac et al. (2014); Epperlein et al. (2015),
have focused in the distributed nature of the system
with a frequency domain approach. Delayed feedback PI
controllers were proposed in Zalluhoglu et al. (2016). Port-
Hamiltonian control methods have also been recently used
in Vincent et al. (2019).

In de Andrade et al. (2018b), we have applied the in-
finite dimensional backstepping methodology to design
a state feedback control law to mitigate thermoacoustic
oscillations in the Rijke tube, using the concept of folding
(Vazquez and Krstic, 2016; Chen et al., 2019a,b). The
idea of folding transformations is to separate the PDEs
into different spatial domains, and impose compatibil-
ity conditions on the resulting internal boundaries. This
technique admits a design parameter (named the folding
point) which, in our case, was chosen as the ODE coupling
point in order to displace it to the boundary conditions.
This allowed us to map the system into an equivalent
one with more states, but boundary couplings, to which
backstepping could be applied.

To extend this result to an output control law, a back-
stepping boundary observer was developed in de Andrade
et al. (2018a). However, in this previous work we only con-
sidered boundary acoustic pressure measurements, which
may be problematic because an open end tube typically
induces acoustic pressure nodes at the boundaries (Morse
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and Ingard, 1968). Consequently, sensors installed in those
points may give poor measurements.

This paper is an extension of our previous work (de An-
drade et al., 2018a), where in-domain pressure and velocity
measurements are considered in the backstepping observer
design. The same idea of folding is now applied, but
now with a double fold, with the second folding done at
the in-domain measurement point in order to translate
it to the boundary. This allows us to map the system
into an equivalent one with even more states, but bound-
ary measurements and couplings. As before, the resulting
equations have a non-strict-feedback form which restricts
the choice of the backstepping transformation and target
system. This issue is tackled, as in (de Andrade et al.,
2018a), by formulating a well-posed and invertible integral
transformation with triangular and full terms that maps
the plant into an exponentially stable target system. The
resulting target system is exponentially stable at the zero
equilibrium point of the error dynamics. In addition, the
observer gains are computed by an explicit expression
depending on the kernels, which in turn are exactly calcu-
lated from the kernel equations. These theoretical results
are tested through numerical simulations in order to show
the effectiveness of the design.

The paper is organized as follows. A brief presentation
of the linear mathematical model of the phenomenon of
thermoacoustic instabilities in the Rijke tube, as well as
the state estimation problem and folding transformation
are described are described in Section 2. The backstepping
observer design is detailed in Section 3. The result is
summarized in Section 4 where we state the theorem
proved in this work. Simulation results are presented in
Section 5. Finally, the conclusions and future works are
highlighted in Section 6.

2. IN-DOMAIN STATE ESTIMATION OF
THERMOACOUSTIC INSTABILITIES OF THE

LINEARIZED RIJKE TUBE

2.1 Statement of the problem

The linearized model of the Rijke tube can be captured by
the following equations (Epperlein et al., 2015):

∂tv(t, x) +
1

ρ
∂xP (t, x) = 0, (1)

∂tP (t, x) + γP∂xv(t, x) =
γ

A
δ(x− x0)Q(t), (2)

τhrQ̇(t) +Q(t) = f ′(v)(Tw − T gas)v(t, x0), (3)

where t ∈ [0,+∞) is the time [s], x ∈ [0, L] is the space [m],
and δ is the Dirac delta distribution [1/m]. The distributed
state v stands for the velocity fluctuations [m/s], and P
for the pressure fluctuations [Pa]. The steady-state velocity
[m/s], density [kg/m3] and pressure [Pa] are given by v, ρ
and P , respectively. The tube cross-section area [m2] is
given by A, the heat capacity ration is given by γ = CP

Cv
,

where Cp and Cv are the specific heat capacity [J/(kg K)]
at constant pressure and volume conditions respectively,
x0 is the location of the heat release source [m], and Q
is the heat power release [W]. τhr > 0 is the heat release

time constant [s], f(v) = lw(κ + κv
√
|v|) > 0 is the heat

power transfer, whereas lw is the wire length [m], κ is the

fluid thermal conductivity [W/(m K)], κv is an empirical
constant, and γ̄ = γ − 1 > 0. Finally, Tw and T gas, with
Tw−Tgas > 0, stand for the wire and gas temperature [K],
respectively.

System (1)-(3) is subject to the following boundary con-
ditions:

P (t, 0) = −Z0v(t, 0) + U(t), P (t, L) = ZLv(t, L),
(4)

where ZL 6= 0 and Z0 6= 0 are reflection losses [Pa s/m]
and U is the control variable [Pa].

The initial condition of (1)-(4) is given by

v(0, x) = v0(x), P (0, x) = P0(x), Q(0) = Q0,

with Q0 ∈ R and v0, P0 ∈ L2([0, L]).

The in-domain observer problem is then the problem to
design an observer that provides accurate online estimates
of both the finite-dimensional state Q and the distributed
state variables P and v. The observer must only make use
of the system input U (although closed-loop control is not
investigated in this paper) and outputs

y1(t) = P (t, xm), y2(t) = v(t, xm), (5)

with xm ∈ (0, L).

Remark 1. In de Andrade et al. (2018a), the observer
design is investigated for (1)-(4) with measurements of
P (t, L). The results considered here are more general
than the one in de Andrade et al. (2018a), even though
more measurements are considered. More importantly, the
resulting estimator is expected to be more reliable, as the
point xm can be chosen such that pressure nodes (which
can distort the measure) are avoided.

2.2 Characteristic coordinates

Consider the following change of coordinates:

P (t, x) =
1

2
(R1(t, x) +R2(t, x)), (6)

v(t, x) =
1

2
√
γPρ

(R1(t, x)−R2(t, x)). (7)

With this change of coordinates, the system (1)-(4) can be
rewritten as 2× 2 transport PDEs convecting in opposite
directions with a point source term:

∂tR1(t, x) + c∂xR1(t, x) =
γ̄

A
δ(x− x0)Q(t), (8)

∂tR2(t, x)− c∂xR2(t, x) =
γ̄

A
δ(x− x0)Q(t), (9)

τhrQ̇(t) = −Q(t) + q(R−1 (t, x0)−R+
2 (t, x0)), (10)

where c =
√
γ Pρ is the speed of sound [m/s], and q =

f ′(v)(Tw−Tgas)
2
√
γPρ

> 0n.

In addition, the boundary conditions (4) are rewritten to

R1(t, 0) = k0R2(t, 0) + 2U(t), R2(t, L) = kLR1(t, L),
(11)

with kL = ZL−ρc
ZL+ρc

and k0 = Z0−ρc
ZL+ρc

.

Finally, using (6)-(7) in (5) we obtain the following out-
puts:
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y1(t) =
1

2
(R1(t, xm) +R2(t, xm)) , (12)

y2(t) =
1

2
√
γPρ

(R1(t, xm)−R2(t, xm)) . (13)

2.3 Folding transformation

In this section we propose a transformation to remove
the Dirac delta distribution in (8)-(9) and to translate
the measurements (12)-(13) to the boundary conditions.
Importantly, the transformation must be separated into
two different cases: (i) for xm > x0 and; (ii) for xm < x0.
For sake of brevity, only the first case will be developed
in this paper. The other case can be obtained in a similar
fashion.

Let x0 and xm be the points to fold the system (8)-(11).
We then consider the following piecewise definition of R1

and R2:

R1(t, x) =

{
α1(t, x), x ∈ [0, x0],
β2(t, x), x ∈ [x0, xm],
α3(t, x), x ∈ [xm, L],

(14)

R2(t, x) =

{
β1(t, x), x ∈ [0, x0],
α2(t, x), x ∈ [x0, xm],
β3(t, x), x ∈ [xm, L],

(15)

and define the following piecewise spatial transformation
in z:

z =



x

x0
, x ∈ [0, x0],

L− x
L− x0

, x ∈ [x0, xm],

x− xm
L− xm

, x ∈ [xm, L].

(16)

This set of scaling and folding transformations allows us to
map the system (8)-(11) into the following matrix system:

∂tα(t, z) + Λ∂zα(t, z) = 0, (17)

∂tβ(t, z)− Λ∂zβ(t, z) = 0, (18)

τhrQ̇(t) +Q(t) = q(α1(t, 1)− α2(t, 1)), (19)

where

α = (α1, α2, α3), β = (β1, β2, β3),

Λ = diag(λ1, λ2, λ3),

with λ1 = c/x0, λ2 = c/(xm − x0), and λ3 = c/(L− xm).

Applying (14)-(16) into (11), we obtain the following
boundary conditions:

α(t, 0) =Niβ(t, 0) +NuU(t), (20)

β(t, 1) =Nfα(t, 1) +NqQ(t), (21)

where

Ni =

(
k0 0 0
0 0 1
0 1 0

)
, Nu =

(
2
0
0

)
,

Nf =

(
0 1 0
1 0 0
0 0 kL

)
, Nq =

(
c1
c1
0

)
.

Finally, (12)-(13) are rewritten to

β2(t, 0) =y1(t) +

√
γPρ y2(t), (22)

β3(t, 0) =y1(t)−
√
γPρ y2(t). (23)

In this framework, the in-domain observer problem can be
restated as the boundary observer problem (17)-(21) with
measurements (22)-(23). Our objective now is to design an
state observer for these equations.

3. OBSERVER DESIGN AND ERROR DYNAMICS
ANALYSIS

3.1 Observer design

Let α̂i and β̂i, for i ∈ {1, . . . , 3}, and Q̂ be the estimated
states. We design the observer as a copy of (17)-(21) plus
output injection terms:

∂tα̂(t, z) + Λ∂zα̂(t, z) = −p+(z)ỹβ2
(t), (24)

∂tβ̂(t, z)− Λ∂zβ̂(t, z) = −p−(z)ỹβ2
(t), (25)

τhr
˙̂
Q(t) + Q̂(t) = q(α̂1(t, 1)− α̂2(t, 1))− pQỹβ2

(t), (26)

with boundary conditions

α̂(t, 0) = Niβ̂(t, 0) +NuU(t) + pbcỹ(t), (27)

β̂(t, 1) = Nf α̂(t, 1),+NqQ̂(t) (28)

In (24)-(28), p+, p−, pQ and pbc are the gains to be found,
with

p+ = (p+1 , 0, 0), p− = (p−1 , p
−
2 , 0),

pbc =

 p1bc p
2
bc

p3bc p
4
bc

p5bc p
6
bc

 , ỹ = (ỹβ2
, ỹβ3

),

and

ỹβ2
(t) = β2(t, 0)− β̂2(t, 0) = β̃2(t, 0),

ỹβ3
(t) = β3(t, 0)− β̂3(t, 0) = β̃3(t, 0).

Remark 2. Only the output yβ2 is injected in equations
(24)-(26). We have used two in-domain point measure-
ments to compute the states in the characteristic coor-
dinates from both sensors, which would not be possible if
only one state were measured.

3.2 Target system

Define the estimation error as α̃i = αi − α̂i, β̃i = βi − β̂i,
for i ∈ {1, . . . , 3}, and Q̃ = Q − Q̂. Then, using (17)-(21)
and (24)-(28), we obtain the following error dynamics:

∂tα̃(t, z) + Λ∂zũ(t, z) = p+(z)ỹβ2
(t), (29)

∂tβ̃(t, z)− Λ∂zβ̃(t, z) = p−(z)ỹβ2(t), (30)

τhr
˙̃Q(t) + Q̃(t) = q(α̃1(t, 1)− α̃2(t, 1)) + pQỹβ2

(t), (31)

with boundary conditions

α̃(t, 0) =Niβ̃(t, 0)− pbcỹ(t), (32)

β̃(t, 1) =Nf α̃(t, 1) +NqQ̃(t), (33)

Note that the error dynamics behavior is similar to the
open-loop system (17)-(21), which is potentially unstable.
Therefore, we must design the observer gains in order to
make (29)-(33) exponentially stable. In particular, we seek
to map (29)-(33) into the following target system:

∂tα̌(t, z) + Λ∂zα̌(t, z) = 0, (34)

∂tβ̌(t, z)− Λ∂zβ̌(t, z) = 0, (35)

τhr
˙̌Q(t) + (qc1 + 1)Q̌(t) = −qα̌2(t, 1), (36)
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with boundary conditions

α̌1(t, 0) = k0β̌1(t, 0), (37)

α̌2(t, 0) = 0, (38)

α̌3(t, 0) = 0, (39)

β̌(t, 1) = Nf α̌(t, 1) +NqQ̌(t). (40)

Lemma 1. Consider system (34)-(40) with initial condi-

tion (α̌1,0, α2, 0, α3, 0, β̌1,0, β̌2,0, β̌3,0, Q̌) ∈ (L2(0, 1))
6 ×

R. Then, the zero equilibrium point of (34)-(40) exponen-
tially stable in the L2 sense.

The proof of Lemma 1 can be constructed by considering
the explicit solution of (34)-(40).

3.3 Backstepping transformation

To map the error dynamics (29)-(33) into the target
system (34)-(33), we use the following transformation
(de Andrade et al., 2018a):

Q̃(t) = Q̌(t) +

∫ 1

0

KQ(ξ)β̌2(t, ξ)dξ, (41)

α̃1(t, z) = α̌1(t, z) +

∫ 1

0

K1(z, ξ)β̌2(t, ξ)dξ, (42)

β̃1(t, z) = β̌1(t, z) +

∫ 1

0

S1(z, ξ)β̌2(t, ξ)dξ, (43)

β̃2(t, z) = β̌2(t, z) +

∫ z

0

S2(z, ξ)β̌2(t, ξ)dξ. (44)

Introducing (41)-(44) into (29)-(33), applying (34)-(36),
integrating by parts and substituting the boundary con-
ditions (37)-(40), we obtain that (41)-(44) maps (29)-(33)
into (34)-(40) if and only if the kernels satisfy the following
equations:

λ2∂ξK1(z, ξ)− λ1∂zK1(z, ξ) = 0, (45)

λ2∂ξS1(z, ξ) + λ1∂zS1(z, ξ) = 0, (46)

∂ξS2(z, ξ) + ∂zS2(z, ξ) = 0, (47)

τhrλ2K
′
Q(ξ)−KQ(ξ) = −qK1(1, ξ), (48)

with boundary conditions

K1(z, 1) = S1(z, 1) = 0, KQ(1) =
q

τhrλ2
, (49)

In addition, the observer gains are given by

p+1 (z) = −λ2K1(z, 0), (50)

p−i (z) = −λ2Si(z, 0), i ∈ {1, 2}, (51)

pQ = −τhrλ2KQ(0). (52)

pbc =

(
0 0
0 1
1 0

)
. (53)

Besides, substituting (42)-(44) into the boundary condi-
tions (32)-(33), we get that

K1(0, ξ) = k0S1(0, ξ), (54)

S1(1, ξ) = c1KQ(ξ), (55)

S2(1, ξ) = K1(1, ξ) + c1KQ(ξ), (56)

3.4 Well-posedness of the kernel equations and invertibility
of the backstepping transformation

Unique solution of the kernel equations

To find the unique solution of (45)-(49), (54)-(56) we
take into account the Riemann invariant property of these
equations and use the method of characteristics, which
allows us to find an explicit solution.

Solution of the K1 kernel. Following the characteristic
lines of (45), taking into account that K1 is constant along
the characteristics and applying boundary conditions (49)
and (54) we get that

K1(z, ξ) =


0, if

λ1
λ2
ξ + z ≥ λ1

λ2
,

k0S1

(
0, ξ +

λ2
λ1
z

)
, otherwise.

(57)

Solution of the S1 kernel. Integrating (46) along its
characteristic lines and plugging boundary conditions (49)-
(55)

S1(z, ξ) =


0,

λ1
λ2

(ξ − 1) ≥ z − 1,

c1KQ

(
ξ − λ2

λ1
(z − 1)

)
, otherwise.

(58)

Solution of the S2 kernel. Applying the method of
characteristics into (47) and considering the boundary
condition (56), we obtain the following explicit solution
for S2:

S2(z, ξ) = K1(1, 1− z + ξ) + c1KQ(1− z + ξ), (59)

for all z ∈ [0, 1] and ξ ∈ [0, 1].

Solution of the KQ kernel. The explicit expressions of

(57) allows us to rewrite (48) as a delay differential
equation with boundary condition given by (49) (it can be
solved backwards from ξ = 1 to ξ = 0). Indeed, considering
(57), we rewrite (48) to:

for ξ ∈ [1− 2λ2

λ1
, 1]:

τhrλ2K
′
Q(ξ)−KQ(ξ) = 0, (60)

for ξ ∈ [0, 1− 2λ2

λ1
]:

τhrλ2K
′
Q(ξ)−KQ(ξ) = −qk0c1KQ

(
ξ + 2

λ2
λ1

)
. (61)

Thus, the corresponding solution can be constructed by
using the method of steps (de Andrade et al., 2018b,a).
This result is summarized in the following lemma:

Lemma 2. Consider the following delay differential equa-
tion:

τhrK
′
Q(ξ)−KQ(ξ) = −qk0c1KQ

(
ξ + 2

λ2
λ1

)
, (62)

KQ(1) =
q

τhrλ2
, (63)

KQ(θ) = 0, θ > 1. (64)

Then, there exists a piecewise unique function KQ(ξ) on
ξ ∈ [0, 1] that is absolutely continuous, satisfies (62)-(64)
almost everywhere and is given by

KQ(ξ) =


KQ, 0(ξ), if ξ ∈ Ω0,
...
KQ,n(ξ), if ξ ∈ Ωn,
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where

Ωk =

{
ξ ∈ [0, 1] : 1− 2k+1λ2

λ1
≤ ξ ≤ 1− 2kλ2

λ1

}
.

In addition, the explicit expression of KQ,0(ξ) is given by

KQ(ξ) = − q

τhrλ2
e

1
τhrλ2

(ξ−1)
,

and for n ≥ 1 we have

KQ(ξ) = KQ,n(ξ) =

[
e

2k

τhrλ1KQ, k−1

(
1− 2kλ2

λ1

)
+

qk0c1
τhrλ2

∫ 1− 2kλ2
λ1

ξ

e
− θ−1
τhrλ2KQ, k−1

(
θ + 2

λ2
λ1

) e
1

τhrλ2
(ξ−1)

.

Remark 3. The number of piece in the solution of the
KQ depends on the distance between the location of the
heat release and the measurement point. In particular, the
number of pieces is given by the greater natural number n
such that 1− 2n λ2

λ1
> 0, i.e., 1

2n >
x0

xm−x0
.

With the above results we have proved the following
proposition:

Proposition 1. The kernel equations (45)-(49), (54)-(56)
have a unique solution in (L∞(0, 1))6 × R.

Invertibility of the backstepping transformation

Next, we show the invertibility of the backstepping trans-
formation (41)-(44). Proving such property is crucial to en-

sure that the gains (50)-(51) map (α̃, β̃, Q̃) into (α̌, β̌, Q̌).

First, note that (44) is a Volterra integral equation of the
second kind. Then, by Proposition 1 we know that S1(z, ξ)
is bounded (with a finite number of jump discontinuities),
which in turn means that (44) is invertible, i.e., there exists
an unique kernel L2 such that

β̌2(t, z) = β̃2(t, z) +

∫ z

0

L2(z, ξ)β̃2(t, ξ)dξ.

Noticing the cascade structure (41)-(43) and plugging the
above equation for β̌2 into (41)-(43), an inverse transfor-
mation composed of both Volterra and full integral terms
is computed. Therefore, (41)-(44) are invertible transfor-
mations.

4. MAIN RESULT

The main result of this paper is summarized in the
following theorem:

Theorem 1. Consider system (29)-(33) with initial condi-

tion (α̃, β̃, Q̃) ∈ (L2(0, 1))6 × R and gains p+i , p−i , for
i ∈ {1, . . . , 3}, pQ and pbc defined by (50)-(52), respec-
tively. Then, under the assumption that q, c1 > 0, the
zero equilibrium point of (29)-(33) is exponentially stable
in the L2 sense, i.e., the observer estimates converge to the
values of the states.

Using the results developed in the previous sections, this
theorem can be proved with standard arguments (Krstic
and Smyshlayeav, 2008).

Fig. 1. Estimation error in v(t, x) and P (t, x) as a function
of time and space.

5. SIMULATION RESULTS

This section shows the simulation results, where (17)-
(21) was used as virtual plant, obtained when using the
proposed observer design (24)-(28) with the gains (50)-
(53). These equations were numerically solved using the
HPDE solver for Matlab (Shampine, 2015) with a two-step
variant of the Lax-Friedrichs method. In order to ensure
the numerical stability, the time and space steps were
chosen such that the Courant-Friedrichs-Lewy conditionn
is satisfied. Finally, the parameter values for the simulation
scenario were borrowed from de Andrade et al. (2018b,a)
and are not detailed here due to lack of space. Importantly,
we considered the location of the heat release as x0 = 1

4L

and the sensors measurement point as xm = 3
4L.

Figure 1 depicts the observer error dynamics (see (29)-
(33)) obtained from the simulation scenario. As can be
seen, the error exponentially converges to zero as t→∞,
as stated in Theorem 1. Furthermore, we can see in this
figure that the convergence is slow for the upstream part of
the tube, i.e., for x ∈ [0, x0]. This is in agreement with the
choice of the target system proposed in Section 3.2, since
for all t ≥ 2/λ3 + 1/λ2 we have that α̌3(t, z) = α̌2(t, z) =
β̌3(t, z) = 0, which corresponds to the characteristic
coordinates of P and v (see equations (6)-(7), (14)-(16)).
The estimation error in the heat power release is depicted
in Figure 2. Note that Q̂ converges to the real value after
the initial transient.
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Fig. 2. Estimation error in Q(t) as a function of time.

6. CONCLUSIONS

This paper considers the state estimation of thermoacous-
tic instabilities of the linearized Rijke tube model with
in-domain measurements. The proposed method uses a
double folding transformation to rewrite the estimation
problem as a boundary state estimation framework. Then,
a Luenberger-type observer was introduced and the out-
put injection gains were obtained by the backstepping
method. The kernels of the backstepping transformation
were solved analytically by the method of characteristics,
which in turn allows us to obtain an explicit expression for
the observer gains. In particular, the kernels are piecewise
smooth and the number of pieces depends on the distance
between the heat release location and the measurement
point.

The result presented in this work generalizes our previous
paper (de Andrade et al., 2018a), where only the case
of boundary pressure measurements was investigated. In
addition, it is more reliable from a practical point of
view, since the designer can shift the location of the
measurement point in order to avoid pressure nodes and
to enable a trade-off between observer complexity and
performance.

The proposed method is, to the best of our knowledge,
the first result on observer design for a PDE-ODE sys-
tem with in-domain measurements using the backstepping
technique. This raises the question to extend the method-
ology for more general systems with in-domain point mea-
surements. In particular future works will consider other
PDE-ODE systems with a smaller number of measured
states. Another direction of future works includes the
robustness analysis of the proposed observer. From an
application point of view, this is highly important, as the
measurements usually are corrupted by noise or even the
mathematical model suffers from uncertainties.
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