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Abstract: This paper deals with a quantized feedback stabilization problem of nonlinear
networked control systems via linearization. In particular, we study circumstances where the
communication channel is interrupted by Denial-of-Service (DoS) attacks and its data rate is
limited. We employ a deterministic DoS attack model which constraints the amount of attacks
only by their frequency and duration, allowing us to capture a large class of potential attacks.
To achieve asymptotic stabilization, we propose a resilient dynamic quantizer in the sense
that it does not saturate in the presence of packet losses caused by DoS attacks. A sufficient
condition for stability is derived by restricting the average frequency and duration of attacks.
Since our result only guarantees local stability, we explicitly investigate an estimate of the
region of attraction, which may be reduced by attacks. A simulation example is presented for
demonstration of our results.

Keywords: DoS attacks, quantized control, nonlinear systems, stability analysis, linearization.

1. INTRODUCTION

Networked control systems have been widely studied over
the past several decades (Ishii and Francis (2002) and
Bemporad et al. (2010)). When a communication channel
is used in control systems, measurement and control input
information exchanged over the channel need to be quan-
tized. Moreover, it becomes necessary to investigate how
the control system may be affected by data rate limitations
of the channel. Many researchers thus tackled such data
rate limited control problems from various perspectives
(see, e.g., Nair et al. (2007) and the references therein).

On the other hand, in recent years, the viewpoint of
cyber security has become important for networked control
systems as such systems have been found to be vulnerable
to attacks (see, e.g., Cárdenas et al. (2008) and Pasqualetti
et al. (2015) for an overview). It has become clear that
both cyber and physical attacks to control systems may
induce critical incidents in the real world, resulting in,
e.g., large financial losses. According to Amin et al. (2009),
cyber attacks on control systems are classified to deception
attacks, which are conducted by changing the contents of
packet data, and Denial-of-Service (DoS) attacks, which
refer to communication interruptions including jamming
attacks. DoS attacks are particularly critical as it is easy to
launch such attacks as mentioned in Teixeira et al. (2015).
For this reason, we examine the effects of DoS attacks
throughout the paper.
? This work was supported in part by the JST CREST Grant No.
JPMJCRl5K3, by JSPS under Grant-in-Aid for Scientific Research
Grant No. 18H01460, and by JST ERATO HASUO Metamathemat-
ics for Systems Design Project (No. JPMJER1603).

In this paper, we study stabilization of nonlinear control
systems over data rate limited channels in the presence of
DoS attacks. We follow a sampled-data control approach
based on linearization. Though linearization-based control
design is a typical method in practice, only few works deal
with this approach in the literature. It is of particular
interest in the context of DoS attacks, since they may bring
critical issues when communication may be interrupted by
adversaries. Kato et al. (2019) considered cases where a
nonlinear system is locally controlled under DoS attacks.
There, it is mentioned that if the state leaves the region of
attraction due to DoS attacks, then it will not converge to
the equilibrium even after the communication is restored.
This paper extends the framework presented in Kato et al.
(2019) to take quantization into account. Also, we follow
the works by Hou et al. (1997) and Hu et al. (1999) in
linearization analysis. We then derive a sufficient condition
that the state trajectory remains within a certain stable
region even under DoS attacks.

Similarly to De Persis and Tesi (2015), we treat DoS
attacks in a deterministic manner rather than a stochastic
one (see Cetinkaya et al. (2019b) for more detailed dis-
cussion on various DoS attack models). In the work of De
Persis and Tesi (2015), DoS attacks were characterized in
terms of average frequency and duration. There, input-to-
state stability of linear systems is investigated under DoS
attacks and conditions on allowable attack frequency and
duration were obtained. These conditions were made less
conservative in Feng and Tesi (2017) by using a predictor
that estimates interrupted measurements. For nonlinear
systems under DoS attacks, De Persis and Tesi (2016)
investigated a global stabilization problem with certain
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Fig. 1. Networked control system under DoS attacks

assumptions. Cetinkaya et al. (2017) and Cetinkaya et al.
(2019a) provided a comprehensive treatment of both mali-
cious and non-malicious packet losses. On the other hand,
quantized control problems of linear systems under DoS
attacks were considered in Wakaiki et al. (2019) with
observer-based output feedback control and in Feng et al.
(2019) to reveal the trade-off between the minimum data
rate for stabilization and the tolerable level of DoS attacks.

For considering the required data rate for networked con-
trol, we aim to design dynamic quantizers which are re-
silient to packet losses in the communication channel.
To this end, we employ time-varying quantizers with
the zooming-in and zooming-out capabilities explored by
Liberzon and Hespanha (2005) for nonlinear systems.
However, there are few works dealing with both the quanti-
zation effects and packet losses. If there are packet losses,
these dynamic quantizers may saturate. The saturation
phenomenon of a dynamic quantizer was investigated by
Liberzon and Nešić (2007), where the system is subject to
large disturbances. As noted in that paper, saturation of
a dynamic quantizer can introduce performance degrada-
tion, and hence, we should avoid such situations. For linear
systems under probabilistic packet losses, the minimum
data rate problem has been addressed in You and Xie
(2011) and Minero et al. (2013).

The subsequent sections are organized as follows. In Sec-
tion 2, we describe the problem setting and the DoS
attack model used in this paper. The encoding/decoding
scheme and the proposed resilient dynamic quantizer are
introduced in Section 3. The main results of this paper
are presented in Section 4, where a sufficient condition
for stability and an initial condition to guarantee the
convergence of state trajectories are derived. In Section 5,
we present a simulation example. Finally, we conclude the
paper in Section 6.

Throughout this paper, we employ the following notation.
The sets of nonnegative reals and nonnegative integers are
denoted by R+ and Z+, respectively. Given a vector v and
a matrix M , ‖v‖∞ and ‖M‖∞ respectively denote the ∞-
norm and the induced ∞-norm. The length of an interval
I is denoted by |I|.

2. PROBLEM FORMULATION

Consider the nonlinear networked control system depicted
in Fig. 1, where a communication channel is inserted
between the sensor and the controller. In this section, we
describe the problem setting of networked control and the
DoS attack model characterized by their frequency and
duration.

2.1 Nonlinear networked control system

In Fig. 1, the plant to be controlled is described by

ẋ(t) = f(x(t), u(t)), t ≥ 0, (1)

where x(t) ∈ Rn is the state and u(t) ∈ Rm is the
control input at time t. The initial state is given by
x(0) = x0 ∈ Rn. Assume that f : Rn × Rm → Rn is
continuously differentiable and that the system (1) has an
equilibrium point at the origin, i.e., f(0, 0) = 0. Then, we
impose the following assumption.

Assumption 1. The function f in (1) is Lipschitz in a
certain region D := {x ∈ Rn : ‖x‖∞ < %} for any input
u ∈ Rm, where % > 0 is some positive number. That is,
there exists L ≥ 0 satisfying ‖f(y, u)− f(z, u)‖∞ ≤ L‖y−
z‖∞ for all y, z ∈ D and u ∈ Rm.

Letting T > 0 be a fixed sampling period, we denote
by tk := kT , k ∈ Z+, the sampling instants. The ideal
sampler ST measures the state at each sampling time. The
sampled state is then transformed by the encoder Ek into
a certain symbol to be sent through the channel. At the
controller side, the decoder Dk produces the quantized
state after receiving the packet as explained in the next
section. During the sampling/transmission intervals, the
input is kept constant by the zeroth-order hold HT .

For given constants x̄ ∈ Rn and ū ∈ Rm, let φ(t, x̄, ū)
be the solution to (1) for t ∈ [0, T ] with the initial state
x0 = x̄ and the constant input u(t) ≡ ū. Then, we
define φT (x̄, ū) := φ(T, x̄, ū). Furthermore, for ease of
presentation, we write the sampled value x(tk) as xk for
each k ∈ Z+, and the same notation is used for other
variables as well.

If a DoS attack is active at a sampling time, then the
packet transmission at that instant fails. In this case, the
control input is set to zero until the next packet reaches
the controller side. Let θk ∈ {0, 1} be the indicator that
stands for the absence or presence of packet losses. If a
packet loss occurs at time tk, we set θk = 1, and otherwise
θk = 0. Then, the control input applied to the plant (1) is
given as follows:

u(t) = (1− θk)Kqk, t ∈ [tk, tk+1), k ∈ Z+, (2)

where K ∈ Rm×n is a feedback gain matrix, the choice
of which is given later. Moreover, qk ∈ Rn denotes the
quantized value of the sampled state xk.

2.2 Data rate limitation

Since we consider a communication channel whose data
rate is limited, the information that the packet can contain
is taken from a finite set. Let M := {0, 1, . . . ,Mn − 1}
be the set of integers that can be sent by communication
at once, where M is a positive integer expressing the
number of the quantization levels in one coordinate of
Rn. In this case, the data rate of the channel is denoted
by R := n log2(M)/T bits per unit of time. Defining
Λ := eLT , we make the following assumption, which can
be found in Liberzon and Hespanha (2005).

Assumption 2. The number of the quantization levels M
satisfies M > Λ.
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2.3 Averagely constrained DoS attacks

Here, we introduce a deterministic class of DoS attacks.
For i ∈ Z+, let ai ≥ 0 and τi ≥ 0 denote the launching time
and the length of the ith DoS attack, respectively. Notice
that when τi = 0, the attack is impulsive, and thus, it
has no length. We then define the collection of DoS attack
intervals by A(t) :=

⋃
i∈Z+

[ai, ai+τi]∩ [0, t]. Furthermore,

we denote byN(t) the number of DoS attacks for which the
starting time is inside the interval [0, t]. Following the work
of De Persis and Tesi (2015), we consider the assumptions
below on the frequency and duration of DoS attacks.

Assumption 3. (DoS frequency). There exist κF ≥ 0 and
ρF ∈ [0,∞) such that N(t) ≤ κF + ρF t for all t ≥ 0.

Assumption 4. (DoS duration). There exist κD ≥ 0 and
ρD ∈ [0, 1) such that |A(t)| ≤ κD + ρDt for all t ≥ 0.

Remark 1. In contrast with the assumptions used in Feng
and Tesi (2017) and Feng et al. (2020), by using Assump-
tions 3 and 4, one can treat a wider class of DoS attacks.
In particular, under Assumptions 3 and 4, the maximum
period of unsuccessful packet transmissions needs not be
bounded. The constants ρF and ρD represent the allowable
average frequencies and durations of DoS attacks, whereas
κF and κD indicate the initial energy to launch attacks.
We note that, in this framework, an attacker does not need
to follow certain attack strategies (e.g., periodic one). If
an attacker can launch long and/or frequent DoS attacks,
then all the packet transmissions may fail. Such situations
may occur when frequent attacks with ρF ≥ 1/T are
allowed.

3. QUANTIZED CONTROL VIA LINEARIZATION

In this section, we consider the stabilization problem
with quantized state feedback. First, we explore lineariza-
tion analysis of the continuous-time nonlinear system (1).
Then, the encoding/decoding procedure and the resilient
design of a dynamic quantizer are introduced.

3.1 Linearization analysis

Linearization of (1) around the origin yields

ẋ(t) = Ax(t) +Bu(t) + g(x(t), u(t)), (3)

where

A :=
∂f(x, u)

∂x

∣∣∣∣
x=0,u=0

, B :=
∂f(x, u)

∂u

∣∣∣∣
x=0,u=0

,

and g(x, u) := f(x, u)−Ax−Bu is the remainder term of
the linear approximation. It is assumed that A is unstable
and that the pair (A,B) is stabilizable.

Discretizing the system (3) with the period T , we obtain

xk+1 = Ãxk + B̃uk + g̃(xk, uk), (4)

where Ã := eAT , B̃ :=
∫ T
0

eAs dsB, and

g̃(xk, uk) :=

∫ T

0

eA(T−s) g(φ(s, xk, uk), uk) ds.

Suppose that stabilizability of (A,B) is preserved through
sampling. Also, suppose that the controller gain K in (2)

is designed such that Ã+ B̃K is Schur stable. In this case,
the origin of (1) is locally asymptotically stable, but global
stability is not guaranteed.

Although Wakaiki et al. (2019) considers the discrete-time
system, we employ the sampled-data setting as bounds
on the inter-sample behavior are required to analyze the
nonlinearity of (4).

We first give a result involving the inter-sample behavior
of the continuous-time system (1). We define c0 := [1 +
T (‖BK‖∞ + ‖K‖∞)] eT (‖A‖∞+1) and c1 := eT (‖A‖∞+1) to
obtain the following lemma.

Lemma 1. For any x̄ ∈ Rn, consider the solution φ(t, x̄, ū)
to (1) with ū = (1 − θ)Kx̄, where θ ∈ {0, 1}. Then, there
exists a constant d > 0 such that ‖x̄‖∞ < d implies

‖φ(t, x̄, ū)‖∞ ≤
{
c0‖x̄‖∞ if θ = 0,

c1‖x̄‖∞ if θ = 1,

for all t ∈ [0, T ).

To show local stability of the origin, we need to obtain
bounds on the nonlinear term g̃(xk, uk) in (4). The follow-
ing lemma characterizes the region, inside which the norm
of the nonlinear term can be upper-bounded by a linear
function of the state norm.

Lemma 2. For any x̄ ∈ Rn, consider the nonlinear function
g̃(x̄, ū) in (4) with ū = (1 − θ)Kx̄, where θ ∈ {0, 1}.
Given γ > 0, we define γ0 := (c0 + ‖K‖∞)γT eT‖A‖∞ and
γ1 := c1γT eT‖A‖∞ . Then, there exists a constant δ ∈ (0, d]
such that ‖x̄‖∞ < δ implies

‖g̃(x̄, ū)‖∞ ≤
{
γ0‖x̄‖∞ if θ = 0,

γ1‖x̄‖∞ if θ = 1,

where d is as in Lemma 1.

3.2 Encoding/decoding procedure

Here, we state the encoding/decoding procedure of the dy-
namic quantizer following Liberzon and Hespanha (2005).
For ξ ∈ Rn and E ≥ 0, let

Q(ξ, E) := {x ∈ Rn : ‖x− ξ‖∞ ≤ E}.
In our dynamic quantizer, the quantization region at time
tk is given by Q(ξk, Ek). This is a hypercube which has
the edges of length 2Ek ≥ 0 and is centered at ξk ∈ Rn.
Since the initial state is not known exactly in general, we
set ξ0 = 0. We impose the following assumption on the
initial state for given E0.

Assumption 5. For given E0 ≥ 0, the initial state x0 of (1)
satisfies ‖x0‖∞ ≤ E0.

The variables ξk and Ek are adjusted based on the reach-
able set of the state to avoid saturation of the quantizer.
In the present paper, we assume that an acknowledgement
signal or the value of θk is exchanged between the encoder
and decoder and that this signal is not subject to DoS
attacks similarly to Wakaiki et al. (2019) and Feng et al.
(2020). At each sampling time tk, the state xk is quantized
as follows:

1. The encoder partitions Q(ξk, Ek) into the Mn equal
boxes with the same dimension, each of which is
indexed by an integer in M.

2. If the sampled state xk lies in the box indexed by
i ∈M, then the symbol sk = i is transmitted through
the communication channel.
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3. If the packet containing the symbol sk = i reaches the
controller side, the quantized state qk is produced as
the center of the box of index i.

4. The encoder and decoder update their own variables
ξk and Ek based on the value of the acknowledgement
signal θk.

If we know which partitioned box the state lies in, then
the reachable set at the next sampling instant can be
estimated, which is smaller than the current quantization
region, resulting in the zooming-in process. However, if
the packet loss occurs at time tk, we know only that the
state xk is inside Q(ξk, Ek). Then, one needs to expand the
quantization region to capture the state xk+1 at the next
sampling time tk+1, leading to the zooming-out process.
In the next subsection, we explain how the quantizer is
updated depending on the value of θk while the effects of
DoS attacks are taken into account.

3.3 Resilient dynamic quantizer design

As long as the state xk lies in the quantization region
Q(ξk, Ek), the quantization error satisfies

‖xk − qk‖∞ ≤
1

M
Ek. (5)

To avoid saturation of the quantizer, i.e., to ensure that
the state never goes outside the quantization region, both
the encoder and decoder need to calculate ξk+1 and Ek+1

so that

‖xk+1 − ξk+1‖∞ ≤ Ek+1, (6)

which is equivalent to xk+1 ∈ Q(ξk+1, Ek+1).

To do this, we propose the following dynamic quantizer.
The encoder and decoder generate ξk+1 and Ek+1 by the
following update rules:

ξk+1 :=

{
φT (qk,Kqk) if θk = 0,

φT (ξk, 0) if θk = 1,
(7)

Ek+1 :=


Λ

M
Ek if θk = 0,

ΛEk if θk = 1.
(8)

The quantizer needs to be capable to expand its quantiza-
tion region when packet losses occur. Here, we note that
the coordinate transformations to update the quantization
region considered in Wakaiki et al. (2019) and Feng et al.
(2020) are applicable only to linear systems. In the current
case, we cover the nonlinearity by simulating the evolution
of the state trajectory by (7) at each sampling time, which
can be computationally expensive. However, our main fo-
cus is linearization in the stabilization problem, and we do
not aim to reduce such computational complexities. Thus,
it is assumed that calculating (7) can be performed.

In what follows, we show that the dynamic quantizer (7)
and (8) locally satisfies the condition (6) at times when
both zooming-in and zooming-out occur.

Zooming-in process. We first consider the case where the
packet transmission at time tk is successful, that is, θk = 0.
In this case, both the encoder and the decoder know the
value of the quantized state qk. If xk, qk ∈ D, where D is
given in Assumption 1, then we can see from (7) that

‖xk+1 − ξk+1‖∞ ≤ Λ‖xk − qk‖∞ ≤
Λ

M
Ek,

where the last inequality follows from the boundary con-
dition (5). From (8), we can guarantee the condition (6).

Zooming-out process. We then consider the case where
the communication fails due to DoS attacks, that is, θk =
1. In this case, the decoder does not know the value of qk
but knows that of ξk, and thus, the update rule (7) can be
performed. Whenever xk, qk ∈ D, we have

‖xk+1 − ξk+1‖∞ ≤ Λ‖xk − ξk‖∞ ≤ ΛEk.

Hence, we can use (7) and (8) to ensure that (6) holds for
all k ∈ Z+.

4. MAIN RESULTS

In this section, we consider stability analysis of the non-
linear system (1) with the control input (2).

4.1 Stability condition under DoS attacks

Various ways to analyze asymptotic stability of switched
systems have been proposed such as a switched Lya-
punov function approach (Liberzon (2014)) and a common
Lyapunov function approach (Wakaiki and Yamamoto
(2017)). In this paper, we employ a switched Lyapunov-
like function to handle the unstable dynamics stimulated
by DoS attacks.

Let ϕ0 ∈ (0, 1) and ϕ1 ∈ (1,∞) be scalars satisfying that

ϕ
−1/2
0 (Ã+B̃K) and ϕ

−1/2
1 Ã are Schur stable, respectively.

Then, there exist positive-definite matrices P0, P1 ∈ Rn×n
such that

(Ã+ B̃K)>P0(Ã+ B̃K)− ϕ0P0 ≺ 0, (9)

Ã>P1Ã− ϕ1P1 ≺ 0. (10)

Following the work of Liberzon (2014), we define for p ∈
{0, 1} a positive definite function Wp : Rn × R+ → R+ as
follows:

Wp(ξ, E) := ξ>Ppξ + ηpE
2, ξ ∈ Rn, E ≥ 0, (11)

where η0, η1 > 0 are sufficiently large numbers. These
functions satisfy the following two properties, both of
which are not difficult to verify. First, there exist α, β > 0
such that for every p ∈ {0, 1},

α(‖ξ‖∞ + E)2 ≤Wp(ξ, E) ≤ β(‖ξ‖∞ + E)2. (12)

Second, there exist µ0, µ1 ≥ 1 such that

W1(ξ, E) ≤ µ0W0(ξ, E), W0(ξ, E) ≤ µ1W1(ξ, E). (13)

Remark 2. Here, we explain the difference from the anal-
ysis of our previous work (Kato et al. (2019)). The func-
tions in (11) are composed of two parts: The first part
corresponds to the classical quadratic Lyapunov function
and the second part is related to the quantization error.
If one employs the dynamic quantizer as explained in the
previous section, then the quantization error is expected
to converge to zero. Therefore, by just adding the error
term, one can utilize (11) as a Lyapunov function.

The function Wθk(ξk, Ek) decreases under the nominal
operation, whereas it increases under DoS attacks. The
following lemma provides a local characterization of the
switched Lyapunov-like function Wθk(ξk, Ek). Define ν0 :=

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3119



max{ϕ0,Λ
2/M2} and ν1 := max{ϕ1,Λ

2}. Then, the con-
vergence rate and the divergence rate of this function
corresponding to the occurrence of packet losses are given
as follows.

Lemma 3. Consider the nonlinear system (1) with (2) as
well as the dynamic quantizer (7) and (8). Suppose that
Assumptions 1–5 hold. Choose γ > 0 sufficiently small to
take a constant δ ∈ (0, %] from Lemma 2. Then, there exist
ω0 ∈ [ν0, 1) and ω1 ∈ [ν1,∞) such that ‖ξk‖∞ + Ek ≤ δ
implies

Wθk+1
(ξk+1, Ek+1) ≤

{
ωθkWθk(ξk, Ek) if θk+1 = θk,

µθkωθkWθk(ξk, Ek) if θk+1 6= θk,

(14)

where µ0 and µ1 are as in (13).

Remark 3. The convergence and divergence rates ω0 and
ω1 partly depend on the data rate for the communication
channel. However, if the data rate is sufficiently large, then
ω0 and ω1 converge to that of the infinite data rate case,
which is determined only by the dynamics of the plant (1).
In this case, we can recover our previous results presented
in Kato et al. (2019).

Now, we are ready to state our main result. Let κ∗D := κD+
κFT and ρ∗D := ρD + ρFT . In the following theorem, we
extend the result of Kato et al. (2019) to the case where
quantization needs to be considered.

Theorem 4. Consider the nonlinear networked control sys-
tem (1) with the control input (2). Suppose that Assump-
tions 1–5 hold. If

ρFT lnµ0µ1 + (1− ρ∗D) ln ν0 + ρ∗D ln ν1 < 0, (15)

then the origin is locally asymptotically stable.

Remark 4. We can observe that the stability is determined
depending on the average amount of DoS attacks, which
is characterized by ρF and ρD in Assumptions 3 and 4.
The stability condition (15) is similar to that of De Persis
and Tesi (2015) for cases without quantization (see also
De Persis and Tesi (2016) for nonlinear systems). Since
our focus is on a linearization approach, we can recover
the global stability result for linear systems by ignoring
the nonlinear parts of (3). However, as we discuss below,
the local stability point of view is important when DoS
attacks are addressed in stabilization problems.

Remark 5. The dynamic quantizer proposed in this paper
is resilient in the sense that it does not saturate even under
DoS attacks. The above theorem can also be seen as an
extension of the work by Liberzon and Hespanha (2005),
where the effects of packet losses are not considered.
Asymptotic stabilization of switched systems by quantized
state feedback is also considered in Liberzon (2014), where
the switching condition for stability was derived. Here,
in contrast, we further take into account the unstable
dynamics induced by DoS attacks. The local stability
condition derived above indicates the allowable average
frequency and duration of such attacks.

4.2 Convergence condition on initial states

In the previous part of this section, we derived a local
stability condition. Due to linearization, we need to keep
the state within a small region around the equilibrium
even in the presence of packet losses. Otherwise, the state

cannot converge to the equilibrium point. Also, we need
to set the initial condition so that the inequality (14) is
guaranteed. The following result provides a condition on
E0 that guarantees the state trajectory to stay inside the
stability region at all times and eventually converge to the
origin.

Theorem 5. Consider the nonlinear networked control sys-
tem (1) with the control input (2). Suppose that Assump-
tions 1–5 hold. Let ω0, ω1, and δ be taken from Lemma 3.
Also, suppose that (15) holds. If we choose E0 to satisfy

E0 < (µ0µ1)−κF /2

(
ω0

ω1

)κ∗D/(2T )

δ∗, (16)

where δ∗ := δ
√
α/β, then the state trajectory x(t) remains

within the set {x ∈ Rn : ‖x‖∞ < δ} for all t ≥ 0 and
satisfies limt→∞ ‖x(t)‖∞ = 0.

Remark 6. The result in Theorem 5 is important in the
sense that the condition (16) may not hold while the
stability condition (15) holds. Such a case occurs when
the DoS parameters κF and κD are large. The above
theorem provides a quantitative condition under which the
state trajectory can remain within the nominal region of
attraction arising due to linearization. Here, we emphasize
that a certain level of DoS attacks makes the state go
outside the region of attraction, possibly leading to an
unstable behavior.

5. SIMULATION EXAMPLE

Here, we demonstrate our main results by showing a
simulation example.

Consider the Liénard system

z̈(t)− (1− 3az2(t)− 5bz4(t))ż(t) + z(t) = u(t),

where a = 1/3 and b = 1/50. Choosing state as x(t) =

[x1(t) x2(t)]> = [z(t) ż(t)−
∫ z(t)
0

(1 + 3aw2 − 5bw4) dw]>,
we obtain the state equation[

ẋ1(t)
ẋ2(t)

]
=

[
x2(t) + x1(t) + ax31(t)− bx51(t)

−x1(t) + u(t)

]
.

The right-hand side of the above equation is locally Lip-
schitz with L = 10 satisfying Assumption 1. Also, we
choose the sampling period as T = 0.1 and the number of
quantization levels as M = 6. The uncontrolled system has
an unstable equilibrium point at the origin and exhibits
a stable limit cycle. To stabilize the origin, we consider
our linearization-based framework. Specifically, we set the
feedback gain to K = [−1.81 −1.90]>, which is obtained
by using the LQR method on the linearized system. With
the setting mentioned above, the solution of this system
exhibits a stable limit cycle if the uncontrolled time is
sufficiently long. Once the state trajectory approaches the
limit cycle, the state is unable to converge to the origin by
the linearization-based control.

The simulation result is presented in Fig. 2, where the
initial state is set to x0 = [0.1 0.1]>. In the figure,
the shaded parts represent the DoS attack intervals. The
bottom figure shows the changes in the radius Ek of the
quantizer. One can observe that saturation is avoided by
expanding the quantization region when DoS is present.
From the simulation result, we can see that the state x(t)
converges to the origin under DoS attacks.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3120



Fig. 2. Trajectories of system state, input, and size of the
quantization range

6. CONCLUSION

In this paper, we have considered a quantized stabilization
problem of nonlinear networked control systems under
DoS attacks. Our proposed control strategy is based on
the linearization framework used together with a resilient
dynamic quantizer which does not saturate in the presence
of packet losses. A sufficient condition for stability and
an estimate of the region of attraction have been derived
characterizing tolerable frequency and duration of DoS
attacks. The simulation example demonstrates our results.
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